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Abstract

A plant can track an input command signal if it is driven by a controller whose transfer
function approximates the inverse of its transfer function. A stable inverse can be obtained even
if the plant is nonminimum-phase. No direct feedback is used, except that the plant output
is monitored and utilized to adapt the parameters of the controller. A model-reference inverse
control system can learn to approximate a desired reference-model dynamics.

Control of internal plant disturbance is accomplished with an optimal adaptive disturbance
canceller. It does not affect plant dynamics, but feeds back plant disturbance in a way that
minimizes disturbance power at the plant output.

Similar principles can be utilized to control nonlinear systems. Neural networks are used to
build a model of the plant and to construct its inverse.

1 Introduction

This paper presents techniques for solving adaptive control problems by means of adaptive filtering.
Many problems in adaptive control can be divided into two parts: (a) control of plant dynamics,

and (b) control of plant disturbance. Very often, a single system is utilized to achieve both of
these control objectives. Our approach however treats each problem separately. Control of plant
dynamics can be achieved by preceding the plant with an adaptive controller whose transfer function
is the inverse of that of the plant. Control of plant disturbance can be achieved by an adaptive
feedback process that minimizes plant output disturbance without altering plant dynamics.

The principle of control of plant dynamics can be extended to deal with nonlinear plants. In
that case, tapped delay lines and neural networks are used in place of linear adaptive filters.

2 Adaptive Inverse Control for Linear Plants

2.1 Direct Plant Identification

Adaptive plant modeling or identification is an important function. Fig. 1 illustrates how this can
be done with an adaptive FIR filter. The plant input signal is the input to the adaptive filter. The
plant output signal is the desired response, thc target signal for the filter output. The adaptive
algorithm, LMS [1] or RLS [2], minimizes mean square error, causing the model P to be a best
least squares match to the plant P for the given input signal and for the given set of parameters
(weights) allocated to P.

*This work was sponsored by NSF under grant NSF IRI 91-12531, by ONR under contract no N00014-92-J-1787,
and by EPRI under contract RP:8010-13
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Figure 1: Direct plant identification.

2.2 Inverse Plant Identification

Another important function is inverse plant identification. This technique is illustrated in Fig. 2(a).
The plant input is as before. The plant output is the input to the adaptive filter. The desired
response for the ad Zive filter is the plant input in this case. Minimizing mean square error causes
the adaptive filter P- 1 to be a best least squares inverse to the plant P for the given input spectrum
and for the given set of weights of the adaptive filter. The adaptive algorithm attempts to make
the cascade of plant and adaptive inverse behave like a unit gain. This process is often called
deconvolution.

(a) (b)

Figure 2: Inverse identification. (a) for minimum-phase plants. (b) for nonminimum-phase plants

For sake of argument, the plant is assumed to have poles and zeros. An inverse, if it also had
poles and zeros, would need to have zeros where the plant had poles and poles where the plant had
zeros. Making an inverse would be no problem except for the case of a nonminimum-phase plant.
It would seem that such an inverse would need to have unstable poles, and this would be true if the
inverse were causal. If the inverse could be noncausal as well as causal however, then a two-sided
stable inverse would exist for all linear time-invariant plants in accord with the theory of two-sided
Laplace transforms.

A causal FIR fiter can approximate a delayed version of the two-sided plant inverse, and an
adaptive FIR filter can self-adjust to this function. The method is illustrated in Fig. 2(b). The
time span of the adaptive filter (the number of weights multiplied by the sampling period) can be
made adequately long so that the mean square error of the optimized inverse would be a small
fraction of the plant input power. To achieve this objective with a nonminimum-phase plant, the
delay A needs to be chosen appropriately. The choice is generally not critical however.

The inverse filter is used as a controller in the present scheme, so that A becomes the response
delay of the controlled plant. Making A small is generally desirable, but the quality of control

II-4
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depends upon the accuracy of the inversion process which sometimes requires A to be of the order
of half the length of the adaptive filter, or less.

A model-reference inversion process is shown in Fig. 3. A reference model is used in place of
the delay of Fig. 2(b). Minimizing mean square error with the system of Fig. 3 causes the cascade
of the plant and its "model-reference inverse" to approximate closely the response of a model M.
Much is known about the design of model reference systems [3]. The model is chosen to give a
desirable response to the overall system. Some delay may need to be incorporated into the model
in order to achieve low error.

\

Figure 3: Model-reference plant inverse.

2.3 Adaptive Control of Plant Dynamics

Now having the plant inverse, it can be used as a controller to provide a driving function for the
plant. This simple idea is illustrated in Fig. 4(a) for minimum-phase plants. Fig. 4(b) shows
the corresponding scheme for nonminimum-phase systems. Many simulation examples have been
performed, with consistently good results, as long as the plant is stable or is first stabilized by
feedback. Extensive analysis will be presented in the forthcoming book by Widrow and Walach [4].

(a) (b)

Figure 4: Inverse control scheme. (a) for minimum phase plants. (b) for nonminimum-phase plants.
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2.4 Adaptive Plant Disturbance Cancelling

The systems of Fig. 4 only control and compensate for plant dynamics. The disturbance appears
at the plant output unabated. The only way that the plant output disturbance can be reduced is
to obtain this disturbance from the plant output and process it, then feed it back into the plant
input. The system shown in Fig. 5 does this.

---------------- --------------------------------- I

Nz

Figure 5: Disturbance cancelling system.

In Fig. 5, an exact copy of P6 is fed the same input signal as the plant P. The output of this
5 copy is subtracted from the plant output. Assuming that P has a dynamic response essentially

identical to that of the plant P, the difference in the outputs is a close estimate of the plant
disturbance. This disturbance is filtered by Q and then subtracted from the plant input. The filter

Q is generated by an off-line process that delivers new values of Q almost instantaneously with new
values of P, which adapts continually to keep up with changes in the plant P.

The filter Q is essentially the best inverse (without delay) of P. The synthetic disturbance used
to train Q should have a spectral character like that of the plant disturbance. It is shown in the
Widrow and Walach book [4] that the disturbance cancelling system of Fig. 5 adapts and converges
to minimize the plant disturbance at the plant output. As such, it is an optimal linear least squares
system. There is no way to further reduce the plant disturbance.

The system of Fig. 5 appears to be a feedback system. However, if P is dynamically the same as

P, the transfer function around the loop is zero. The transfer function from the Plant Input point
to the Plant Output point is the same as that of the plant alone. Thus, the disturbance canceller
does not affect the plant dynamics.

Almost perfect disturbance cancellation is possible with a minimum-phase plant. With a
nonminimum-phae plant, even optimal cancelling will not cancel a the disturbance.

2.5 Example
A simulation experiment has been done to illustrate the effectiveness of the inversion process. Fig. 6
shows the impulse response of a nonminimum-phase plant having a small transport delay. Fig. 7(a)
shows the impulse reponse of the best least squares inverse with a delay of A = 50 sample periods.
Fig. 7(b) is a convolution of the plant and its inverse impulse response. The result is essentially a
unit impulse at a delay of 50.

Fig. 8 show results of a plant disturbance cancellation experiment. Although the plant in this
case was nonmiimum-phase, the results are quite good.

111-6
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3 Nonlinear Inverse Control

The principles of inverse control can be extended to deal with nonlinear systems. Nonlinear systems
behave quite differently from their linear counterparts. A major difference is that whereas a linear
system possesses a unique inverse, nonlinear systems have only local inverses if at all, valid only in
a bounded region of the signal space. As linear adaptive filters are used to control linear plants, the
inverse controller for nonlinear plants involves a type of recurrent neural network. The ability of
multilayered neural networks to approximate nonlinear mappings over compact regions as detailed
in (5] makes them useful in identifying direct and inverse models.

The inverse control of nonlinear plants involves a two-stage process where a model of the plant
is first constructed (identification) and second the plant model is inverted.

3.1 Plant Identification

The system is modelled through the use of a feedforward multilayered neural network fitted with
tapped delay lines at its input and output and a feedback loop. This is the nonlinear equivalent
of a linear HR filter. With an appropriate number of hidden neurons, such a neural network can
represent a system of the form

A = (Yk- 1, Yk-2,..., ,Uk-,,Uk-1,. . .,U..k-p)

over a bounded region of input space. The choice of the integers n and p is part of the modelling
design and follows from requirements of model accuracy. The identification scheme, illustrated
in Fig. 9, is founded on a standard technique, which is the nonlinear equivalent of the equation-
error formulation described in [6], and is called a series-parallel model in [7]. The choice of this
formulation allows the use of the standard backpropagation algorithm suited to training feedforward
neural networks.

Uk YA

P

Figure 9: Configuration for plant identification.

3.2 Computing the Inverse

The second step is the design of the controller. Once the plant identification has been performed
and a model of the plant obtained, the controller, also implemented as a recurrent neural network,
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is trained to behave like the inverse of the system. The algorithm used for training the controller is
a variant of the recurrent backpropagation algorithm (8]. The controller is trained upstream from
the plant model and the error signal is backpropagated through the plant model as illustrated in
Fig. 10.

Xjt ujt

Xkk

+

Figure 10: Configuration for training of inverse controller.

Newton's method Although the previous algorithmic scheme performs well, it is advantageous
to consider an alternate procedure based on Newton's method for solving Lonlinear equations.

The motivation for this procedure is the desire to increase speed and precision by training
the inverse of the plant model using standard backpropagation as opposed to a recurrent version
thereof. To do so, a desired controller output needs to be derived.

The desired controller output is simply the input to the plant that would yield the desired plant
output. Thus, we want to solve the equation y(d) = Fu, where y(d) is the target (desired) signal
and F is the nonlinear discrete-time plant mapping.

Let A be the first derivative of Y evaluated at the origin. We iteratively apply the following
algorithm:

u(0) = A-ly(d)

u(n+1) = U( ) + A-'(y (d) - .(u(n))), n > 0

In the above equations, the sequences u(' ) are finite for obvious practical reasons. However, it
should be pointed out that under certain conditions, the convergence of this algorithm is guaranteed
even in the infinite dimensional case. Of course, no matrix inversion needs to be performed here. In
fact, since A is lower-triangular in virtue of causality, only a triangular system of linear equations,
Ae() = y (d) - F(U(')), is solved at each time step by forward substitution.

The procedure is carried out according to Fig 11. Note that the u(j) are entire sequences and
not time samples. Data is gathered from the actual plant and then processed off-line to supply the
next input sequence. If the inverse of the plant model is to be computed, the whole computation
can be performed off-line with the plant model in place of the physical plant. At the end of the
iterative procedure, u(d) is obtained, the desired output for training the inverse controller.
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Figure 11: Scheme to apply Newton's method for computing plant input.

3.3 Disturbance Cancelling

As for linear systems, a feedback scheme, illustrated in Fig. 12 and called Internal Model Control
can be implemented which tends to eliminate plant output disturbance. After being thoroughly
studied in the context of linear systems ([9]), an extension to nonlinear systems has been suggested
([10]). The underlying idea is the same as in the linear case. An estimate of the output disturbance
is produced by comparing the plant output and the plant model output. The estimated disturbance
is then fedback to the controller input. It turns out that if the closed-loop system is stable, and if
the controller is chosen to be the inverse of the plant model, then the disturbance can be cancelled.

Figure 12: Internal Model Control for cancelling output disturbance.

3.4 Examples

Example 1 Let's consider the nonlinear plant suggested in [7] and defined by the equation:

aAk- ++tkkd

k-
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The input signal is confined in the interval [-2, 2]. The plant model in training configuration
(Fig. 9) had two inputs, the external input u and the output from the real plant, and one output. It
had one hidden layer with 10 units. The result of the plant identification is displayed in Fig. 13(a).
Specifically, the outputs of the plant and plant model are compared when the same test signal is
fed to their inputs.

- -- --4F---- lb" map* md dp

5 10 Is 2 4 45 W0 46 a 0 a n a n a a W

nrto1ik Rnftpok

(a) (b)

Figure 13: Example 1. (a) Result of plant identification (b) Performance of inverse controller.

The neural network controller had a two-tap tapped delay line as input, a hidden layer with
10 units and one output which is fed to the plant model. The error is backpropagated through
the plant model using on-line recurrent backpropagation. The time plots of Fig. 13(b) show the
command input fed to the trained inverse controller and the plant output. Although there are
errors, the agreement between the two signals is very good. The important thing to note is that
the controller is trained to be an inverse to the plant model and not the plant itself. Consequently,
good performance of the controller is contingent on building an accurate model for the plant.

Next, we demonstrate the efficacy of the Internal Model Control in cancelling the output dis-
turbance. The inverse controller and the plant model have been inserted in the control structure
according to Fig. 12. The result of this experiment in the form of the power of the disturbance at
the plant output before and after the feedack loop is closed is shown in Fig. 14.

I(

Figure 14: Instantaneous power of disturbance at plant output (feedback loop dosed at k =50).
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Example 2 As a second example, we modify the previous system equation and now consider:

yk = Y---I + sin(uk-1)

We will use this example to illustrate the use of Newton's method to train the inverse controller.

We start with the process of plant identification. The plant model neural network has similar
characteristics to the previous example's. Using a random signal uniformly distributed in the
interval [-1, 1], we obtain the results displayed in Fig. 15.

Pint output

04

0

-

-1 10 20 30 40 50 60 70 80 I0 100

Figure 15: Result of nonlinear plant identification for example 2.

Next, the inverse model is train using the two different methods discussed earlier. The inverse
controller is then placed in cascade with the real plant to evaluate tracking performance. The results
in Fig. 16(a) were produced by an inverse controller trained with standard backpropagation after
the desired controller output had been solved for using the Newton-like method. By comparison,
an inverse controller trained with recurrent backpropagation through the plant model yielded the
results of Fig. 16(b). The plots demonstrate better performance with the former method.

A A

backpropagation. (b) using recurrent hackpropagation.
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4 Conclusion

Methods for adaptive control of plant dynamics and for control of plant disturbance for unknown
linear plants have been described. In addition extension of control of plant dynamics to nonlinear
plants using neural networks have been presented. For their proper application, the plant must be
stable. An unstable plant could first be stabilized with feedback, then adaptively controlled.
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THE USE OF CALIBRATION LAYERS IN A SLIDING
NETWORK ARCHITECTURE

Gavin R. Peacock
ITRI, University of Brighton, England

ABSTRACT

Some neurs network problems may seem to require a large frame size compared to frame number, which
would ordimily lead to large statistical problems. Given the right assumptions, a sliding architecture may be used
to overcome these difficulties. Sometimes these assumptions are partially broken thus producing non-optimum
results. This paper describes one such case where some of the input signals are of unknown calibration. A solution
is suggested and then put to the test using an artificial problem. This produced up to a factor of 10 improvement on
the on'ors when compared to the case of a simple sliding architecture.

1 INTRODUC' 1 ,.N

Take a typical multi-layer perceptron problem: an input x(k) is provided where k indicates which frame of
data the input is taken from; and a required output yreq(k) is provided to which the actual output of the net y(k) must
converge through the iterative setting of the weights of the network. Let the maximum number of available frames
nk be much smaller than the number of elements of the input vector ni. This would normally lead to severe
statistical errors (including over-learning in an mlp [Chauvin 1990]) without a redesign of the network architecture
or of the data set. For a given problem, it may be possible to make the following two approximations.

The local approximation: yreq can only be associated with xil e al = (xi - Ai /2... Xi + Ai 12).

The location independence approximation: the mapping formed between the two is by the nature
of the problem independent of i.

If this is the case then a sliding architecture can be used (see figure 1). This improves the ratio of frame
size to frame number by a factor of about ni2lAi. This turns a large number of inputs into an advantage by
producing many more frames from them. Such an architecture is equivalent to the windowing of visual or other
data for classification problems such as character recognition. In Hand et al. [1992] this type up break down is used
to retrieve the positions of the eyes in the picture of a face. For many problems this is the simple and obvious
approach. Although its use here is intended for function estimation problems rather than classification, this is not a
novel architecture.

00000000000000

00000000000000
Figure I Sliding Network Architecture

Because of the large improvement, it can be tempting to use this architecture even if the two
approximations are broken to some extent. However, it may often be possible to adapt the architecture so that this
frame size to number ratio improvement is still obtained, while still complying with the approximations.
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This case arose from an application of neural networks to the measurement of the sound pressure response
of small rooms [Allison 1972, 1976; Bodlund 1976; Craik 1990]. Four sets of input data and one set of required
output was available with 1024 frequency points per signal (and so i represented the frequency). Because the
number of rooms with which to provide frames of data would always be small (in this case 48, half of which would
have to be reserved for testing), there is an inherent problem with the frame size to number ratio. However, it was a
reasonable approximation to make that an output at frequency i could only be associated with inputs of frequency
close to i. This width of input was defined by the resonances present in a room [Kuttruff 1973, chapter III]. Each
mode of resonance had a certain frequency bandwidth over which it could be excited, and this bandwidth provides
the possibility of associating the output with inputs of slightly different frequency. This works out to around 10
frequency points out of 1024. Given there were four sets of inputs, each output had to be associated to 40 inputs.
Although there were problems in doing so, it was also useful to use the location independence approximation
because this lead to a network that would extrapolate for rooms of different sizes.

Thus these two approximations led to the use of a sliding network architecture, where the network slid
over the frequency range steadily filling in the outputs. In doing so, the frame size to number ratio was improved by
the order of 100,000 enabling the use of neural networks as a solution.

However, in this example the calibration of three of the inputs was uncertain. This breaks the location
independence approximation. For a fully connected network, the uncalibrated nature of the input signal does not
present a problem because the network can calibrate itself to the input signal. This is not possible with a sliding
network because the calibration is dependent on i, whereas the network is independent of i.

2 SOLUTION
In this case, the solution is quite simple and effective. Assuming that the required calibration for input xi is

essentially linear and independent of all other inputs, then the calibration of the input can be carried out by what
will be termed a calibration layer. A calibration layer is a layer of single links that processes the uncalibrated input
nodes to produce a new set of nodes representing a calibrated input: xfal = wfat xi + 0i. The sliding network can
then slide along this new set of nodes oblivious of the calibration. Thus these links are fixed to each input instead of
sliding along with the net, and can therefore provide a processing dependent on i. In principle, the required output
can represent a signal also of unknown calibration, and so an output calibration layer can also be used. This new
architecture is shown in figure 2.

Figure 2 Sliding Network with Calibration Layers

Assuming that the sliding net would ordinarily be taught using some method of gradient descent of back-
propagated errors [Rumelhart McClelland 1986; Werbos 1988), this learning scheme can easily be extended to
train the calibration layers. Thus while the network is positioned at output Yi and frame k the output calibration link
to yi can be taught as part of the net, and also those input calibration links connected to x- ioc al .

There are three points to note.
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Although each output calibration link will only have k frames from which to learn, and each input link kAi
fiam this will not result in the learning problems encountered before the use of a sliding net architecture, because
each calibrated node only has access to a single input.

Although the architecture shown in figure 2 is a network containing four layers of weights, the problems
nomally associated with deep nets when using backpropagation will not be present. This is because the errors
back-propagated through the output calibration links are not dispersed by the layer, and so remain specific to a
given output.

The weights of a feedforward network are usually initialised at random. This is because it is not possible to
say what the nodes that these weights connect to, represent. However, in the case of the calibration layer, the roles
of the nodes involved is well defined. Thus the weights and thresholds can be initialised according to the means and
standard deviations (with respect to the training set of frames) of the inputs and required output.

3 EXPERIMENT

To test the performance of such a system, an artificial problem was devised.
The input was 20 floating point numbers set to rectangular noise between 0 and 1. The required output was

set according to:

Three other vectors of 20 elements were also provided as input. These were also set with rectangular noise.
The required output was unrelated to these other inputs. This increased the size of the input so that it was
comparable to the number of frames used and so forces the use of a sliding architecture.

These vectors formed one frame of data. There were 46 such frames constructed for the purposes of
training.

From the input layer upwards, the network was constructed as follows.

Each input node was connected by a permanent calibration link to a calibrated input node. There was no
output function on the activation of these nodes.

The frst layer of the sliding net connects 4 inputs from each input vector (16 in total) to the 7 nodes of the
first layer which performed a weighted summation on these connections followed by a logistic sigmoid output
function to provide the network with a non-linear response.

These nodes lead on to the second layer which consisted of just one node operating another weighted
summation, but this time without a further output function.

This node then connected to one of the links of the output calibration layer. The nodes of the output
calibration layer had no output function.

The initialisation procedure for the calibration layers described earlier was used. This served to produce
the unknown calibration of the input and output. Because this was carried over the 46 frames of the training set, this
lead to a statistical error in this initialisation of about 15%. The test will work if the network can remove this error.

All other weights and thresholds were initialised randomly according to a rectangular distribution between
-1 and +1.

Learning was carried out using backpropagation with momentum (Rumelhart, McClelland 1986; Jacobs
1988] throughout the network. A constant of 0.9 was used for the momentum. The momentum term was initialised
to zero in all cases.

The learning rates were applied layer by layer producing four learning rates: rin, rl, r2, rout; in that order
from input to output.

4 RESULTS

Best results were obtaining with learning rates of about: rin = 0.001, r1 = 0.1, r2 = 0.1, rout = 0.001.
Figures 3 and 4 compare the learning curves for these values of the calibration learning rates against the case of no
learning in the calibration layers. These results were obtained using a further frame of data, not part of the 46
frames of the learning set, thus requiring the network to predict. Note that the values used for the other rates not
specified in the graphs are those given above.

These results show a factor of ten improvement in the network's prediction through using input calibration
learning, and a factor of two improvement using output calibration learning.
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5 CONCLUSIONS

The calibration learning proved to be an effective method of introducing a input node specific adjustment
dependent on position without reintroducing the frame size to number problem.

The values of the calibration learning rates was smaller than that of the main sliding part of the net by a
factor of 100. Any rates much higher than this produced results worse than the case of no calibtation learning. It
appears that the calibration has to wait for the main network to produce a rough mapping before it can start to
converge, whilst the main network can start to converge before the calibration layers. Although once the calibration
layers have started to learn, this should feed back to enable the main net to learn a more accurate mapping, the
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learning in the calibration layers would remain subordinate to the main net. Thus this method can only be used if
either the calibration of the original signal is not too poor, or if there are enough frames (n.) for the initialisation
procedure used above to be valid. If this is not the case, then it would be difficult for an initial mapping to be
formed, and so neither part of the system would converge.

Because of the width of the input, Ai, is larger than the width of the output (which is just 1), the network as
described above would not be capable of producing an output at the extremes of i (i - 0 and i - ni). There are two
ways around this.

The simplest is just to measure more data at the ends to ensure enough input is available to cover for the
required range of the output.

If this is not an option, then the architecture can be adapted to give an output for the ends. As a starting
point, take the fully trained network, trained using only one output as in figure 2. Place the network at i Ai/ 2.
Connect each of the pre-ultimate layer nodes to each of the output nodes below Ai / 2. No further calibration links
are needed for these connections. Train these new links using the delta rule while keeping all previously trained
links constant. Repeat this for i = ni - i/2. This extension to the architecture does not make use of the location
independence approximation (which is why no output calibration links are necessary). The number of frames
available to carry out this end-learning is therefore reduced back to nt. However, because these links are using
nodes trained on data from across the input vector, the information presented by these nodes represent those
features already found to be of most use to the network.

In the application to the measurement of room acoustics, the calibration layers also had the role of
normalising the data so that the main (sliding) network received the input and required output data roughly in the
range of 0 to I instead of the range of about -90 to -50. This presented some problems not encountered in the
experiment outline earlier. To get a convergent behaviour from the calibration layers, the threshold adjustments had
to be scaled down on the input calibration links. Also, the momentum term had to be taken off the threshold update
rule.
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Abstract
In this paper, we propose a Partial Recurrent Time Delay Neural Network. The architecture is

quite similar to a Recursive Adaptive filter and can be trained as a channel equalizer. Results show
that the proposed architecture gives good results for several simulation channels. For tests conducted,
it outperforms the DFE equalizer and the best available neural equalizer. For a nonminimum phase
channel, the neural equalizer performs well, while traditional equalizers do not perform well.

1 Introduction

The problem to be considered in channel equalization is that of utilizing the information represented by
the observed channel output yt, t-i,...,ys-m+i to produce an estimate of the input symbol zx-,. A
system which performs this function is known as an equalizer, which compensates for unwanted channel
features and presents the receiver with a sequence of samples that have in a sense "cleaned-up" the effects of
Intersymbol Interference (ISI) and noise. Equalizers can be classified into two categories; the symbol-decision
and sequence-estimation equalizer [8]. A linear transversal equalizer(LTE is a symbol-decision equalizer as
the operation of this equalizer at each sample t is based on the m most recent channel observations. A decision
is made regarding the transmitted symbol at sample t - r. The integer m and r are known as the equalizer
order and delay respectively. A powerful technique to improve the performance of the symbol-decision
equalizer is to include past detected symbols into its input vector, this equalizer is called a decision feedback
equalizer (DFE) [8]. The best known sequence-estimation equalizer is the maximum likelihood sequence
estimator (MLSE) [8]. The MLSE is optimal for detecting the entire transmitted sequence and provides the
best attainable performance for any equalizer [2]. High complexity and the deferring of decisions are two
drawbacks of the MLSE. Although the concept of adaptive equalization has been known for many years [91,
neural networks have only recently being used as nonlinear adaptive filters for the channel equalization
problem [6]. Some researchers have use neural networks as a channel equalizer by using basic neural network
architectures and algorithms [3] [2]. The Time Delay Neural Network architecture has not been used in
channel equalization before.

In the paper, we will extend the Time-Delay Algorithm to a partial recurrent Time-Delay algorithm. The
new architecture and algorithm are more flexible than the original models, and can implement more powerful
functions. In order to avoid overfitting the training data, penalty functions are used. After estimating the
channel characteristics, the neural networks will be used as a channel equalizer. Our neural channel equalizer
is tested on these channels and comparison results are made with other neural channel equalizers and the
DFE.

2 Motivation and Proposed Architecture

In this paper, we will mainly discuss the partial recurrent network instead of the fully recurrent architecture.
We use a partially recurrent architecture since these networks can incorporate information about past states

*The authors adcnowledge support from NSF grant EET-8857711
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and learning algorithms are much simpler than full recurrent networks. The algorithms that we proposed
are similar to the Jordan Elman network [5 shown in Figure 1. In the partial recurrent architecture, the
input layer is divided into two parts: the true input units and the context units (the feedback units) [13].
The context units simply hold a copy of the value of state variables from the previous time step.

Figure I: Partial Recurrent Neural Network Architecture

The modifiable connections are all feedforward, and can be trained by a feedforward learning scheme. If
the state variables are delayed values of the output from the output layer, the state variables accumulate
a weighted moving average of the past values they see. The architecture can be used to implement a non-
linear Autoregressive Moving Average (ARMA) predictor [12] or a non-linear recursive adaptive equalizer.
The feedforward network is a special case of the recurrent form, which can be used to implement a non-linear
traversal adaptive equalizer [3]. The recurrency in a partial recurrent network lets the network remember
cues from the recent past, but does not appreciably complicate the training as real-time recurrent learn-
ing(RTRL) proposed by Williams and Zipser [5] and time-dependent recurrent back-propagation proposed by
Pearlmutter [7].

A Time Delay Neural Network (TDNN) [11] is typically described as a layered network in which the
outputs of a layer are buffered several time steps and then fed fully connected to the next layer. The
TDNN architecture can be viewed as an FIR filter network, i.e. each connection in the static feedforward
architecture becomes an FIR filter [12].

In a partial recurrent architecture, delayed versions of computational nodes can serve as inputs to the
network. We will consider only the case where delayed versions of output nodes are inputs to the network.
This network is a nonlinear version of a linear infinite impulse response (IIR) filter. The proposed Partial
Recurrent Time Delay Neural Network (PRTDNN) architecture is a TDNN with partial recurrent architec-
ture. The TDNN proposed by Waibel [11] is a special case of a PRTDNN. The PRTDNN is trained using a
variation of the backpropagation algorithm using regularisation methods.

The simplest weight regularization method is to use an exponential weight decay. While this method
discourages use of large weights; the penalty of one large weight is much more than many small ones. This
can be cured by using a different penalty term, such as [5] which normalizes the effects of different magnitude
weights by decaying larger magnitude weights more rapidly. This method is called the weight elimination
method and is used in conjunction with the backpropagation algorithm.

We note that the PRTDNN architecture has the following advantages over more conventional neural
architectures:

1. Temporal properties can be stored to improve learning ability. This is important for short sequence
reproduction task.

2. The learning algorithm is an extension of the backpropagation algorithm, therefore, the partial re-
current architecture will not complicate the learning process. The feedback connections are fixed, all
modifiable weights are in feedforward connections, so backpropagation or other feedforward learning
algorithms may easily be used for training.

3. Feeding back the output will provide more information to train the network, which makes the network
remember cues from the recent past.

The drawbacks of the architecture are:
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1. More connections may result in poor generalization or overtraining. Weight decay or other prun-
ing techniques must be used to prevent overly complex networks. Network architecture size can be
estimated follow Baum [1].

2. Training is usually slow. This is because the networks are larger with more weights and inputs to
represent time delays.

3 Channel Equalization
In this section, the channel equalization problem is tackled by using different neural network models includ-
ing our proposed PRTDNN architecture. First, several typical channels are presented, then the network
architecture and parameters are discussed. Finally, comparison results are shown.

3.1 Channel Characteristics

The input samples are chosen from {-1, 1) with equal probability and are assumed to be independent of one
another. The additive noise samples ni are chosen independently from a Gaussian distribution with mean
0 and variance u . The above system has been used to model a variety of communication systems, such as
HF communication channels [3]. The task of the equalizer is to recover the transmitted symbols based on
the channel observation, with the performance measure being the error probability. For easy comparison,
we use the same channels as [3] [10] [21. The following are the Z-transforms of the channels that we used:

A) H(z) = 0.3482+ 0.8704z - 1 + 0.3482z - 2  (1)

B) H(z) = 0.4084+0.8164z- 1 +0.4084z - 2  (2)

C) H(z) = 0.7255+ 0.5804z - 1 + 0.3627z - 2 + 0.0724z - 3  (3)

Channel A is a nonminimum phase channel, channel B is a near catastrophic nonminimum phase channel
and channel C is a minimum phase channel.A channel is called catastrophic if there exists two infinite
length paths that diverge from a state (never remerging) with finite distance in minimum squared Euclidean
distance [8]. Channel A has one zero outside the unit circle in the Z-plane. Channel B has two zeros close
to the unit circle. All zeros of channel C lies within the unit circle.

All the channel transfer functions are normalized, that is , for transfer function

H(Z) = hiz-'
i=0

we have
n

Eh = 1
i=O

The signal to noise ratio (SNR) is then given by

SNR n

where a.2 is the noise variance.
The decision device is simply a hard-limiter.
Gibson [3] propose the idea of applying neural networks to the channel equalization problem. He uses a

standard three layer feedforward neural network with the backpropagation algorithm as a training algorithm.
For minimum phase channels, the neural equalizer performs well in high noise environments. The LTE
(Linear Traversal Equalizer) works fine for high SNR. For nonminimum phase channels, the neural equalizer
outperforms the LTE because the neural equalizer can form a nonlinear decision boundary. He uses 5-9-
3-1 perceptron as an equalizer for channel A. A good method to improve the performance is to introduce
feedback. Siu [101 propose the first DFE (Decision Feedback Equalizer) neural network based on Gibson [3].
The same channel is tested by 4-9-3-1 network with one decision feedback. The performance improvement can
be seep clearly at high SNR (above 15db). He finds that the MSE decreases as the training samples increase.
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Usually, we use 1000 training samples. These papers compare the neural equalizer with conventional LTE
or DFE. Better performance can be achie, AI by MLSE (Maximum-likelihood Sequence Estimation) with
a long decision delay. Chen [21 propose a ,i ian neural equalizer using a Radial Basis Function(RBF)
architecture. He applied the neural equalizer j channels B and C. The result shows that when the neural
equalizer and MLSE with Viterbi algorithm have the same decision delay, the BEPs (Bit Error Probability)
are comparable. The MLSE only offers superior performance when it has a long decision delay. In general
the Bayesian neural equalizer can not achieve the performance bound set by the MLSE since it is only a
symbol-decision equalizer. Based on the above architecture, we apply the time delay neural architecture to
all three channels.

3.2 Neural Equalizer Structures and Comparison Result

The network architecture is selected according to channel transfer function and heuristic experimentation.
The activation function for the PRTDNN is

ex - e-Z

ex + e- z

The simulation results are shown in Figure ( 2 - 4). The curves are LogioBEP versus SNR for each
channel. The result is quite near the MLSE bound. The BEP for ISI free channel is Q(1/u), BEPDFE =
Q(ho/o), BEPMLSE = Q(dmn/2o') where Q(z) = 1/V' f, e- 212dy [2] [8].

For channel A the BEP achieved by PRTDNN is better than that of LTE or MLP(LTE) in Gibson [3]
because of the feedback architecture. Results show that the PRTDNN is also better than that of Siu [10] in
high SNR. There is 3db gain at BEP= 10- 4 . Compared with Chen [2], there is 1.5db gain at BEP= 10- 4 .

PRTDNN outperforms other methods for channel A.
For channel B the BEP achieved by PRTDNN and Chen is comparable. In high SNR environments,

PRTDNN performs slightly better. For low SNR, both of them approximate the MLSE bound. MLSE need
a very long delay to get good performance because of the near catastrophic channel. Conventional DFE does
not work well for nonminimum phase channel A and B as shown in Figure 2 and 3.

For channel C the time delay neural equalizer works better than that of Chen [2], but not as good as
using the Viterbi algorithm with long decision delay, the MLSE bound. For this channel the conventional
DFE works fairly well and usually converges faster than neural equalizers.

The simulation shows for minimum phase channel, the conventional DFE works fine, but for nonminimum
phase channel, neural equalizer works better than conventional DFE. The PRTDNN not only considered
decision feedback, but also included the temporal relationship between current observation and that of the
recent past, which results in it outperforming other methods.

4 Summary

In the paper, we showed a partial recurrent time delay architecture and algorithm. We have explored the use
of the proposed algorithm as applied to three channel equalization problems. We compared the performance
of the algorithm in terms of Bit Error Probability (BEP). We found that the proposed algorithm works
better for channel equalization problems than other neural equalizers. For the sequence reproduction and
the sequence recognition problem, examples include channel equalization problems, the partial recurrent
architecture is worthy of further investigation. This is because the architectures and algorithms are not
very complex as compared to real time recurrent architectures and test results are improved over simple
feedforward networks by introducing feedback and delay.

Further research would include optimizing parameters via regularization techniques and testing channels
with additive non-Gaussian noise and also channels that are time varying.
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ABSTRACT: Image compression based on neural networks is presented with block classification and coding.
Multilayer perceptron with error back-propagation leaning algorithm is used to transfonn the normalized image
data into the compressed hidden values by reducing spatial redundancies. Image compression can basically be
achieved with smaller number of hidden neurons than the numbers of input and output neurons. Additionally,
the image blocks can be grouped for adaptive compression ratios depending on the characteristics of the
complexity of the blocks. The quantized output of the hidden neuron can also be entropy coded or vector
quantized for an efficient transmission. Self-organizing featuremap shows better performance than vector
quantization. In computer simulation, about 25:1 compression ratio was achieved using the entropy coding
without much degradation of the reconstructed images, and about 40-45:1 compression ratio using vector
quatization or self-organizing feature map.

1. Introduction

Because of its massive parallelism, global operation, adaptive learning, noise robustness, and
generalization property, neural networks is a good candidate in signal processing applications where high
computational power is required[ 1,2]. In particular, some recent contributions of neural networks have been
reported for the image data compression applications[ 1-41.

Multiayer neural networks with error back-propagation learning algorithm are used to transform the
image data into the compressed data in the outputs of hidden neurons by the reduction of spatial redundancy[l].
The number of neuron units at the hidden layer is smaller than those of the input and output layers. We propose
an adaptive compression method, which classifies image blocks to compress at different ratios according to the
characteristics of the blocks for higher compression ratios and good generalization property. Also coding
methods of the outputs of the hidden neurons are proposed for more compression and efficient transmission of
the compressed image data for reconstruction. Section 2 describes briefly a typical compression method that
employs two-layer neural networks and proposed adaptive image compressionfreconsrucdon processes. The
proposed method divides image blocks into four classes by the classification algorithm. And the quantized
outputs of the hidden neurons can be coded by entropy coding, vector quantization, or self-organizing
featuremap(SOFM). Section 3 defines the evaluation criteria and the compression ratio, and section 4 shows
computer simulation results. Finally section 5 concludes the paper.

2. Image Compression/Reconstruction by Neural Networks

The image compression/reconsruction architecture based on neural networks is shown in Fig. 1. We use
two-layer neural networks, where the hidden neurons are duplicated for data transmission. Data compression
can basically be achieved with smaller number of hidden neurons than the numbers of input and output neurons,
which are assigned the same values of image data normalized with 8 bits during learning. All outputs of the
hidden neurons with sigmoid characteristics are quantized uniformly with 6 bits[l].

The image compressioW/reconstruction processes are shown in Fig. 2. We use the original images that are
divided into 8x8 pixel blocks. First, the block classifier classifies blocks of each image, then each pixel value is
nonnalized and its value is inputted to neural networks. At the transmission channel, hidden values of neural
netwods are coded by entropy coding , VQ, or SOFM. The processes are reversed for the reconstruction. Now
we explain thew processes more in detail.
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Fig. 1. Neural network architecure for compres- Fig. 2. Image compression/ieconstruction processes.

sion and reconstruction.

2.1 Preprocessing stage - block classifier

The image block classifier is proposed so that compression is carried out by two-layer neural networks
with different sizes, of the hidden layers according to the zomplexity of the blocks. The classification algorithm
including gradient calculation and edge detection[4,51 is used with some simplification. The image blocks are
classified into four categories: the shade (class 1: no significant gradient), the complicated (class 2: definite
mixed edge), the edged (class 3: definite single edge - horizontal, vertical, or diagonal), and the midrange block
(class 4: moderate gradient, no edge).

The shade block is based on the well-known fact that intensity changes smaller than the Weber fraction T.
are not visible[5] - this property was proved by Webers law through psycovisual experiments. Weber's law
states that the noticeable difference depends on intensity. So we compressed the Shade block as only one
average gray level value. The other blocks are compressed at different ratios with different numbers of hidden
neurons. Examples of the classified blocks of the Lena image are shown in Fig. 3.

2.2 Mapping stage - main compression/reconstruction

The values of 8 bit image data are normalized from -1.0 to 1.0 as input values of neural networks. The
normalized image block is fed into the input layer on the compression side( )ie stage), and reconstructed image
block is obtained from the output layer on the reconstruction side(back stage). Class I blocks need no neural
network, while class 2, 3, and 4 blocks are applied to the corresponding neural networks with the 8, 6, and 4
hidden neurons respectively. All output values of hidden layers are quanti- -A as 6 bits.

2.3 Coding - entropy coding, vector quantization, and self-organizing feature map

The quantized output of the hidden neurons can be coded for more compression by entropy coding, vector
quantization or self-organizing feature map. In case of entropy coding, the differential output values of hidden
neurons are entropy encoded to achieve lossless compression. One approach is to construct a variable-length
code, such as a modified Huffman code[6]. To encode the hidden values with a modified Huffman code, that is
matched to the statistics of the differential hidden values, we define the entropy H by
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L
H = - p log 2 p (4)

L
where Pi is the probability that the message will be the ith value. Since I Pi =I, it can be shown

ia!
that 0S H S log 2 L. From the information theory, the entropy H in (4) is the theoretically minimum possible
average bit ratio required for coding a message. Supposing the average bit ratio using the codewords that we
have designed is the same as the entropy[7], we use entropy coding in simulation.

In vector quantization(VQ), the hidden neuron activations are decomposed into n-dimensional vectors.
These n x 1 hidden vectors are vector quantized according to the codebook. The LBG algorithm was used in
training the vector quantizers[8].

In self-organizing feature map (SOFM), the hidden neuron activations of the two-layer neural networks
ae input vectors of the SOFA. Once the SOFM has been trained, the weight vectors will be organized into an
W mation of the distribution function of the input vectors. This is compared as VQ. The hybrid structure
using MLP and SOFM is shown in Fig. 4.

2.4 P-tprocessin. filter

When the compression ratio is very high, the boundaries of adjacent blocks become quite distinguishable,
which is called the blocking effect due to independent coding of each block. To reduce the blocking effect one
usually filters the image after reconstruction[7]. A low pass filter is used to improve the quality of reconstructed
images and typically applied only at or near the block boundaries to avoid unnecessary image blurring. We don't
use, however, this postpwcessing in simulation for the comparison of compression performance.

As a summary, the compression processes have two coding schemes:(1) lossy coding using neural
networks which is a quantization of hidden neuron activations, and (2) lossless coding using an entropy code
with the differences of hidden values or lossy coding using VQ or SOFM.
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3. Evaluation Criteria and Compression Ratio

We make use of mean-squared error(MSE) and peak signal-to-noise ratio(PSNR) as error measure of
reconstruction.

1 - N-I

7  Y-0-l-e (5)

'"255 2

PSNR = 10log( 2 ) (6)

The compression ratio(CR) without and with entropy coding are measured by equations (7) and (8).

CR 1 N x (7)
block# u.,k H x N + log 2 class#

1 __.. _ ___(__N ___x__ __

CR,Py = I-I_ N2 XN ) (8)
block# Zk H x entropy + log 2 class#

where N is block size and H is the number of hidden neurons, N and N. are the numbers of bits used in the
input and hidden layers, respectively. In vector quantization, CR, is calculated from the entropy in the Shade
blocks, code size in the vector quantizer, and code for classifying class. In self-organizing featuremap, CR,. is
calculated from the entropy in the Shade blocks, the size of output neurons for SOFM, and code for classifying
class.

4. Simulation Results

In simulation, four images of 8 bit gray levels, i.e. Lena, Bridge, Boat, and Train, are used. At first we
had tried the simple neural networks approach without any coding, which are trained by the Lena image and
tested by the other three images. We try two cases with 8 hidden neurons and 4 hidden neurons which give
about 10:1 and 21:1 compression ratio, respectively. Because the Bridge image is very complicated, PSNR is
very low.

Now let's look at performance improvements by added features at the presented architectures. The class
distribution for each image is shown in Table 1. For example, about 6% blocks are Shade blocks in the Lena
image. We note the Bridge image is the most complicated with about 58% of Complicated blocks.

At the second experiments, the neural networks are trained by the classified blocks of the Lena image and
tested by the other three images and the entropy is calculated from 6 bit output values of hidden neurons.
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Table 1. Class Distribution of each image.

inage

clas Lena Bridge Boat Train

I (Shade) 259 (6.3%) 46 (1.1%) 541(13.2%) 203 (4.9%)

2 (Complicated) 586(14.3%) 2366 (57.8% 814(19.9%) 339 (8.3%)

3 (Edged) 576 (14.1%) 734(17.9%) 829 (20.2%) 987 ( 24.1%)

4 (Midranged) 2675 (65.3%) 950 (23.2%) 1912 (46.7%: 2567 (62.7%)

Shade blocks need no neural network, while the Complicated, Edged, and Midrange blocks are applied to
the corresponding neural networks with 8, 6, and 4 hidden neurons, respectively. We get about 25:1
compession ratio without much degradation.

At the third experiment, the same neural networks are used, but values of hidden activations are quantized
using vector quantization. For learning of the vector quantizer of 1024 codewords of each class, we use the
standard LBG algorithm in training vector quantizer with the hidden values of the Lena and Bridge images.

At the fourth experiment, we use SOFM instead of VQ. The size of input vectors is the same as VQ. The
number of output neurons is 1024. Simuation results are shown in Table 2.

Table 2. Results with Block Classification and SOFM Coding

MSE PSNR: Compression Ratio

Image (dB) (CR ,a.)

class 2 class 2 class 2 class 2
4xl 8x1 4x1 Sil (class2:4x) (class2:xl)

Trained Lena 79.77 89.89 29.112 28.594 39.04:1 (0.20 bpp) 43.82:1 (0.18 bpp)

Trained Bridge 299.99 325.0 23.360 23.011 28.90:1 (0.28 bpp) 42.87:1(0.19 bpp)

Boa 141.39 162.64 26.627 26.016 38.42:1 (0.21 bpp) 45.15:1 (0.18 bpp)

Train 75.34 89.78 29.361 29.004 40.70:1 (0.20 bpp) 3.57:1 (0.18 bpp)

The major advantage of this approach is its good performancefor un-trained images, and the image
compression using the block classifier and coding is more effective at high compression ratio. All the
simulation results for the Lena image are summarized in Fig. 5. N is neural networks, E is entropy coding, B is
block classifier, V is vector quantization, and SOFM is self-organizing map. In this figure, the JPEG(Joint
Photographic Expert Group)[10 is very good, below 30:1 compression ratio, but performance drops very
rapidly for higer compression. Interpolative/Residual VQ(I/RVQ)[ 10] can achieve higher compression ratio, but
its PSNR is not good. Although performance of the simple neural network approach is very limited, better
performance may be achieved by block classification and coding based on vector quantization and SOFM.
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Fig.5 PSNR vs. bpp (bit per pixel) for the Lena image

6. Conclusion

In this paper, we present a new method of image compression and reconstruction using neural networks,
block classification, entropy coding, VQ, and SOFM. We got about 25:1 compression ratio without much
degradation of the reconstructed images in entropy coding and about 40-45:1 compression ratio with some
degradation in VQ or SOFM. Also we propose hybrid model with MLP and SOFM which shows good
performance in high compression ratio region. As future work, we are concerned with color image compression
and video coding using neural networks.
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Abstract

We study the convergence of the Least Mean Squares learning algorithm in self-referential linear stochastic models
when agents form their expectations according to a misspecified version of the model itself. The law of motion
perceived by the agents influences the actual law of motion of the model. In this framework, agents experience a
learning activity by which they update their estimates. The so called rational expectations equilibrium is obtained if
agents take their expectations consistently with the "true" model. We assume that agents update their estimates by
a "modified" Least Mean Squares learning algorithm. The convergence of this algorithm to the rational expectations
equilibria of the model is analyzed and a general convergence result is obtained. The point to which the algorithm
converges is dependent on the strength of the noise signal which affects the model and on the characteristics of the
function which weighs the noise signal itself. The main difference with respect to similar studies about convergence of
learning mechanisms to rational expectations equilibria in self-referential linear stochastic models, lies in the algorithm
that is not the Ordinary Least Squares usually adopted in the literature.

1 Introduction
In this paper, we address an interesting problem in economic theory: the interaction between the evolution
of a Self-Referential Linear Stochastic (SRLS) model dependent on agents' beliefs and a learning process for
the agents based on a misspecified version of the model itself.

If the agents know the "true" model, then, the Rational Expectations Equilibrium (REE) is the solution
of the system. At the REE, agents use optimally their private information consistently with the "true"
model and the expectation errors conditioned on the available information set, have zero mean. If the agents
form their expectations by a misspecified model, then expectation errors have not zero mean and a learning
activity takes place.

In the literature [1], it has been assumed that agents believe in a linear model, characterized by the
parameter matrix 8, and that they update their estimates by the means of the Recursive Ordinary Least
Squares (ROLS) algorithm. In [1] ;t has been proved that, with the ROLS mechanism, the convergence is
always to the REE point but that it is guaranteed only for a restricted set of functions and parameters of
the model.

In this study, we assume that agents update their estimates by a "modified" version of the Least Mean
Squares (LMS) algorithm [2]. We analyze the convergence of the LMS algorithm for a general class of SRLS
models. Inside this framework, it is necessary to modify the "classical" LMS algorithm by using a decreasing
learning factor. Convergence is proved by deriving the ordinary differential equation associated with the
"modified" LMS updating rule, see [31. The convergence is in probability. We prove that the "modified"
LMS algorithm converges to an equilibrium point of the differential equation but that such point can differ
from the REE according both to the strength of the noise signal and to the type of function which weighs
the noise signal itself inside the SRLS model.

The paper is organized as follows. In section 2, SRLS models are briefly described. In section 3, the LMS
algorithm is applied to this framework. Then, convergence results are discussed.

111-32



2 Self-referential linear stochastic models
Following [1], we denote with two subvectors of zt E Rn, not necessarily disjoint, the set of variables that
the agents are interested in, i.e., zit E P",, and the set of variables, i.e., z2t E §V2, that the agents think are
relevant to predict the variables in zit.

In the literature, the linear law of motion for zit perceived by the agents, at time t, is usually described
by:

--- Tz2(t-1) + t (1)

where Bt E Rn2,nl is the parameter matrix representing the perceived law of motion of zlt and pt E 3?n, is
a noise vector. The agents' beliefs in (1) cause the actual law of motion for the entire vector zt to be given,
in a general setting, by:

z, [ zt 1 [ 0 T(Bt) T  + V(Bt) T

A B T Z2(t-1) B(Bt)T (2

where the superscript c expresses the complement with respect to zt, ut E Ra is a stationary white noise,
T(8t) is the application which, given Bt, describes the actual law of motion for zit at time t, i.e., T : Bt -+
T(Bt) E Rnnf2xn The function V(Bt) modulates the noise term in the SRLS model according to the agents'
estimations represented by Bt, V : Bt -+ V(Bt) E Rn n. The other applications are defined as:

A : Bt -+ A(Bt) E %"Xn2 B :Bt - B(Bt) E Wnxf2.

Note that the agents' estimation which is represented by Bt in (1), defines together with the features of the
model, the actual law of motion in (2).

A REE of the SRLS model in (2) is a fixed point of the application T(B), i.e., B* such that T(B*) = B*.
The data generating process in (2) does not imply that zt is a stationary stochastic process. Although

the LMS learning algorithm has been applied also in non-stationary environments [4], we restrict our study
to the stationary case. Let us define the set D, where the SRLS model (2) is a stationary stochastic process.

D. = {B E R"2 xf× Ithe eigenvalues, i.e., Ai, of
A()T]

are less than unity in absolute value, i.e., IAiJ < 1}

In the literature, the algorithm used to update the estimates of the parameter B is the ROLS, see
[1]. Convergence of such algorithm to the REE of the SRLS model has been analyzed using the ordinary
differential equation associated with the ROLS updating rule, following [3]. It has been proved that agents
succeed in reaching the REE of (2) when the ordinary differential equation is stable, see [1]. Let us remark
that the ROLS algorithm is not sensitive neither to the noise term ut nor to the type of function V(B) which
weighs the noise signal itself.

In the following, a similar procedure will be used to prove the convergence of the "modified" LMS
algorithm.

3 The Least Mean Squares algorithm in self-referential linear
stochastic models

The ROLS mechanism has been used to update agent estimates because it guarantees a good pcrformance
being the "Best Linear Unbiased Estimator". However, the agents' model is misspecified inside the SRLS
framework. An alternative learning procedure deriving from the engineering literature on the adaptive signal
processing, is the LMS algorithm [2]. In order to apply such mechanism to the SRLS framework and to use
it as a learning mechanism for the agents to update the parameters B, it is necessary to define how agents
estimate the vector of variables zt.

We define the following linear perceived law of motion for the agents:

Z=t " BtTZ2(tI) . (3)
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Let us remark that (3) represents a deterministic perceived law of motion and does not include a noise
component as (1). However, a stochastic component in (3) does not affect the convergence analysis carried
out below.

In order to apply the LMS algorithm to the SRLS model, the instantaneous error ej E Wn, shall be
computed, i.e., et = z~f - zlt, where:

* z is the forecasted value of zjt by the means of (3),
* zlt is the actual law of motion generated by (2) as zit = T(B)Tz 2(t-1) + V(Bt)TUt.

Let us define fli E W 2 the i-th column of the parameter matrix B. Let us express the functions T(-) and
V(.) when evaluated at 13i, for i = 1,.. .,n 1 : Tj : Pi -+ T (03i) E Rn2 is the i-th column vector of the matrix
T(B) and i :,6i -+ Vi(fli) E R" is the i-th column vector of the matrix V(B).

The LMS algorithm updates the parameter matrix B to minimize the Mean Square Error (MSE) related
to the SRLS model in (2). The MSE is given by the mean value, taken over time, of the square of the
instantaneous error et. Let us fix the parameter matrix, i.e., drop the subscript t. Because it has been
assumed that E{et,et, } = 0 for i 6 j, then the MSE, expressed by (B), has its i-th component equal to
,(fli) = E{Et,} = E{(zit, - zet,) 2}. Using the agents' estimations in (3) the i-th MSE is expressed as

T T,(3)E{z?,,} + 'Ez(..)C)/i- 2Eze4,i =1,. .. , ,

Let us introduce the matrices M 2,(f) = E{z 2(t-1)z2(t_)} E Rn2xn2, Mu, = E{utuT} E ginxn and Ct(oi3) =

E{utzjt-l)} E RnfXn. Because of the restriction to stationary stochastic processes, the statistics of the
process zt and ut are time invariant, i.e., M 2,(i) = M11(0), M", = M" and Ct('6j) = C(3i) for B E D,.
Note that the assumption C(fli) = 0, usually done in economics, implies that the MSE function is given by
the sum of two quadratic forms:

=ii) = (Ti(pi) - Oi)T M.J(i) (Tip(i) - 1 ,) + V,(#3) T MuVi(13) , i = 1, ... ,n . (4)

Depending on functions T(-) and V (), the function i (fli) can have more than one global maximum/minimum,
local maximum/minimum and saddle points. Note that a REE is a minimum for the first quadratic form
in (4) but is not necessarily a minimum of the MSE function.

We have to remark that the LMS algorithm looks for minima and saddle points of the MSE function that
can be not global minimum. In order to compute the stationary points of the MSE function, let us evaluate
the gradient of the i-th MSE component. The gradient of the i-th MSE function is:

-T 
r(.r.() )- - IM (180 M(T,(/3 ) 00i )+V(), • •., •

As a result, 6' such that 63 = T (#1*) is not necessarily a critical point of the i-th MSE surface.
If the noise component of the model ut, which agents do not take into account in their signal extraction

activity, enters directly the model and is weighed by a constant function V(B) which is not dependent on
their beliefs, then a REE is a minimum of the MSE. Otherwise, if the noise term enters the SRLS model
weighed by the function V(B), i.e., V(B)TUt, which depends on the agents' estimate B, then the minimum
of the MSE, depending on the noise component, is different from the REE. In this case, the LMS learning
mechanism is not able to reach the REE but deviates to a non-REE.

Let us remark that the LMS algorithm always converges to a point that can be either a non-REE or a
REE, depending on the net noise signal. On the contrary, the ROLS algorithm can also diverge regardless
the characteristics of the net noise signal.

In [5], we have proved the convergence on average of the LMS algorithm to the REE when applied to
SRLS models where T(.) is a linear function of B and V(.) is independent of B. To analyze the convergence
of the LMS learning algorithm for a more general class of SRLS models, we have to restrict the attention to
the convergence in probability by applying the framework introduced by Ljung [3]. Moreover, the "classical"
LMS algorithm is modified by assuming a decreasing learning factor yt instead of a fixed q/.

In the following, the reasons that cause the "classical" LMS algorithm not to converge on average in
a more general class of SRLS models, are briefly sketched. Then, the LMS algorithm is modified and the
convergence to the minimum of the MSE is proved.
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Let us recall the LMS expression used to update the i-th parameter column Pt, [2],

t +1, = pt, - 217t, -, 1-., n- (5)

where 0 is a positive constant such that i E R, Cet, E N is the instantaneous error, i.e., et, = Zit, - z" and

E Nnf2 Recalling the SRLS model in (2), then the derivative of the instantaneous error is given by:

T\ T
apt, .9 ) )" Z2(t-) + "i' t Ut n=1, nz

As a result the "classical" LMS updating rule for the SRLS model in (2), is given by:

f=t+ , Ot, - 2i?(Ti(6t) - #,.)T Z2(t ..) & - J ZT z2 -1) + a p, uT

2__Vi(,t ' ap, -) Z2(t_1) + apt, ut], = l,..., n,.

The rule in (6) updates the parameter P t, according to two terms: one includes the product
(Tipt(,) - t,)T Z2(t-1) and the other includes V,(/ 3) T Ut. Let us subtract from both sides of (6) the value of
the REE point fi. Let us take the average of the resulting terms, assuming, for example, that both V(-)
and T(.) are linear functions of B so that their derivatives are constants and assuming that B is independent
of z2 and ut.

E{Jft+i, - -l) = E{it, - 1 } - 2q (O - I)MT 2(3)E {T,(3t) - Ot,}

, ME{ Vi(1,)} ,.. .,n

Let us analyze such expression as t -+ oo. It can be noted that two series arise. The first one, originated
from the signal Z2t vanishes while parameters 3i converge to the REE while the second one, which includes
the noise term, does not vanish but takes the parameter B away from the REE making the overall process
diverging on average, from the REE.

In order to use the LMS algorithm as agents' learning mechanism in SRLS models where the function V(.)
is dependent on B, it is necessary to modify the "classical" LMS updating rule which assumes 0 a positive
constant, with the following "modified" LMS rule where q has been substituted with -yt which is a decreasing
function as t -+ oo. The decreasing positive values given by yt are used to reject the noisy observations. Let
us modify the LMS learning algorithm defining the parameter matrix B = {fi, i = 1,..., nil as follows:

act
-t+l, = f t, - 2fyt+6t, 'i' , i = 1,...,nl . (7)

As a consequence, th, ned" LMS algorithm in (7), when applied to the SRLS model in (2), reduces to
the following updating

)6t+,, = i,, - 27t+1 8, T, z2(t')Zt )T T t

([( 2 -O ( ),, ' 2 t )

+ pti'-- )T Z2(t l)UTVi(flt.) + at. T 2 (Tit,) -(Tt,) (8)

g(.i). T otuT. Vf-t \

According to [3], let the sets D2 be closed and D1 open and bounded with D2 , D1 C , 2 xn, and D2 C D1 C
D,. The final algorithm for generating beliefs Bt = {fit., i = 1,...,n} is:

= f t+l if At+i E D, (9)

some value in D2  if 3t+ 14D(

The most natural candidate for "some value in D2 " is Bt, where t' is the last time that the parameter B E D2 ,
but any other point in D2 is acceptable. When D2 = D, = -l 2,nx, then 1 = B for all t.
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Besides the decreasing learning factor 7t, the "modified" algorithm defined by (8-9) deviates from that
in (6) because it invokes a "projection facility" (9) that prevents the estimator from ever leaving the set
determined by D1. In this way, the observations that drive B outside of D, are ignored. The "projection
facility" is used as to verify more easily the hypotheses used in the Ljung's framework, see [3].

In order to study the convergence of such algorithm, we apply the method suggested by Ljung in [3].
Accordingly, we compute the differential equation associated with (8-9). Using matrices M,(3i) and M., it
is given by:

-- --- 2 [,(f3,) _ I) M,(i) (T (Pi) - 3i) + ° V.(a S) V,(I3i) , i=l,•..,n1 . (10)

dit 80, a#/ 1(0

Let us define the set Da as the "domain of attraction" of the equilibrium point of the differential equation
in (10) that is a minimum point (Bn /n ) of the MSE. In order to prove the convergence of the "modified"
LMS learning mechanism in (8-9) by the means of the associated differential equation in (10), the following
assumptions on the model in (2) are employed. These conditions have been stated following the guidelines
in [1] as to satisfy hypothesis of Theorem 1 in [3] on the convergence of recursive algorithms.

A.1 The ordinary differential equation has a unique fixed point B' mi,

A.2 T(-) and V(-) are twice differentiable, and A(-), B(.) have one derivative in D,
A.3 the covariance matrices M,, and M, are nonsingular,
A.4 for all t, yt > 0 and -yt -+ 0 as t -+ 0o,

A.5 the vector ut consists of n stationary random variables, ut is serially independent. Further E{ Iui, I } <
oo for all p > 1, for i = 1,... n.

A.6 Suppose that there exist an event go with P(Qo) = 1 such that for each w E g0 there is one random
variable Ci(w) and a subsequence {tk(w)I such that V tk(W) IZ2,i < Ci(w).

A.7 Let D2 be a closed set and D, be an open and bounded set, with D2 C D, C D,. Assume that the
trajectories of the ordinary differential equation with initial condition Bo = {0,, i = 1,... , n} E D2
never leave a closed subset of D 1.

Assumption A.1 is made solely to simplify the demonstration. From [3], it is clear that our results can be
extended to a model with multiple minima of the MSE.

Proposition 3.1 Let B be given by the learning mechanism in (8-9). Let B"'r n be unique point of attraction
of the ordinary differential equation in (10) and let Da be the domain of attraction of Br in . Let the initial
condition Bo be in D2 . Assume A.1 to A.7 are satisfied. If

D1c D,, so that D 2 c D1 C (D, AD.)

then B - B""i" with probability one as t -+ oo.

Proof. In order to prove the proposition above, we use Theorem 1 in [3]. Moreover, let us refer to the
assumptions B.1-B.11 in [3]. Note that:

* assumptions B.1 and B.2 in [3] are implied by our A.5,
" assumptions B.3, B.4 and B.5 in [3] are implied by the smoothness assumptions on T(.), A(.), B(.)

and V(-) in our A.2,

" assumption B.6 in [3] is satisfied because the following limits exist:

im-o E j [(Ti(3i) - /3i) z2(t-.4) + V idut] ' . )OT,(Z)_
lim,-,o.~ E# T ,,TD i_ )Tz'2(t-1)J =

(= I M22 (/(,) (T7() - i3)
= \ oi, - .8M O fi

limt, E { [((/i) -#i)T Z2(t_) + V(I,)Tut]
T -

= (V,(V()T

where f is fixed and z2t is evaluated for a solution of the difference equation.
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" Assumption B.7 is implied by our A.5 and A.2 where the Lipschitz constants K and K2 in [3] are,
respectively the norms of the first and second derivatives of

_~T. Ti T[ pt (~) Ttt3T- ~ 8~Z2(t1I)Z2 (t-1)'''.'),6,) 98 t ) Z2(t...)tV(t)

+.Vp )T UtzT 49v.,6,)
T  

.TVt4\
( t-1) (Ti(flt-) + f3t,) + pt.2T~

with respect to #i and z2t.

" Finally assumptions B.8 to B.11 are implied by our A.4.

Finally if A.7 is satisfied, then since zlt = T,(t.)Tz 2(t-l) + V,(#t,)Tut it follows that there exists a
subsequence of {tk } such that IzIt. 1, z2t& I and 3t, are bounded along this subsequence; therefore (20) in [3]
is satisfied and we can apply the Theorem 1, which states the convergence of the solution of the differential
equation associated with a general recursive stochastic algorithm. 0

Note that proposition 3.1 does not cover the case in which, at some points on the boundary of D1 ,
trajectories of (10) point away from the interior of D1 . Trajectories that leave D1 , are not allowed to do so
by the virtue of the "projection facility" in (9). In order to comply with this fact the following corollary is
stated.

Coroliary 3.1 Assume that A.1-A.6 are satisfied, fi E D, C D,, and that D, is open and bounded. Assume
that D, C Da. Given that:

P = P(O3. -0.)
P2 = P(pt, -+ (D1 - D 2) for a subsequence {tk(W)})

then P1 + P2 = 1.

Proof. Elementary. 0

There is an important class of models in which it is possible to verify analytically the required behaviour
of the trajectories of the ordinary differential equation (10) at the boundary of D1 . These classes are those
for which z2 is exogenous in the sense that A(.) and B(.) in (2) are independent of B. Note that in this case
M 2(i,) = M 2 -.

4 Conclusions
We have studied the convergence of a "modified" version of the LMS algorithm to the REE of SRLS models
when agents believe in a misspecified model. The analysis has been carried out associating with the "modi-
fied" LMS updating rule the ordinary differential equation. This algorithm has been proved to converge to
a point which can differ from the REE. This is dependent on the strength of the noise signal which affects
the model and on the characteristics of the function which weighs the noise signal itself.

The "modified" LMS algorithm converges always to a point while other learning procedures such as
the ROLS algorithm can diverge. These features make the "modified" LMS mechanism more natural and
plausible to model agents' beliefs in SRLS models.
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Abstract.

A Gain-Scheduling Neural Network Architecture is proposed to enhance the noise-filtering efficiency of feedforward
neural networks, in terms of both nominal performance and robustness. The synergistic benefits of the proposed ar-
chitecture are demonstrated and discussed in the context of the noise-filtering of signals that are typically encountered
in aerospace control systems. The synthesis of such a gain-ucheduled neurofiltering provides the robustness of linear
filtering, while preserving the nominal performance advantage of conventional non-linear neurofiltering. Quantitative
performance and robustness evaluations are provided for the signal processing of pitch rate responses to typical pilot
command inputs for a modern fighter aircaft model.

1. Introduction.
The capability of feedforward neural networks to serve as noise-fiters for complex systems with varying

characteristics and/or changing modes of operation was recently analyzed for the noise-filtering of signals
that are typically encountered in aerospace control and diagnostic systems [1]. For such systems, the nominal
dynamics of the signals are a simplified version of the actual dynamics, due to modelling approximations,
system uncertainties, and/or changing modes of operation. As a result, the desired neurofilter should not
only provide satisfactory signal processing over the nominal dynamic range of the signals, but should also be
robust and maintain its performance in the presence qf changes in the nominal dynamics of the signals. From
that perspective, linear and non-linear feedforward neural networks were trained to filter noise by learning to
map sequences of noisy input data onto the exact values of the most recently sampled data [1]. Comparative
performance/robustness evaluations indicated that the synthesized non-linear neurofilter performed better
than the linear neurofilter within the nominal dynamic range of signals; whereas the linear neurofilter was
more robust in the presence of substantial variations in the parameters of the signal generating process. This
result pointed to the need for a more global neural architecture with a potential to synergistically combine
the complementary benefits of linear neurofiltering and conventional non-linear neurofiltering.

To address that issue, a gain-scheduling neural network (GSNN) architecture is proposed to find the
optimal combination of linear and non-linear neurofiltering that provides the best signal estimates from input
sequences of noisy data. The system functionality of the gain-scheduled neurofilter is briefly introduced in
section 2, while section 3 describes the gain-scheduling training architecture itself. In Section 4, the nominal
performance and robustness of the gain-scheduled neural network are compared to those of the linear and non-
linear neurofilters separately, while Section 5 discusses possible extensions towards performance/robustness
enhancement, non-linear adaptive neurofiltering, and neurosmoothing.

2. System Functionality of the Neuroflter.
The system functionality of the neurofilter is illustrated in Fig. 1 in the context of an aerospace control

system application. The signals to be filtered are the simulated pitch-rate responses to both pitch rate
and velocity commands. The closed-loop system includes a non-linear neurocontroller designed in Refs.[2-3]
to provide independent control of pitch-rate/airspeed for a state-space representation of a modern fighter
aircraft [4]. The plant model consists of an integrated airframe/propulsion linear model, a fuel flow actuator
modelled as a linear second order system with position and rate limits, and a thrust vectoring actuator
modelled as a linear first order system with position and rate limits. As a result, the signal generating
process represented by the closed-loop control system of Fig.1 contains nonlinearities due to the actuator
position/rate limits, and the nonlinear structure of the neurocontroller. For the purpose of this study, the

ISverdrup Technology, Inc., 2001 Aerospace Parkway, Brook Park, Ohio, 44142.
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noise source has been placed outside of the control loop so that a clean baseline signal would be available for
comparison. The purpose of the trained neurofilter is to provide an estimate of the actual data values that
have been corrupted by noise in order to enhance any subsequent processing by out-of.tke-loop peripheral
modules such as failure-detectors and failure-identifiers (e.g. Ref.[5]), off-line/on-line system-identifiers (e.g.
Ref.[6J), damage estimators (e.g. Ref.[7J), etc.

In this simulation, the information needed to synthesise the neurofilter is provided by closed-loop pitch
rate responses to input commands ZsBL(t) = (qsaL(t), VSL(t)), where qsjaL(t) is the pitch rate command
input, and vsgL(t) is the velocity command input. The pitch rate command input qVs,(t) is a doublet
randomly centered at a time t, between 2.5s and 5s such that qsaL(t < tc) = Qo, qsaL(tc < t < 2t,) = -Qo,
and qsBZ( 2 tc < t) = 0, as indicated in Fig.2a. The concurrent velocity command input is the step function
VS3L(t < 0) = 0 and vSBSD(O < t) = Vo. as indicated in Fig.2b. These commanded inputs qSUL(t) and
usEl,(t), which represent the frequency-content of typical pilot command inputs, were subsequently filtered
through a prefllter-for-comma d-shiaping (Fig.1) in order to generate the commanded trajectories it(t) =
(q4(t), v,(t)) that are to be tracked by the closed-loop control system. The commanded pitch rate response
q,(t) and the commanded velocity response u4(t) corresponding to a doublet pitch rate command input
qsBIL(t) and a step velocity command input vsEL(t) are represented in the diagrams of Fig.2. The maximum
intensities JQol and IVoJ of the randomly selected input commands were bounded by Q,. = 3deg/se
(corresponding to 0.5 inches of pilot stick deflection), and V,,. = 20ft/s. The pitch rate responses to such
randomly generated pilot command inputs were sampled every A = 10i over T = 14., and they were
corrupted with additive gaussian white noise with a standard deviation ori,,n = 0.3deg/sec before being
passed to the training architecture of the neurofilter.

3. Gain-Scheduling Training Architecture.
The proposed neurofilter consists of a linear neural network and a non-linear neural network with op-

timized internal configurations, and whose outputs are modulated by a gain-scheduling feedforward neural
network. The optimized linear neural network and the optimized non-linear neural network used in this
simulation were trained in Ref.(I] with the training architecture shown in Fig.3. During training, the in-
puts of these two neurofilters consisted of sequences 'of the fifty most recently sampled noisy data, and the
target values were the exact values of the last sampled data. In Fig.3, the notation FA(p, h, 1) represents
a feedforward neural network with p input units, a single hidden layer of h sigmoidal neurons, and a single
linear output neuron. Both linear and non-linear neurofilters were trained to minimize the error (i - q)2 (t)
between the filter output i(t) and the exact value q(t) of the pitch rate signal generated as in Section 2.
The optimized network configurations of these two types of neurofilters were FA(50, 30, 1) for the non-linear
neurofiltering (i.e. 50 inputs, 30 hidden sigmoidal neurons, and I linear output neuron), and FA(50, 1) for
the linear neurofiltering (i.e. 50 inputs, and I linear output neuron).

As shown in Fig.4, the "fusion" of the optimized linear and non-linear neurofilters is achieved by training
a gain-scheduling neural network to minimi e the error (EGsvv - q) 2 (t) between the Gain-Scuedaded Neural
Network output GSNN(t) and the exact value q(t) of the pitch rate signal generated as in Section 2. As
indicated in Fig.4, the gain-scheduled neurofilter estimate 4 (t)G.NN is an adaptive combination of the non-
linear neurofilter estimate , and the linear neurofilter estimate 4 (t) ,e.s:

iGSNN(t) = g(t) x C),o,-line r + (1 - g(t)) X 4(t)liei (1)

where the gain g(t) is the output of the non-linear gain-scheduling neural network. The role of the gain-
scheduling neural network is therefore to find the optimal combination of linear and non-linear neurofiltering
that extracts the best signal estimater; from input sequences of noise-corrupted data. In order to facilitate
this "classification", the inputs of the Sain-scheduling neural network were chosen to be filter estimates of
the exact signal values instead of the original noisy data values. These filter estimates were furthermore
chosen to be the computed outputs of the linear neurofilter, in light of the robustness advantage that linear
filtering has over conventional non-linear neurofiltering. The configuration of the gain-scheduling neural
network chosen in this application consisted of twenty five input units, ten hidden sigmoidal neurons, and a
linear output neuron with the thresholding activation function y(z):

(M<0) =0; Y(O < < ) =2; Y(I<Z)= , (2)

and training was performed with the backpropagation algorithm [8-91.
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4. Comparative Nominal Performance and Robustness Evaluations.
The ability of the linear, non-linear, and gain-scheduled neurofilters to remove the noise from the pitch

rate response to a given pilot commanded input "c" is measured by the ratio R,

TIA
R , = E =o h) - .) (3)

T being the duration of the pilot command input, and A the sampling time of the vehicle outputs. In Eq.(3),
q(tt) is the exact pitch rate response, f(tt) is the white noise fluctuation added to q(tA,), and i(th) is the
filter output corresponding to an input sequence of p sampled noisy data, i.e. {q(t._) +A(t5 _j), min(k, p)>
i> 0).

To compare the performances of the aforementioned neurofilters, two measures "R" and "r" based on
Eq.(3) are introduced [1]. The R-measure is a statistical average of X calculated over the whole dynamic
range of pilot command inputs as characterized in Section 2 by (Qo, Vo, t.) where Qo, V0 , and t,: are uniforwly
distributed over [-Q,., +Q..], [-V,.., +Vin], and [2.5s, 5s] respectively. The r-measure is the value
of R. for a most demanding case of pilot command input corresponding to the pitch rate doublet QsBL(t <
5sec) = Q.., QsBL(5sec < t < 10sec) = -Q., QsBL(losec <t ) = 0; and the velocity step VssR(t <
0) = 0 and VsBL(O < t) = V,.. The R-measure grades the average efficiency of a neurofilter in removing
the noise over an exhaustive set of pilot command inputs, whereas the r-measure estimates the filtering
efficiency for one of the worst cases of pilot command inputs. To test the ability of the neurofilters to
operate at noise levels other than that used in training, the R- and r- measures were evaluated with gaussian
white noise of various standard deviations ranging from o,,.,, = 0 to o,, = Ideg/sec. The values of the
R- and r- measures corresponding to the nominal dynamic range of the signals are plotted in Figs.5a & 6a
respectively. The results show that the gain-scheduled neurofilter outperforms both the optimized linear
filter and the optimized non-linear neurofilter, not only at the noise level used in training, but also at all
noise levels between o',, = 0 and o,.. = Ideg/sec.

To further compare the robustness of the gain-sceduled neurofilter with the robustness of the optimized
linear neurofilter and non-linear neurofilter respectively, the R- and r-measures were also evaluated on a
test set extending beyond the nominal dynamic range of the signals (used for training) and generated as
follows. The matrix elements of the A, B, and C matrices of the vehicle model [4] were randomly varied
within ±50% of their nominal values, with the sole requirement that the stability of the closed-loop system
be preserved [2]. Due to the severity of the deviations of the A, B, C matrices from their nominal values,
the closed-loop system responses to typical pilot command inputs presented significant deviations from the
nominal responses. The statistical evaluations of "Uk and "r" are plotted in Figs.5b & 6b respectively for a
typical set of A, B, and Cs leading to large variations of the vehicle model. The results show that the gain-
scheduled neurofilter still outperforms the optimized linear filter and the optimized non-linear neurofilter
at all noise levels. This is graphically illustrated in Fig.7 by the filtering of the pitch rate response to the
most demanding pilot command input of the vehicle model with the same set of off-nominal A, B, and C
matrices as that used for the evaluations of the R- and r-measures plotted in Figs.5b & 6b respectively.
As shown by the plots of Fig.7a, 7b & 7c, additive gaussian white noise is more efficiently removed from
the noisy closed-loop signals by the gain-scheduled neurofilter (7c) than by the optimized linear neurofilter
(7a) or the optimized non-linear neurofilter (7b) separately. The synergistic benefits of the newly proposed
gain-scheduling architecture are even more apparent when comparing Figs.Ta, 7b & 7c in light of the plot of
the gain-scheduling neural network output (identical to the output gain of the non-linear neurofilter) shown
in Fig.Td. This comparison indicates that the gain-scheduled neurofiltering presents the characteristics of
linear neurofiltering around 1 sec and 6 sec, i.e. when the pitch rate estimates of the linear neurofilter are
better than those of the non-linear neurofilter. More specifically, Fig.Td also indicates that, around I sec,
the gain-scheduled neurofilter estimate consists of about 80 % of linear neurofilter estimate, and about 20
% of non-linear neurofilter estimate. Around 6sec, the gain-scheduled neurofilter estimate is 100 % of the
linear neurofilter estimate. Otherwise, the gain-scheduled neurofilter estimate is for the most given by the
non-linear neurofilter estimate, e.g. above 12 sec where it is 100 % of the non-linear neurofilter estimate.
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5. Conclusion.
A Gain-Scheduling Neural Network Architecture has been proposed to enhance the robustness of feed-

forward neurofilters, and was analysed in the context of the noise-filtering of pitch rate responses to pilot
command inputs for a modern fighter aircraft model. The proposed architecture consists of an optimized
linear feedforward neurofilter, an optimized non-linear feedforward neurofilter, and a gain-scheduling feed-
forward neural network which is trained with backpropagation to synergistically combine the complementary
benefits of the linear and non-linear neurofilters. The resulting gain-scheduled neurofilter consistently per-
formed better than each neurofilter separately, within the nominal as well as off-nominal dynamic range of
the simulated signals.

Future areas of research would include possible extensions of the functionality and scope of the pro-
posed gain-scheduling neural network archlitecture. Of particular interest would be the possibility of further
enhancing neurofiltering through the gain-scheduling of a collection of linear filters that would have been
separately optimized on the disjoint elements of a partition of the space of the input signals. The synthesis of
the multi-output gain-scheduler(s) required for the fusion of such optimized linear neurofilters could benefit
from the robustness of genetic algorithms or even fussy rule-based scheduling, or from training algorithms
like those developed for the hierarchical mixing of expert neural networks [10].

Of additional interest would be the possibility to extend the proposed architecture to achieve non-linear
adaptive neurojlltering through the synergy of supervised and unsupervised training schemes, and by taking
advantage of the on-line learning capabilities of neural networks. An important practical issue to be addressed
in that regard would be whether neural networks can be trained in unsupervised training modes to efficiently
gain-schedule the supervised training of a partition of individual neurofilters of the type proposed in Ref.[1 1].

Of further interest would be the possibility to extend the proposed architecture to the smoothing of noisy
signals by training a neural network to gain-schedule optimized linear and non-linear neurosmootuer. that
would have been previously trained to map sequences of p successively sampled noisy data onto the exact
values of any of the previous (p-i) samples input to the network. Such gain-scheduled neuroenootkers would
be expected to provide better signal estimates than their nnrofilter counterparts in view of the additional
information provided [11-12], yet at the expense of the time corresponding to the delay needed for the signals
to be available. How to reach the best compromise between "accuracy" and "time" would therefore depend
upon the computational requirements and characteristics of the specific post-processing to be performed on
the signals.

Finally, future comparative analysis with other traditional techniques, such as Extended Kalman Filtering
[13), could also provide insight on how to improve the performance and broaden the applicability of the
proposed Gain-Scheduling Neural Network approach.
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Abstract

A multiresolution learning method for back-propagation networks is proposed in this paper.
With this learning method, a series of back-propagation networks are built to learn the same set of
input vectors under different resolutions. After a network has been trained on a particular resolution
of input vectors, the connection weights are transformed into the next network which is responsible
to learn a higher resolution of input vectors. The objective of it is to improve the convergence rate
of the networks. Experimental results were used to demonstrate the ability of this approach.

1 Introduction

The back-propagation network has been studied for many years and many researchers have applied it
to a wide variety of problems successfully [9]. Unfortunately, it is shown that the back-propagation
algorithm, which adopts the steepest descent technique, is slow to converge in a multilayer network
(3, 4]. Such limitation prohibits the use of back-propagation network on large scale problems, e.g.
problems with high dimensionality input space. The multilayer perceptron assumes the individual
input neuron acts independently from the other neurons. In fact, in some problems, for example, image
recognition problems, use images as the grey level input to the network. The input neurons do have
some correlations with their neighboring neurons. However, a multilayer perceptron has not taken this
into account.

On the other hand, the human visual system, as an optimal image processor, can process a huge
amount of information quickly. Studies of such system have shown that the retina of the human eye
is an structured array so as to see a wide angle in a low-resolution way using peripheral vision, while
simultaneously allowing high-resolution, detailed perception by the fovea in a small central portion of
the viewing region [5]. This finding triggered significant interest in multiresolution signal decomposition
and some researchers [1, 8] have applied this multiresolution technique in many fields of applications,
e.g. edge detection, data compression, surface interpolation, and shape analysis. Recently, several
researchers incorporate this technique with neural networks [10, 12].

A multiresolution representation of a signal provides a simple hierarchical framework for interpretat-
ing the information. In some sense, the signal at a coarse resolution provide the "context" of the signal.
It is natural to analyze first the signal at a coarse resolution and then gradually increase the resolution.
It is believed that such coarse-to-fine strategy provides a possibility for reducing the computational cost
of signal operations [8].

In this paper, we propose a problem-independent learning method, which adopts the multiresolution
signal decomposition technique, for back-propagation networks in order to alleviate the shortcomings
of this kind of networks described above. With this multiresolution learning method, a series of back-
propagation networks are trained on a set of training data under different resolutions and we believe
that the convergence rate of back-propagation networks can be improved, e.g. the convergence rate is
faster than the original one.
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2 Multiresolution Approximation of L 2 (R)

In this section, we review the basic concept of multiresolution analysis introduced by Mallat [6, 7].
Suppose that the original signal f(z) described in this paper is measurable and has a finite energy:

(z) E L 2 (R). According to Mallat's definition, we can define the multiresolution approximation of
L 2(R).

Definition The approximation of a signal f(z) at a resolution r can be defined as an estimate of
f(x) derived from r measurements per unit length. These measurements are computed by uni-
formly sampling at a rate r the function f(z) smoothed by a low-pass filter whose bandwidth is
proportional to r.

In an approximation operation, when removing the details of f(z) smaller than r, the highest
frequencies of this function is suppressed. In the following, we discuss only the approximation of a
function on a dyadic sequence of resolution (24),Ez.

The approximation of the signal f(z) at the resolution 2j , A 2j f(X), is characterized by the set of
inner products as,

A'- = ((f(U),02i (u - 2-n)))n z

where 02 ,(z) = 2j (2Jz) and O(x) E L 2 (R) is a unique function called a scaling function. A f is called
a discrete approximation of f(s) at the resolution 2j. In practice, a physical measuring device can only
measure a signal at a finite resolution. For normalization purposes, it is supposed that this resolution
is equal to 1 and let A d f be the discrete approximation at the resolution 1 that is measured.

Let H be a discrete filter whose impulse response is h(n) = (0S2-1(u), 0(u- n)) and let Ht be the
mirror filter with impulse response,

h(n) = h(-n). (2)

Then, it can be shown that the discrete approximation of f(x) at a resolution 2j , A 23 f, can be calculated
by filtering A 23+1f = ((f(u), 02j+' (u - 2- j -'k))) with the discrete filter/H and keeping every other
sample of the convolution product,

A24, = h(2n - k) (f(u), 02j+1 (u - 2-j-1 ) (3)

( o nEZ

All the discrete approximations Adj, for j < 0, can thus be computed from Adjr by repeating this
process. This operation is called a pyramid transform and the set of discrete approximations (Add)
was called a Gaussian pyramid by Burt and Adelson [1].

3 The Multiresolution Learning Method

The multiresolution learning method we proposed involves a series of back-propagation networks. Each
network is responsible to learn on the same set of input vectors but under different resolutions. The
sequence of training processes to be carried out by the set of back-propagation networks is from the
coarsest resolution to the finest resolution. After a network has been trained on a particular resolution
of input vectors, it transfers the learned information, that is the connection weights, to the upper level
network which is required to learn a higher resolution of input vectors.

3.1 Input Vector Representation

Firstly, let us define how input vectors are represented under different resolutions. Let {i} be a set
of N-dimensional input vectors where i; = (XiIv xi 2, ... , XiN) and xii E W. It has been mentioned in
Section 2 that Ad! is the discrete approximation at the resolution 1 and contains a finite number of
samples. Then, we can define the discrete approximation of ii at the resolution 1, A i, as,

A = (Xin)l<a<N. (4)

A set of N-dimensional input vectors {Ad4} can thus be formed.
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By choosing a suitable discrete filter H and applying Equation 3, the discrete approximation of i

at the resolution 2', A" i, can also be defined as,

A = i h(2n - k)A,+, ii(k)) , (5)
(k---.1 l<n<21/N

where i (k) being the k-th element of Ad +, i;. Hence, all the discrete approximations A ,i, for
j < 0, can thus be computed from i; by repeating this process.

In order to avoid border problems when computing the discrete approximations A ,i, it is supposed
that the original input vector Afii, is symmetric with respect to n =1 and n = N, i.e.,

J A d(-n+2) if-N+2<n<
a (n)= Al (2N -n) if N< n <2N-I1 (6)

0 ifn < -N+2or n > 2N- 1

If the chosen discrete filter H is even, e.g., H = H, each discrete approximation AVji will also be
symmetric with respect to n = 1 and n = 2iN.

3.2 Back-Propagation Network Architecture

After several sets of the input vectors under different resolutions, ({Adj3, })a<j <0 have been generated,
we build a group of back-propagation networks (B2j)j<j< and each back-propagation network B2, is
responsible to learn a set of discrete approximations {Ad i.}. The size of the input layer for each
network will be the same as the dimension of vectors of this particular resolution, that is 2'N; while
the size of the output layer represents the number of categories to be classified in the input vectors and
is the same for all networks generated.

The required number of neurons in the hidden layer greatly depends on the nature of the problem
to be solved (3]. With some specific knowledge about the structure of the problem, and a fundamental
understanding of how the back-propagation networks might go about implementing this structure, one
can sometimes form a good estimate of the proper network size. Like the size of the output layer, the
size of the hidden layer is the same among all back-propagation networks created.

3.3 Training Procedure Strategy

With some sets of vectors under different resolutions and a series of corresponding back-propagation
networks, we can start the training procedure. First of all, the lowest level network B2 j (the network
with the coarser resolution of vectors as input) is trained first. We initialize the connection weights of
this network with small random numbers [9] and start the training process. Traditionally, the training
process of a back-propagation network is repeated until a minimum on sum squared error (SSE) or
a point sufficiently close to the minimum is found. However, such a minimum may not be found in
the networks we defined except the highest level one B, (the one with the original input vectors 4 as
input). It is because some information of the original input vectors is lost during the approximation
process.

As a result, we define an intermediate stopping criteria for terminating the training processes of the
back-propagation networks (B2,)J<,_j_ which are trained on the discrete signals ({ Ad })<j.<_ "
Let M be the number of hidden neurons, 2IN be the number of input neurons, wpq be the connection
weight between hidden neuron q and input neuron p and it will be updated with Awpq in the current
training cycle. Hence, a term W(t) is defined as,

At 2'N
w(t) = (2j NM)-' E E I p + pW(t - 1), (7)

q=lp=l Wpq

where 0 < p < 1, called a history factor, and (2jNM) - l is used for normalization purpose. The
intermediate stopping criteria is then defined as,

W(t) <6, (8)

where 6 > 0.
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3.4 Connection Weight Transformation
After the intermediate stopping criteria is satisfied in one network B 21 , we transfer the connection
weights of it to the next network B2,+i with higher resolution. From the lower level network, we have
two sets of connection weights, {Wpq) and {vq}, where Wpq is a connection weight from input neuron
p to hidden neuron q and vq, is a connection weight from hidden neuron q to output neuron r.

Since the sizes of the hidden layer and the output layer are the same on both networks, we can
simply assign {Vqi} to the higher level network as the connection weights between hidden layer and
output layer.

However, the sizes of their input layers are different and we need to do some transformations on
{wij}. If a discrete signal Ad,4 is passed to the lower level network, the hidden neuron q will receive,

2N

E WpqAdj i;.(p),()
p=

as its input. In order to maintain the same status after transformation, the following condition must
be held for each hidden neuron,

21+1N 2N
KE . (p)) (10)

0=1 p=I

where w' is the connection weight of the higher level network from input neuron o to hidden neuron
q. We can worked out from Equation 5 and 10 that the connection weights w' are equal to,

EP-.-= h(2p - l)wpq if o= 1

t Eoq" ( (2p )'(2P+°2+2 N)+h(2p + o - 2)) wpq if2< o<2 j+N - 1 (11)

I£' h(2p - 2+N)W if o = 2J+N

4 Experimental Results

In this section, we show some computational results to illustrate the performance of the proposed
learning method. A numeric recognition problem is used as an example. For this problem, 10 biiary
patterns of numbers, from 0 to 9, were selected as training examples and the size of them was 32 x 32.

Two experiments were carried out with two different sets of initial connection .:eights for back-
propagation networks. In each experiment, we selected 3 history factors p and 2 intermediate stopping
criteria 6, i.e., p = 0.8, p = 0.5, p = 0.2, 6 = 0.0005, and 6 = 0.001, for the training processes of
the proposed learning method. To demonstrate our method, two sets of network structure were used,
(B 2 )- 2<< 0 and (B 2j)- 1 <j<o, and were called the 3-level network set and the 2-level network set
respectively. Also, a 1-level network B, was built to compare the performance with the 3-level aad the
2-level network sets. The training processes of all networks were repeated until the SSE was smaller
than 0.01, that is e = 0.01. Hence, for each experiment, there was a total of 13 training jobs to be
carried out.

As shown in Equation 5 and 11, we must first define the impulse response h(n) before the input
vectors can be represented under different resolutions and the connection weight transformation can be
carried out. In other words, h(n) must be defined since h(n) = h(-n) from Equation 2.

There are many ways of choosing these coefficients h(n) [11], as long as , h(n) = 1. Here, we
adopted the suggestion from Daubechies [2],

'1+"' if n=-2
23ifn =-1

h(n)= j ifn=O (12)

8 ifn= I
0 otherwise
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With the use of the coefficients shown in Equation 12, Equation 5 and I I can then be simplified
into,

24;= ( ! h(2n - k)A2..ii(k)) n (13)
\k=2n-2 / <n<2jN

and,
-h(l)wl, ifo = 1J (O)wiq + h(2)wiq + h(2)w2q if o = 2

1= h(-l)w-, +h(l)w4!,q ifo=3,5,..-,2j+ 1 N-3
Woq =4(14)

h(O)wj,q + h( 2)wq.,q if o = 4,6,.- -,2j+1N -21 (--l)W2JN1,q + h(-l)w2 N,q + h(1)W2jNq if 0 = 2J+1 N - 1
h(O)W2jN,q if o = 2j+ N

Since the binary patterns used in the experiments were all in two dimensions, the multiresolution
technique described in Section 2 cannot be applied to them directly. However, it has been shown that the
two-dimensional multiresolution transform can be seen as a one-dimensional multiresolution transform
along the z and y axes (6]. We first convolve the rows of binary patterns with a one-dimensional filter
H, retain every other row, convolve the columns of the resulting signals with another one-dimensional
filter and retain every other column. Hence, two sets of binary patterns can be collected with size
16 x 16 and 8 x 8 and they are used as input vectors for networks B2-i and B2 -2 respectively. For all
networks in each experiment, the sizes for the hidden layer and the output layer were set to 15 and 10
respectively.

All of the experiments were run on a SPARCstation 10/30 with 32MB memory. Table I shows the
training results of the two experiments. The convergence time for each training job is presented and a
performance index, a ratio to the convergence time of the 1-level network, is calculated.

Table 1: Training results of the three experiments.

Experiment 1 Experiment 2
Job Network Convergence Performance Convergence Performance
no. Type P 6 Time (sec) Index Time (sec) Index
1 3-level 0.8 0.0005 662.52 11.16 635.35 8.61
2 3-level 0.8 0.001 853.30 8.67 741.85 7.38
3 3-level 0.5 0.0005 955.62 7.74 932.52 5.87
4 3-level 0.5 0.001 1424.62 5.19 1384.48 3.95
5 3-level 0.2 0.0005 1274.13 5.81 1297.30 4.22
6 3-level 0.2 0.001 1983.52 3.73 2008.87 2.72
7 2-level 0.8 0.0005 2354.70 3.14 1780.05 3.07
8 2-level 0.8 0.001 2841.17 2.60 2139.13 2.56
9 2-level 0.5 0.0005 2986.17 2.48 2305.78 2.37
10 2-level 0.5 0.001 3190.02 2.32 2646.95 2.07
11 2-level 0.2 0.0005 2995.55 2.47 2542.80 2.15
12 2-level 0.2 0.001 3268.58 2.26 2936.73 1.86
13 1-level - - 7396.93 1.00 5472.72 1.00

It is shown in Table I that the multiresolution learning method improves the training performance
of back-propagation networks significantly, from the least improvement of 1.86 times faster in the
Experiment 2 to the best improvement of 11.16 times faster in the Experiment 1. Generally, the
training performance increases as the network level increases, e.g., the convergence time for a 3-level
network is shorter than the one for a 2-level network. As p increases or 6 decreases, the convergence
rate of the network will also increase.
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5 Discussion and Conclusion

First of all, let us investigate why the training performance of a back-propagation network will be
improved when the multiresolution learning method is used. With the use of the low level network
in the the learning method, the training examples can be learned in a lower resolution. Since the
architecture of the low level networks is always simpler than the one of the high level networks, the
low level networks often take less time in the training processes. Even though the examples cannot be
fully generalized in this level, the low level networks can actually reduce the overhead for the high level
networks in some extents. The function of the high level networks is to refine the generalization rather
than start it from the beginning.

As it is shown in Table 1, the convergence rate increases as p increases or 6 decreases. It is quite
easy to be understood that such improvement is expected. In this case, the low level network, say
B 2, contributes more in the whole training process with a large value of p or a small value of 6 and is
allowed to learn the information of {A'Ji) as much as possible. The main objective of the high level
network B 2 +, is to learn the difference of information between {A'+, i} and {Ad -}. Usually, the
computational cost for B2, is smaller than the one of B2,+,.

In this paper, we proposed a problem-independent learning method, which adopts the multiresolution
signal decomposition techniques, for back-propagation networks in order to alleviate the shortcomings
of this kind of networks, i.e., the convergence rate is slow. Experimental results has shown that our
proposed learning method improves the training performance of back-propagation networks significantly.
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ABSTRACT

The work is intended to motivate further research in the
application of neural networks to demodulation. An example is
provided of improved demodulation of bandwidth efficient
waveformswith a three layer neural network. Simulation results
of the probability of error with this demodulator are discussed.

The intent here is to tie together two important technological
areas, neural networks and demodulation in digital commun-
ications. The paper is motivational in its goal . The result is
presented, with the hope that this will spark further work in
this area.

At first glance the connection between neural networks and
digital communications seems obvious. In digital communications,
discrete time, quantized, information samples are respresented by
or modulate individual waveforms. These waveforms are sent
through a transmission channel where they are usually disturbed
by noise and/or other interference and/or distortion caused by
dispersive phenomena or a variety of other deleterious effects.
At the receiving end the disturbed modulation waveform is
presented to a demodulator which attempts to extract, without
error, the information sample represented. Demodulation can be
viewed as detection or estimation of the information from the
received waveform. However, alternatively, demodulation can also
be viewed as a simple pattern classification problem, with the
received, disturbed, modulation waveform being the pattern and
the information sample represented being the prototype. This is
a task well suited to a neural network.

Yet, despite the obvious connection there have been relatively
few reports of a neural network approach to demodulation. True,
the adaptive equalizer which is really a demodulator has been in
existence for several decades and is a neural network. But, it
is a very primitive neural network having only a single layer and
not really exploiting any nonlinearity. An examination of the
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open literature has shown very little work in applying "modern,"
multilayer, neural networks or Hopfield networks to the problem
of demodulation. References (11, (2] and (3] provide some
connection but hardly represent much attention from the community
as a whole.

How then to begin? It would seem that neural networks would
provide the greatest advantage to demodulation when the channels
themselves are nonlinear and/or non-Gaussian. These are
channels disturbed by intermodulation, limiter based distortion,
co-channel interference and dispersive effects. After all the
nonlinearities present in neural networks may be brought to bear
on this communication situation in the same way they are brought
to bear on nonlinear control problems. Furthermore, the existing
techniques for demodulating in such circumstances are far from
optimal. However, this is what we hope to motivate and is beyond
the scope of the present paper.

Rather, the problem is picked up by looking at the standard
Additive White Gaussian Noise (AWGN) channel and applying a
neural network to getting greater bandwidth efficiency. AWGN
channels are linear. The issue of bandwidth efficiency,
(modulation schemes which represent more bits per Hz) is itself
important as the information age explodes and the electromagnetic
spectrum is taxed to the limit in both cable and wireless
communications.

Let us begin our motivational work by looking at the problem of
binary digital communication on the AWGN channel. Specifically,
consider the situation where information is transmitted using
binary orthogonal signals. In particular consider the set of
signals illustrated in Figure 1. Here, the upper signal
represents the binary digit "0" and the lower signal represents
the binary digit "1." A bit is transmitted every T seconds. If
T=I/R and B= the modulation signal bandwidth then the spectral
efficiency is R/B bits per Hz. The actual bandwidth varies with
the definition used. However, in any measure B varies inversely
with the signal "on-time" which in this example is T/2 seconds.
This signal set is, of course, a version of pulse position
modulation. In baseband communications it is often referred to
as Manchester encoding and preferred for its synchronization
capabilities.

In the AWGN channel this binary orthogonal modulation set is
optimally demodulated by a pair of matched filter correlators,
one matched to S0(t) and one matched to S,(t). The index of the
correlator output which is largest is the bit decision. The
probability of error versus Signal-to-Noise Ratio (SNR) resulting
from this optimal approach is available in many references, (see
for example [4]) and indeed is the same for any pair of
orthogonal signals in these circumstances.

Consider now a slightly altered version of this waveform set,
namely the binary waveform set illustrated in Figure 2. Here,
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the first modulation waveform has been extended to the right and
the second to the left, each by T/2, one quarter of a Baud
period. The on-time has been extended. Consequently, the
bandwidth is reduced by approximately 33 1/3%. This is a
significant increase in spectral efficiency. Of course, one
could have gone to binary antipodal signalling (PSK) and gotten a
100% increase. But, we can say that this would "break the rules"
by not allowing negative amplitude values.

The waveforms in this new set are correlated. They are no longer
orthogonal. A bank of matched filter correlators is no longer
the optimal demodulator. How should these, more bandwidth
efficient, waveforms be demodulated? One could do nothing. That
is, employ the now sub-optimal matched filter correlators. In
the output of the "incorrect" matched filter correlator there is
now cross-talk. In the present example this amounts to an
equivalent reduction of SNR by about 5 db. This is a significant
penalty to get the increased spectral efficiency.

One could also resort to an improved but still sub-optimal
technique of somehow estimating the cross-talk and subtracting it
from the "incorrect" matched-filter correlator output. This is
like performing a Gram-Schmidt orthonormalization on the
modulation waveform set and using the resulting waveforms for
correlation. A technique employing this was reported in Ref. [5]
and is essentially a type of spacial equalizer. However,
estimation of the cross-talk itself involves noise. Hence, there
is an enhancement of the effective noise and a reduction in
equivalent SNR. This is always a phenomenon associated with
equalization. The penalty in reduced SNR is not as great as the
case of doing nothing. The increased spectral efficiency does
come with some penalty but not anything like 5 db.

We have investigated the use of a three (3) layer neural network
for demodulating the bandwidth efficient modulation -eform set
illustrated in Figure 2. But before describing the Aitecture
and results it is appropriate to ask why this is even worth
considering. That is, why is this an alternative to the sub-
optimal techniques just described and an alternative worth
investigating. Those suboptimal techniques were based on matched
filter correlation. Correlation is an exploitation of first
order statistics, moments. A two (2) layer neural network can
automatically do this. The addition of a third, hidden, layer
allows higher order statistics to be dealt with and features not
captured in correlation processing.

The three (3) level neural network architecture which we
investigated as a demodulator is illustrated in Figure 3. The
architecture consists of only 13 neurons. The input layer
captures eight (8) uniformly spaced samples of the received
waveform. These are designated as {S*(i), i=1.... 8). They are
uniformly spaced every T/8 seconds beginning at 0+. There is nc
nonlinear processing in the input layer. The hidden layer
consists of four (4) neurons. To avoid an overly complicated
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figure we have only shown a few of the branches with
corresponding weights. Each neuron in the hidden layer uses a
sigmoid as the activation with parameter 2. The neurons in this
layer are represented by circles with heavy black dots in the
center. The third or output layer is a single neuron with the
same type of sigmoid behavior. The output, Z, for purposes of
training is kept as a real number. In operation it is quantized
to either zero (0) or one (1) based upon nearest neighbor.

This neural network was trained using back propagation. An error
acceptance parameter of 0.2 and a convergence parameter of 0.2
were used throughout training. All weights were initialized
randomly.

We examined the behavior of the network as a demodulator using
simulation. This was accomplished by fixing the SNR and fixing
the size of the SNR and fixing the size of the training set. A
specific training set of size, N (an even number) was generated
as follows. The first two waveforms in the set were the noise-
free modulation waveforms, S0 (t) and S.(t). (N/2)-1 additional
waveforms were then generated by taking S0(t) and perturbing it
by samples of randomly generated AWGN at the SNR. The same number
of additional waveforms were generated by perturbing S,(t). For a
given SNR and training set we measured the probability of error
using 30,000 randomly generated testing waveforms. This
limitation arose because simulation was executed on a 386 PC with
an accelerator board.

The simulation results are shown in Figure 4. Each curve
corresponds to a different SNR and shows the variation of
simulated probability of error with the size of the training set.
Rather, than make each curve a "smooth" interpolation of
simulated measurements we have preserved the actual randomness.
Nonetheless, we can still reach a firm conclusion which is our
essential result. It appears that in each case the probability
of error approaches that for binary orthogonal signalling with
increasing training set size. This is an interesting result. We
are able to get a significant improvement in bandwidth efficiency
with no penalty in SNR, provided training is sufficiently long.

What should be the next step? Before proceeding to more
complicated, non-linear channels, one should look at the same
problem of bandwidth efficiency but with larger modulation
waveform sets. In particular, it would be nice to derive, at
least by simulation, the equivalent of a Shannon Coding Theorem
for neural networks. That is, what degree of bandwidth
efficiency can be obtained while still having an orthogonal
signalling probability of error?
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Figure 4
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An Edge-Preserving Neural Network For Image Compression

Mahmoud R. El-Sakka and Mohamed S. Kamell

Department of Systems Design Engineering
University of Waterloo

Waterloo, Ontario, Canada, N2L 3G1

Abstract

Whe conventional BP ANN is employed for image encoding the decoded images usually exhibit
some degradation of the edges. This Is due to the fact that edge pixels usually represent a small
portion of the entire Image and BP learning algorithms do not differentiate between edge and non-
edge pixels. In this paper, a novel Edge-Preserving ANN learning algorithm is proposed. This
learning algorithm pays more attention to edge information. The error between the computed and
desired output value is multiplied by a weighting factor which is proportional to the amount of edge
Information in the corresponding Input pixel. The algorithm is implemented and its performance
is assessed by comparing It to the conventional BP.

1 Introduction

Successful Image compression wing back propagation neural networks has been demonstrated in
[1] [2]. In these systems the decoded image usually suffers from degraded edges. The human visual
system contains special cells in the brain which are very sensitive to edges [3]. This suggests that
in order to obtain a good quality image, edge information has to be preserved.

ANNs are mathematical models of theorised mind and brain activity [4]. Typically, these models
differ in their topology, way of learning, and way of recalling information [5] [6] [7]. For instance,
BP ANN, [8], which is a supervised, feedforward network learns by making weight connection
adjustments according to the error between the computed and desired output values. All output
values receive the same attention regardless of the information they represent. However, in order
to avoid edge degradation, it would be desirable for edge pixels to receive more emphasis (while
learning) than the rest of the pixels.

In the next section, a novel ANN learning algorithm which preserves edge information is pro-
posed. To justify this proposed learning algorithm, simulation experiments were carried ont. These
experiments and results are described in section 3, a discussion of the results is presented in section
4, and the paper is summarized in the concluding section 5.

2 Edge-Preserving ANN model

In this model, the error between the computed and desired output value is multiplied by a weighting
factor which is proportional to the amount of edge information in the corresponding input pixel.
These proposed weighting factor can be calculated by using the Laplacian operator which is a
second-order derivative operator and can be implemented by convolving the mask shown in Figure 1

1cmsjlam should be addreed to: mhamelwatnow.uwatloo.cs (e-mail) ad/o (519)868-4567 ext. 5761
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0 1 0

1 -4 1
0 1 0

Figure 1: Mask used to compute the Laplacian

with the Image. The, the absolute value of this Laplacian of each pixel is normalized by dividing
it by the marimum absolute Laplacian value from all pixels of the image. Finally, a value of 1 is
added to each pixel of the absolute normalized Laplacian Image to get a weighting factor for each
image pixel between 1 and 2. The purpose of the added 1 is to maintain the effect a non-edge pixel
has in adjusting ANN weights. So, when the proposed weighting factor is close to 1 for a pixel that
has almost no edge information, its effect on changing ANN weights is the same as the conventional
BP learning algorlthm. On the other hand, when it is close to 2 for a pixel that represents part of an
edge, its effect on changing ANN weights is almost double what it would be using the conventional
BP learning algorithm. Figure 2 (a) shows Laplaclan edge-effect enhanced during learning.

After learning, an image block is compressed by forward propagating it through the network,
then, qantising and saving the hidden layer unit activations instead of saving the original block
pixel values. To uncompress an image block, these quantized values are presented to the second
half of the network then the reconstructed block is generated from the output layer unit activations.
Figure 2 (b) shows a diagram for the compression and decompression operations.

Reconstructed mubimmag

jh IEstO...&i MNN Dig .

SDlver Weighting
,Fader Factor

Block Iona
Enor hqpasIofe Used

,In Admmikug lMw Network Weihs'
----------------------- I

Lqpdan i FAf Eff med ea UarngInu blzg

(a) (b)

Figur 2: The proposed learning: (a) Proposed Laplacian edge-effect enhanced during learning, (b)
The compression and decompression operations.

3 Experimental Results

The main purpose of this experiment is to test the proposed learning algorithm and compare its
performance with the conventional BP learning algorithm. In this experiment, two three-layer BP
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ANNa were used. Each AN consists of 16 input units, 4 hidden units, and 16 output units. The
only difference between these two ANN. is their learning algorithm. In the first ANN the proposed
modified learning is employed while the conventional BP learning is employed in the second ANN.
The Input to thus two ANN# are 16 values representing a 4 by 4 image block pixel values.

The learning rate and the number of learning iterations are selected identical in both ANNs.
The learning data set Is generated from the term l image, shown In Figure 3 (a). The testing
data set Is generated from the hotel image, shown in Figure 3 (b).

(a) (b)

Figure 3: (a) Learning image, (b) Testing image.

Figure 4 (a),(b),(c), and (d), shows the reconstructed learned Image and the absolute error
after performing compression / decompression using both of the ANN learning algorithms. Six bits
were used to quantize the activation of each hidden unit. The absolute error image is enhanced by
adding a value of 128 to each pixel value. Figure 4 (e) shows a table for the mean squared error of
the reconstructed learned image for both learning algorithms. This table demonstrates the effect
of using various quantisation levels.

Figure 5 (a) and Figure 5 (b) show a zoomed section of the reconstructed testing image after
performing compression / decompression using both of the ANN learning algorithms with six bits
quantization. Figure 5 (c) shows a table for the mean squared error of the reconstructed testing
image for both leaning algorithms.

4 Discussion

The proposed Laplacian edge-effect enhanced learning shows better performance in the form of less
mean squared error, as well as appearing to produce better quality of reconstructed image. When
Laplacian edge effect enhanced learning is employed the edges are preserved more than when regular
BP learning is employed. This is because the proposed learning algorithm gives more importance
to the learning of edge information in the image.

As shown in Figure 4 (e) and Figure 5 (c), error for proposed Laplacian edge-effect enhanced
learning is consistently lower than that obtained using regular BP learning for any number of
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(a) (b)

(c) (d)

Qunt,'n 1 71 614 3 1 2 1
Proose larnng47.05 47.18 48.21 53.10 79.36 174.80 [585:17 2473.30

BP__ learning___ 48.95__49.16 50.71 57.79 87.80 212.28 695.70 2428.47

(e) ___-____ ____-___ _

Figure 4: (a) and (b) Reconstructed taught image after performing compression /decompression
using the proposed learning algorithm and the BP learning algorithm respectively with 6 bit.
quantization, (c) and (d) absolute error in image (a), (d) respectively, and (e) Reconstruction mean
squared error for different quantization levels .
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(b)

~~4 3 7I..I 51 2  11
11 Proposed learning 112.82 113.05 114.36 119.53 144.33 239.35 527.14 1818G

BP learning II135.31 135.51 136.31 140.1 156.82 J255.51 591.37 11456.55 1

(C) - _ _ _ _ _ _ - _ _ _

Figure 5: (a) and (b) Zoom on a part of the reconstructed testing image after performing com-
pression. / decompression using the proposed learning algorithm, and the BP learning algorithm,
respectively with 6 bits qatsto,(c) Reconstruction mean squared error for different quanti-
zation level.
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quantisatlon bits used except with 1 bit quantisation. However, in the latter case, it does not
really matter which method is better since fidelity would be extremely low for both due to high

-m square arror.
Otherwise, the error slightly increases with decreasing quantisation level for the hidden layer

unit activations. This Is true down to a certain level of quantization (4 bits in this case), after
which the error increases dramatically. Below this quantisation and with the current learning level,
the network is no longer able to encode the image succesdully.

5 Conclusion

Trained ANNs are able to extract the desired information in a given image and encode it according
to a predetermined criterion. This criterion is given to the ANNs during learning in the form
of training examples and the learning algorithm. Edge degradation during the compression /
decompression processes can be reduced by adapting the ANN learning algorithm so that it can
pay more attention to edge information. Potentially, this method could be used to emphasize other
image features such as texture.

References

[1] G.W.Cottrell, P.Munro, and D.Zipser, "Image Compression by Back Propagation: An Example
of Extensional Programming", in Models of Cognition: A Reieto of Cognition Science, by
N.E.Sharkey (Ed.), Ablex Publishing Corporation, 1989.

[2] N.Sonehara, M.Kawato, S.Miyake, and K.Nakane, "Image Data Compression Using A Neural
Network Model", International Joint Conference on Neual Networks, Vol.II, pp.35-41, June
1989.

[3] M.Kunt, Aikonomopoulos, and M.Kocher, "Second-Generation Image-Coding", Proceeding, of

the IBE Vol.73, pp.549-574, April 1985.

[4] P.D.Wusermau, Neural Computing: Theory and Practice, Van Nostrand Reinhold, 1989.

[5] P.K.Simpson, Arificial Neural Syatem: Foundation., Paradigm., Applications, and Implemen-
tations, McGraw-Hill, 1990.

[6] R.P.Lippmann, "An Introduction to Computing With Neural Nets", IEEE Acoustic., Speech
and Signal Pr oc ig Magazine, Vol.4, pp.4-22, April, 1987.

[7] G.E.Hnton, "Connectionist Learning Procedures", Artificial Intelligence, VoL40, pp.143-150,
1989.

[8] D.EB.Rumelhart, G.E.Hinton, and R.J.Wimams, "Learning Representations by Back-
Propagating Errors", Nature, Vol.323, pp.533-536, October 1986.

111-64



A Neural Net for the Separation of Nonstationary Signal Sources
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Abstract This paper proposes a neural network that learns to recover the original random signals
from their linear mixtures observed by the same number of sensors. The network acquires the
function without using any information about the statistical properties of the sources and the
coefficients of the linear transformation, except the assumption that the source signals are statistically
independent and nonstationary. The learning rule is formulated as a steepest descent minimization of
a time-dependent cost function that takes the minimum only when the network outputs are
uncorrelated with each other.

1. Introduction
This work deals with the problem of how the original signals generated by some stochastic

sources (e.g., voices uttered by two persons) can be separated from their linear mixtures observed by
the same number of sensors (e.g., output voltages of two microphones). Such a signal separation is
called "blind separation", when it must be performed in the absence of any special information about
the statistical properties of the sources and the coefficients of the linear transformation, except the fact
that the source signals are statistically independent of each other.

It can be shown that the blind separation is impossible if the sources are stationary, gaussian
processes. The method proposed here assumes that the source signals are nonstationary, while the
conventional methods stipulate that they are nongaussian [ 1, 2, 3, 4, 5].

This paper proposes an adaptive linear network which acquires the function of blind
separation. It is achieved by iteratively modifying the network's parameters so as to minimize a time-
dependent cost function that takes the minimum only when the network outputs are uncorrelated with
each other. It is shown that the equilibrium of the learning dynamics is uniformly asymptotically
stable. A computer simulation is also given to demonstrate the validity of the method.

2. Signal Sources

Suppose that random signals x'(t) (j=l ,...,N) are generated by N statistically independent

sources, and their linear mixtures (affine transformation) s'i(t) (i=l....N) are observed by N

sensors:
N

S'(t) = Y, aijx'j(t) + ai (!)
j=l

where aij and ai are constants independent of time t. Putting xj(t) = x' (t)-<x' (t)> and si(t) = s'i(t)-

<s'i(t)> (<*> denotes the ensemble average of *), (1) can be rewritten as
N

si(t) = I aijxj(t) (2)
j=1

We here assume that <x'j(t)> (j=l,...,N) are constant with time, implying that <s'i(t)> (i=l!....N)

are also constant. Then, si(t) can also be considered an observable signal because <s'i(t)> can easily

be estimated by a time average of s'i(t). Henceforth, we call xj(t) and si(t) as source signal and

sensor signal, respectively. (2) can be expressed in vector notation as
s(t) = A x(t) (3)

where s (t) = Is I W . SN (W)T x(t)=[Xl(t).....xN(t)] T, and A=[aij].
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The objective of this paper is to propose a neural network that learns to recover the original
signals x (t) (j=l....N) from the sensor signals si(t) (i=l ,....N) in the absence of any special

information about the properties of A and x(t), but it should be noted that this definition of signal
separation has an ambiguity. Namely, if xj(t) (j=l ..... N) are source signals, then d xp, (t).

dNXPN(t) can also be considered as source signals, where (P I ...... PN is an arbitrary permutation of

I . NI and dI .... *dN are arbitrary nonzero constants. It is because d ixp (t) ... , dNXpN (t) are

also statistically independent and si(t) can be expressed by their linear combination with coefficients

ai,p,/dI .... ai,pNdN. Henceforth, we therefore define the signal separation as a process providing

any of the following type of signals:
X(t) = DPx(t) (4)

where P is a permutation matrix and D a diagonal matrix with nonzero diagonal elements.
The assumptions we need for blind separation are very modest ones, as follows.

Assumption 1 Matrix A is nonsingular.

Assumption 2 x(t) (j=l,...,N) are statistically independent with zero mean.

This implies that the covariance matrix R(t) of x(t) is a diagonal matrix:

R(t) = diag Ir1 (t),....rN(t)} = diag J <x 1 2(t> ...... <x N 2(t)>} (5)

where diag{... ) represents a diagonal matrix with diagonal elements I... I.

Assumption 3 ri(t) (i=l ,...,N) are linearly independent functions.

Namely, the following equation holds only when ci = 0 (i= I,...,N).
N

ciri(t) = 0 (6)

Here, time-varying functions ri(t) (i=l,....N) are considered to be defined in the time interval during

which the sensor signals are observed. [We shall stipulate a slightly stronger condition in §4.]

The last assumption is important because Assumptions I and 2 are not sufficient to realize the
signal separation in general; if, for example, x(t) is a stationary, gaussian process, then signal
separation is essentially impossible (see §6). Under Assumptions 1-3 we can prove that, if the same
sensor signal s(t) is produced by source signal Y(t) as well as by x(t), then the relation (4) must bold.
It means that, about the definition of the source signals, we need not to take into account any oiher
ambiguity than the one mentioned above.

3. Signal Separation Network
For signal separation we consider a recurrent network shown in Fig. I, which receives sensor

signals si(t) (i=l,...,N) as input and produces outputs yi(t) (i=l,....N). The dynamics of each

output unit is given by the following first-order linear differential equation

dy1(t( t)  t)-N
T !r + yi(t) =(t) t) - cijyj(t) (i=...N) (7)

j=I

Here, -cij (i, j=l,...,N; i*j) represent the strengths of the mutual connections between the output

units, and they change slowly according to an adaption rule which will be shown later. The output
units have no self connection; cii--O. (7) is expressed in vector notation as

dy(t) + y(t) = s(t) - Cy(t) (8)
dt
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where y(t) = [y l(t) .... YN(t)]T, C = [cij], and T is a time constant. If -([+C) is a stable matrix and

time constant r is sufficiently small, then the network function (8) can he replaced by the following
static input-output relation, which will be assumed in the sequel.

y(t) = ( + C)s(t) (9)

Fig. I Signal separation network x- S.

x -NCN ........ K N YN

Our objective is now to determine C such that yi(t) is proportional to x p(t), where Pl,....

PN is a permutation of J1 ..,N ). We call C so determined as signal separation operator. The

general form of signal separation operator is C = A PD-I, where P is an arbitrary permutation matrix

and D is an arbitrary diagonal matrix with nonzero diagonal elements. It is assured as y(t) = (C+I)"
Is(t) = D'IPTA-I'Ax(t) = D'lPTx(t), which is essentially equivalent to (4). Moreover, the

constraints cii=O leads to D = [diag(AP}] "1 (diag(*) denotes the matrix made by putting the

nondiagonal elements in matrix * to be zeros). Thus, the general form of the signal separation
operator under the condition ci=0 is given by

C = AP[diagiAP)1 - I (10)
This result, however, cannot be used for constructing the signal separation network, because

we are assuming that matrix A is unknown. Here, we give the following theorem which is useful to
obtain the signal separation operator by a learning process.

Theorem I The following three statements are equivalent.
(i) C is given by (10).
(ii) <yi(t)y-(t)> (ij=l,....N; i j) are zero at any time t.

(iii) The following nonnegative scaler function takes zero at any time t.
N

Q(C,R(t)) lY' log <y?(t)> - log J<y(t)y(t)TJJ (!!)
2i=1

4. Learning Process
From Theorem I it is found that the signal separation can be realized by determining C so that

Q(C, R(t)) will take the minimum value at any time. In order to achieve this we consider the
following dynamics dc oQ(C,R(t)

" =- Q(ij = l 0)N; icj) (12)

By calculating the derivative in the right-hand side we have

T 4 = (I + CT)-" I (diag<y(t)y(t)T>) '<y(t)y(t)T> - I (13)
dt

Note that diagonal elements in both sides of this equation (Tdciidt ...) are immaterial; ci's are

always zero. It can be seen that (12) or (13) is to attain the minimum of Q(C. R(t)) by a steepest
descent method. The behavior of this leaning dynamics, however, is not so simple because
Q(C, R(t)) includes a time-varying function R(t), but we can prove the following theorem.

Theorem 2 Every equilibriumt of equation (13) takes the form of (10), and it is (locally) uniformly
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asymptotically stable under the following condition. [Equilibrium defined here indicates the state at
which C does not change at any time.]

Assumption 3' For some t0 , To (>0), and E (>0). the following inequality holds for any unit

vector [q 1' q21 (q I2 +q2
2 = 1) and for any time t (>tO).

I r q,+) r1( ) I"2i f t it ) q Iq 2 d > > 0 (14)

This condition is easily attained if ri(t) (i=l,...,N) continue to fluctuate somewhat independently.

In order to actually realize (13), we need to estimate <y(t)y(t)T> in real time. To this end we

can use the following moving average (D = [jj] of y (t)y (t)T under a certain condition.

T' d4(t) + (t) = y(t)y(t)T (15)

So, (13) becomes

TdC = (I + CT)- { (diag4)(t)) 4)(t) - 1)
dt (16)

5. A Special Case: N=2
Here, we shall consider the special case of N=2, for which (13) reads

T dc 12 - 1 <yl(t)y2(t)> , _TC2 .__ _ <y2(t)yI(t> (17)dt (1- c12c21) <y2(t)> dt - c12c) <y2_(t)>

According to (10), it has two equilibria given by_ a0 Fia 1  a22  01
a1j 2 a -C.,-= (P 1 01) or c12 =a,, .c21 _a22 (P = r 0 1

C12 = a22 - all= 1  0 a.) I a -2 [ I ] (18)

According to Theorem 2, both the equilibria are stable in terms of the learning dynamics (13), but it
should be noted that the network dynamics (7) must also be stable for the equilibrium. It can be

shown that only one of these satisfies the condition I cl 2 c21 I < I which allows the network dynamics

to be stable.
We next consider a simplified learning dynamics obtained by eliminating the common terms

1/(1-c 1 2c21 ) appearing in the right-hand sides of (17)

TdC12 - <yl(t)y2(t)> TdC21_ <y2(t)yI(t)> (19)
dt <y2(t)> dt <y2(t)>

An interesting feature of this learning rule is that it is a variant of an anti-Hebbian rule [6]; the
connection weight -cij decreases proportionally to the product of y1(1) and yj(t) but with time-varying

rate l/<yi2(t)>. Obviously, (19) has the same equilibria (18) as the original dynamics (17), but the

stability becomes a little different; one equilibrium satisfying I c1 2c21 I < I is solely stable. Namely,

only the equilibrium for which the network dynamics is stable is stable also with respect to the
learning dynamics.

We here show a computer simulation, in which the differential equations previously given are
transformed into difference equations, using the Euler approximation. For source signals xi(k) and

x2(k), the following stationary and nonstationary, gaussian white signals are used, respectively:

xI(k) = ul(k) , x2(k) = Yl(k)u 2(k)

where uI(k) and u2(k) are both the gaussian white signal with zero mean and unity variance, and
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rj(k) was given by r(k) = 3 sin(n1200)k. Matrix A is given as
I0.5iIA--[ 015 !1

(15) and (17) become, respectively,

ij(k+1) = aoij(k) + (I- a)Yi(k)yj(k) (i, i = 1.2)

ct 2(k+l) =c 12(k) 12( k) , C2 I(k+l) =c 2
1(k) - P.21(k)

01 l(k) 022(k)

The volues of yi(k) are assumed to be given by the static input-output relation (9). The parameters of

the learning dynamics are chosen as a = 0.9 and 3 = 0.001, and the initial values ofc 1 2, c2 1, and Oij

(i= 1,2) are set at 0, 0, and 1, respectively.
Fig. 2 shows the plots of xi(k) and yi(k)-xi(k) (i =1,2). Theoretically, the network should

learn to provide the output as yi(k) = xi(k) (i = 1,2). One can see that the network acquires the

desired function in about a thousand steps.
xl (k)

1 M

4 -1

x2(kW

Yl (k)-xI (k)

" ... .. . - 10 (steps)

-1

Fig. 2 The plots of xi(k) and yi(k)-xi(k)

6. Discussion
Suppose that x(t) in (3) obeys a stationary gaussian process with constant covariance matrix

R = (rI,...,rNj. Then, we can see that the source signal X(t)=[Xl(t ) ..... XN(t)T and the linear

transform A given below yield the same sensor signal s(t),

'(t) - DETRI/f2x(t) (20)
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s(t) = A i(t) = ARI/EDi(t) (21)

where D is a diagonal matrix, E an orthogonal matrix, and R ' 2 = diagJr 1 I/2 ..... rN i/'2. Note that

<X(t)X()T>=D 2 is a diagonal matrix, i.e., xi(t) (i= I....N) are independent of each other because

noncorrelation is equivalent to independence in gaussian processes. The arbitrariness of E implies
that it is essentially impossible to recover x(t) from s(t) with the ambiguity of (4). This fact means
that C minimizing Q(C, R) is not an isolated point but forms a hypersurface in N(N- 1) dimensional
space of cij's (itj). So, along with learning, C approaches any point on the surface, depending on its

initial value.
If R(t) changes with time, the situation becomes different. Let us, for example, consider the

case that R(t) (N=2) takes R 1 and R2 alternately (see Fig.3). When R(t)=R 1. C moves to the curve
determined by Q(C,R I)=0, and when R(t)=R 2, C moves toward the curve Q(C. R,)=0. As a

result, C converges to a cross point of the two curves, i.e., the desired equilibrium (10).
Q(C,R2) =0

Q(C,Rt) =0

Fig. 3 Trajectory of C in the case that R(t) takes two values alternately

7. Conclusion
We have described a neural network that self-organizes to recover the original signals from the

sensor signals. It is performed without any particular information about the statistical properties of
the sources and the coefficients of the linear transformation, except the fact that the source signals are
statistically independent, nonstationary signals.
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ABSTRACT
Radial Basis Functions have been recently proposed as an effective method for the

reconstruction of continous funcions, starting from a not evenly sampled set of points. This
approach allows a convenient representation of the reconstrcting function through neural
networks. As far as paussian radial basis are concerned, the parameters that completely define
the reconstructing function are the coordinates of the center and the variance of each gaussian
and their number. We propose here, a method to automatically determine these parameters
starting from the distances between the sampled data. Preliminary results are reported for
small sets of bidimensional points.

INTRODUCTION

The reconstrunction of a continous curve g(x) starting from a set of points by means of a parametric

function f(x) = F(xw), with w a set of unknown parameters, is an ill-posed problem that allows an infinite

number of solutions, all compatible with the data. To obtain the solution optimal to the problem, a classical

approach is to introduce soft constraints that do not specify exact desired values of the function F(xw) but

only a tendency of it in the definition domain. One of the most promising classes of reconstructing

functions has been recently proposed by Poggio and Girosi (1989); it allows to write the function F(xw) as a

linear combination of radial (gaussian) functions:

where ci, d, e ai are the parameters w to be determined, respectively: the amplitude coefficient, the center

and the variance of the gaussian G; N is the number of different gaussian functions employed; N K

where M is the number of the sampled points Pi jx; yj ).

In this paper we propose a method for the automatic setting of these parameters as a function of the

distances between the points, to achieve the optimal reconstructing function. The behaviour of the method

has been tested comparing the different curves obtained from a set of randomly generated points.

This algorithm can be easily extended to multi-dimensional functions and it is well suited for a

hardware neural network implementation.

METHOD

First, the optimal number of gaussian functions is determined, then the optimal values of the

coefficient parameters is computed.

The coefficeints ci can be determined analytically imposing that F(xw) passes through the M

sampled points.

Mi cG(xi ;di /ai) = Y (2)
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in matrixnotation: Y=GxC where[Y ,=yi,[Cl =c,[G =G(xi;x).

If the sampled points are dose enough one to the other and the number of the centers is equal to the
number of the gaussians (N = M), the matrix G is close to singular and the obtained solution for the

coefficients ci is heavily affected by computational errors. It is therefore mandatory to reduce the number

of gaussians. Moreover, the use of a number of gaussian basis functions smaller than the number of

sampled points, prevents overfitting the data: F(x,w) will not follow the ripples caused by the noise on the

points and a better approximation of the original signal is produced with a greater ability of generalizing to

similar signals. In Figure 1 the reconstructing curve is shown for a set of M points (N=M) and different

values of the variance (. Notice the high value of the coefficients and the high oscillations in the curve,

above all when 0 assumes a low value.

I

I S

0.5 a 0-

-- a. 0 1 2 ,\

03)(0,-0-8) (036 -0,(.09 -0.8.));

Fr thres~ en eonst nmrcly efuctint, to redceth numertas of ts ea baiafnctin o.teold
land threfore the numbe of v iho= .;rltv coefficients be ae: mmrize -a.06 How9 0.67; and32 1w.ich
-12.77; -sho72; be3 -e.li.minted ad ? eotdth prxmtn urewt .5 rltv a~et

Weopropse ren itueriael eprocere to druce the number fguan thalus f cnotes

Initially, the abscissas of the centers are set coincident with the abscissas of the sampled points. At every

iteration step one gaussian is eliminated as follows: the pair of gaussians whose centers are the nearest ones

111-72



Is deiermrhd and a gaussan with the abscissa equal to mean value of the abscissas of the two centers 13

substituted to them. This procedure is ended when all the centers result are separated by a distance greater

than a predermined threshold, related to the desired degree of smoothness for the curve.

Alteaatively, an analytical solution can be carried ouL The optimal number of pussians is
determined using the properties of the singular value decomposition. This analytical technique decomposes

the matrix G (NxM) into the product of three matrixes: G = UWVT where U and V are orthonrmal (NxM

and MxM) and W is a diagonal matrix (MxM) which contains the singular values [Golub and Van Loan

(1989)]. The number of effective centers is the range of G that is equal to the number of singular values of

W, significatively different from zero. For the same points reported in Figure 1, a significant reduction in

the value of the coefficients is obtained reducing from 10 to 8 the number of centers. Moreover some

ripples, that can be easily attributed to noise, are filtered out as can be seen in Figure 2.

Once the number of gaussians, N, has been determined, the optimal value of the coefficients can t
determined as [Poggio e Girosi (1989)]:

c = (GTG+;L)- GTY (3)

with C, Y and G are the vectors and matrix defined in equation (2) and g the matrix defined as follows:

[gJ1 =G(xi; k). The parameter X rgulates the degree of smoothness of the reconstructing function. The

smaller is the value of I, the nearer to the points will be the reconstructing function F(xw) and it will also
undergo to undesiderable oscillations that will yield a poor generalization capability. The bigger is the

value of X., the smoother is the funtion. In this case the frequency content of the reconstructed signal will be

reduced [Oppeheim and Shafer (1975)], operating a low-pass filtering that will eventually filter out possible

rippels.

The parameter X is therefore global over the entire definition domain of F(xw). Alternatively, we

can play with the value of the variance of the gaussians that is used in the reconstructing function. It is also

related to the degree of smoothness in the reconstructing curve; as can be noted from Fgure 1, the curve
becomes smoother as the variance of the gaussians increases.

The variance can be automatically computed following the heuristic of global fist nwrest-neigzbor

proposed by Moody and Darken (1989). The variance is set to the mean of the minimal distances between

each center and its nearest point P-

The sum of the mean square distance between F(x,w) and the sampled points can give an idea on the

performance of the reconstructing function. In Table 1, this distance is plotted as a function of both X and

the variance of the gaussians; it increases with the increase of both I and ( but the curve becomes

evidently smoother.
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0.4238 0.4136 0.767 law0 1.842
. 0.4377 0.6489 1517 1-2613 2-0119

:0 . 0.4449 01937 1.1747 1V34 2.1057

an : 12396 13326 1.7243 1.9103 2.4464

MW 1.163 1.688 2.0079 2.14 2.5707

8 2..3728 1.9056 2.1401 22485 2.635

£75 2.4181 2.1323 22938 23801 27209
: 25269 22534 23768 24548 2.7738

1 :::.: 2.6675 2.5524 2.6631 2.7277

mTe data of this table are referred to the function F(x,w) constituted of 8 gaussumns used to reconstruc
the curve through a set of 10 points as show in figure 2. Mon square distance as efunction of the smoothness
pmeter X and of the iance of the gaussians are reported. In t ks the variance as computed using gloiw frst
nwaest-neighbor is highlightedL

We may get a better approximation of the function considering that the frequency property of the

signal to be reconstructed, may not be equal over all the definition domain. This can be obtained by

choosing gaussians of different variances; each variance ai will be a function of the distances between the

sampled points and it is set equal to the mean distance of its center from those points that falls into a

certain region around its center; this region has the function of a receptive field for each gaussian. The
rentructing curve obtained with gaussian of different variances, is plotted in figure 2 and the mean

square distance reported in Table 2. It should be remarked that the advantage of this procedure becomes

apparent for large set of data.

Y Au 1 02023 02775 03773 02948 0.359 03582 0.1775 0.1752613461

Is&-2. The data of this table are referred to the function F(xw) constituted of 8 gaussians used to
reconstruct the curve through a set of 10 points as shown in figure Z Mean square error as a function of the varknces

of the gaussimns are reported, The smoothness parameter X is set to 0. The amplitude of the interval to detennin the
variance is set to ±0.5.

CONCLUSION

Although X can, alone, regulate the degree of smoothness of the reconstructing function, it can be

used when analytical solutions are feasible. The reconstruction of functions from large sets of data

(surfaces, multi-dimensional temporal sequences), requires the use of numerical solutions. Gaussian basis

functions allow to naturally partition the definition domain into regions (receptivefelds), that ease numerical

solutions. The parameters to be tuned are affected only from the behaviour of the data belonging to a small

sub-region of the definition domain. Taking advantage of this property, our method can achieve an optimal

reconstruction of functions of large data sets.
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Moreover, this approach is particularly suited to be implemented with neural networks- it Allow$ to

define its topology and to locally tune its parameters for a huge amount of data.

0.5-

X
0cxx

N

-- 5

-1-0-5 0 0.5 1

Eigm I Approximation of a curve starting from the same set of points a in Figure 1, throug a reduced set of
gaussians. The sampled points are represented with o . Solid line rqeients the approximtation function obtained with
8gaussins centered in x: (-074; 0.51; -0.08; 0.07; -0.56; 0.87; 0.36; -0.95) with relative coeffa*nts -2.06; 22.78; -
13.59; 20.84; 3.36; -5.88; -27.62; 0.26) and variance a = 0.1 equal for all gaussuans. Dashe line requnt the

aproontion function obtained with 3 gaussians centered in *: ( -0.01; -0.8; 0.65) with relative ccesfrtntsi -0.70;
0. 1; -0.03) and variance a = 0. 1 equal for all gaussuns. Dot line repeet the approximation function obtained
with 8 gaussians centered in x, with relative coefficients: (6.2530; 0.8655; -Z.3784; -3 .8514; -0.9216; -2Z3840, 4.0225;
-3.61411 and variance reported in Table 2.
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Abstract-Optical character recognition (OCR) refers to a process whereby printed documents
are transformed into ASCH files for the pupose of compact storage, editing, fast retrieval, and
other file manipulations through the use of a computer. The recognition process of an OCR system
is a challenging problem and is made difficult by added noise, image distortion, and the various
character typefaces, sizes, and fonts that a document may have. In this study a neural network
approach Is introduced to perform high accuracy recognition on multi-size and multi-font
characters; a novel centrold-ditbering training process with a low noise-sensitivity normalization
procedure is used to achieve high accuracy results. The study consists of two parts. The first part
focuses on single size and single font characters, and a two-layered neural network is trained to
recognize the full set of 94 ASCil character images in 12-pt Courier font When tested on a
database of 1,072,452 characters, this neural network has zero recognition errors. The second part
trades accuracy for additional font and size capability, and a larger two-layered neural network is
trained to recognize the full set of 94 ASCH character images for all point sizes from 8 to 32 and for
12 commonly used fonts. No errors were incurred while testing this network on a database of
347,000 characters of 12 fonts and fPur different point sizes. When tested on the database of
1,072,452 Courier 12 point characters, this neural network had one recognition error.

I. Introduction

In today's world of information, countless forms, reports, contracts, and letters are
generated each day; hence, the need to archive, retrieve, update, replicate, and distribute
printed documents has become increasingly important[1,2]. An available technology that
automates these tasks on computer media is optical character recognition (OCR); printed
documents are transformed into ASCII files, which enable compact storage, editing, fast
retrieval, and other file manipulations through the use of a computer. An overview of the
OCR process is illustrated below:
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Figure 1: The Optical Character Recognition Process

An essential requirement for OCR lies in the development of an accurate
recognition algorithm by which digitized images are analyzed 'and classified into
corresponding characters. Published literature report error rates in the order of one
percent for single-font recognition and higher error rates for multi-fonts [3,4]. While an
error rate in the order of one percent may appear impressive, it would generate 30 errors
on an average page containing 3000 characters. Such error rates limit the usefulness in
many applications and illustrate the need for a more accurate recognition algorithm.

The study proposes using neural networks to perform high accuracy character
recognition and consists of two parts. The first part focuses on single size and single font
characters, and a two-layerzd neural network is trained to recognize the full set of 94
ASCII character images in 12-pt Courier font'. The second part trades accuracy with
additional font and size capability, and a larger two-layered neural network is trained to
recognize the full set of 94 ASCII character images for all point sizes from 8 to 32 and for
12 commonly used fonts.

II. Neural Network Implementation

The neural network used to recognize single-size and single-font character images has
3000 inputs, 20 neurons in the first layer, and 94 neurons in the second or output layer.
The neural network used to recognize multi-size and multi-font character images has 2500
inputs, 100 neurons in the first layer, and 94 neurons in the output layer. Both networks
are fully connected and feedforward with the sigmoidal function generating the
nonlinearity. The training algorithm used in this study is the backpropagation
algorithm[6,7].

1Courier font is important because it is the font most often used in legal documents. The technique used
in the development of a neural network for Courier font is general and can be applied to any other single
font.
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A. Database
The first neural network deals with single-size and single-font character recognition, and
the training and testing data is of 12 point Courier font. The training data is comprised of
94 digitized character images; there is a one-to-one correspondence between each training
data and each member of the 12 point Courier font character set. The neural network is
thoroughly evaluated with testing data, comprising of 1,072,452 character images from a
library of English short stories.

The second neural network deals with multi-size and multi-font character
recognition. The allowable point size ranges from 8 to 32, and the fonts include Arial,
AvantGarde, Courier, Helvetica, Lucida Bright, Lucida Fax, Lucida Sans, Lucida Sans
Typewriter, New Century Schoolbook, Palatino, Times, and Times New Roman. The
training data is comprised of 1,128 (or 94 x 12) character images; each member of the
complete character set for each font appears exactly once in the training set. It is
important to note that all training character images are of 16 point size, even though the
network is trained to perform recognition on multi-size characters. This is explained in the
next section. The testing data consists of 347,712 characters or 28,976 characters for
each font and has an even mixture of 8, 12, 16, and 32 point sizes.

B. Data Preprocessing and Normalization
Before it is fed to the neural network, the digitized image is preprocessed and normalized.
The preprocessing and normalization procedure serves several purposes; it reduces noise
sensitivity and makes the system invariant to point size, image contrast, and position
displacement.

The reduction of noise sensitivity is achieved by thresholding. Thresholding
removes the low-level background noise, which is caused by inherent paper nonuniformity,
specks, and other paper defects. The input image is filtered by zeroing those pixels whose
values are less then 20% of the peak pixel value, while the remaining pixels are
unchanged. The threshold setting is heuristic and has been empirically shown to work
well for white paper. The threshold setting should be adjusted accordingly when a
different paper product is used, e.g. newspaper.

Following thresholding, the resultant image is centered by positioning the centroid
of the image to the center of a fixed size frame. The centroid (Y,,T) of an image is defined
as follows:

Xx I pixe~xj)
- ef x y
X = Y Ypixel(x,y) (1)

x y

Yy YpikeI(x,Y)

- if Y X
- IIpixe(x,y) (2)YX

y x

For the 12 point Courier font case, a frame size of 50-by-60 pixels has been found to be
adequate in enclosing all character images. For the multi-size and multi-font case, a frame
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size of 50-by-50 pixels is employed, and an additional scaling process must be applied to
the images. The scaling entails initially computing the radial moment M,:

M pixe(xy) (3)

10
Next, the image is enlarged or reduced with a gain factor of -, producing images of

constant radial moments. The value of this constant radial moment is linked to the selected
frame size of 50-by-50. From a broader perspective, this scaling process is equivalent to a
point-size normalization procedure and enables a neural network to treat all character
images the same way regardless of the point size. An illustration of the thresholding,
scaling, and centering operations is shown below:

12 Point Cowieg

(a) Single-Size and Single-Font Preprocessing

16 Point limes

(b) Multi-Size and Multi-Font Preprocessing

Figure 2: Preprocessing

The next step in the preprocessing and normalization procedure is to convert the
two-dimensional images into vectors. The conversion is achieved by concatenating the
rows of the two-dimensional pixel array. It follows that the vector for the single-size and
single-font case has 3,000 elements and that the vector for the multi-size and multi-font
case has 2,500 elements. Additionally, each vector is normalized to unit power:

Vl" (4)

The normalization reduces sensitivity to varying scanner gains (image-to-background
contrast) as well as different toner darkness (shades of ink). This unit-norm vector is then
fed into the neural network.

During training, there is an additional step performed on the input data: centroid
dithering. The centroid dithering process applies to both the single-size and single-font
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case as well as the multi-size and multi-font case. The process involves dithering the
centroid of the two-dimensional input image. After centering and scaling, the input image
is displaced randomly and independently in both the horizontal and vertical directions over
the range of [-2,+2] pixels in each dimension; the image is shifted at random in one of
twenty-five possible displacement positions. The resultant image is then converted into a
vector, normalized, and fed into the network as previously described.

Centroid dithering effectively creates many "different" images from a single image.
The neural network is exposed to the same character at different displacement positions,
making the recognition system invariant to input displacements. It is important to
emphasize that the dithering is performed exclusively during training and not during
testing. There are several other added advantages of using this technique. For example, the
approach does not increase the number of training data, and the amount of training data
can be kept at a minimum. The approach also enables the network to tolerate width
variations in character strokes which might be caused by different printer setting, toner
levels, and variations in font implementation. This is particularly useful when bold face
characters are encountered.

C. Training and Testing

(log ema}
I

"\
10

C ,o -

.. ....... 
............

_.

10o"0W OM 30Dao 400.000

Itmiow

Figure 3: Learning Curve of the Single-Size and Single-Font Neural Network

The training is performed using the backpropagation algorithm with an initial
learning-rate parameter of g--10 for both the single-size and single-font neural network
and the multi-size and multi-font neural network. The learning progress is monitored by
computing the mean squared error (m.s.e.) for each output neuron:

C

M.S.e. =_ no. of no. of lro. oflf no.of 1 ()
I shift positions J Ltraining patternsJ * L fonts J Loutput neurons]

where C is the cost function defined by:
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Here, dj and y1 designate the desired and actual outputs of the iA neuron in the last layer
in response to the pth input pattern. N is the number of neurons in the output layer
(N=94).

The m.s.e. at the onset of training is predictable. Since they are randomly initialized
over the interval [ -10-10, +10-10 ], all weights may be approximated as zeros. Hence, all
neurons assume the value of Sgm(0) = 0.5 in the initial m.s.e. calculations, irrespective of
the input pattern. With a desired value of either I or 0, each output neuron generates an
error of ±0.5, and the resultant mean squared error is 0.25.

The m.s.e. values as a function of training iterations are plotted and shown in
Figure 3 for the single-size and single-font neural network. The single-size and single-font
neural network was trained with 430,000 iterations, and the final m.s.e. is approximately
10-6 . The multi-size and multi-font neural network was trained with 8,650,000 iterations,
and the final m.s.e. is approximately 2 * 10-6.

D. Postprocessing
Postprocessing refers to a simple procedure by which the output of the neural network is
analyzed and modified. An important task of postprocessing pertains to the detection of
invalid character inputs. More specifically, the detection is accomplished by observing the
occurrence of small responses on all output neurons. This is an intrinsic property of a
trained neural network and is very useful in discounting bad images which might result
from segmentation errors or other defects.

The second function of postprocessing involves recovering lost information from
scaling and centering multi-size and multi-font character images and is used for the multi-
size and multi-font system only. The characters c, C, k, K, o, 0, p, P, s, S, v, V, w, W, x,
X, z, and Z of certain fonts lose their case information after scaling and are therefore
recognized by the neural network without an affirmative upper/lower case identification.
This case information, however, can easily be reconstructed by a context-based approach.
The technique resorts to examining the radial moments of the original character images
prior to scaling and is best explained by an example. Without loss of generality, it is
assumed that the neural network identifies an image as the character "c." The first step is
to deduce the point size of this "c" by computing the gain 10 / M, *, where M, * is the
radial moment of a neighboring character that is case distinguishable. The next step is to
calculate the radial moments of a fabricated upper case "C" and a fabricated lower case "c"
of this point size. The case information is then obtained by comparing the radial moment
of the input character "c" with those of the fabricated ones.

Commas and single quotes of certain fonts also become indistinguishable after
centering and scaling. The discrimination between these two characters is made by
comparing the centroid location of the input character image before preprocessing to the
height of the line. Finally, the numeral zero cannot be reliably distinguished from the letter
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"0" in some fonts, and similarly the numeral "1", lower case "L", upper case "I", and
vertical bar "I" are ambiguous for some fonts. Under these circumstances the characters
are left as they are without any postprocessing.

III. Recognition Performance
A. Res-ults
In order to determine the recoLition performance, a computer program is used to
compare the output of the recognition system with the ASCII files which were used to
generate the testing data. The computer program examines each and every output
character, and all discrepancies excluding spaces, tabs, and carriage return are recorded.
The discrepancies are individually examined and classified as either an "erroneous" or a
"correct" recognition.

There are two situations where discrepancies are classified as correct recognition.
The first case involves image corruption which renders the invalid images unrecognizable.
Figure 4 provides examples of invalid inputs due to segmentation error, scanning error,
and paper residue. As explained in Section II Part D, the neural network automatically
generates small responses on all the output neurons to indicate "bad" inputs. Such
occurrence is detected during postprocessing, and the discrepancy is not counted as a
recognition error. The second case involves characters that are indistinguishable. These
include the numeral "0", letter "0", lower case "L", upper case "I", numeral "1", and the
vertical bar "I" in some fonts. The ambiguity arises from the fact that one character from
one font looks identically to a different character of another font. Henceforth, the neural
network may output any of the ambiguous characters when the input is ambiguous, and it
is not counted as an error. Any other discrepancies which do not fall into one of these two
categories are counted as recognition errors.

The character-ambiguity problem does not apply to the single-size and single-font
experiment, since all characters of the Courier font are distinguishable. All discrepancies
except those of corrupted images are treated as errors. The neural network is required to
recognize all 94 characters including the difficult distinction between the lower case L
("1") and the numeral one ("1"). The single-size and single-font neural network is tested
with 1,072,452 characters of 12 point Courier font, and a perfect recognition accuracy has
been achieved. This recognition performance exceeds any previously known results by at
least an order of magnitude.
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Figure 4. Neural Responses to Invalid Images as a Result of
(a) Segmentation Error, (b) Scanning Error, and (c) Paper Residue

The multi-size and multi-font neural network was tested with 347,712 characters
or 28,976 characters for each of the following fonts: Arial, AvantGarde, Courier,
Helvetica, Lucida Bright, Lucida Fax, Lucida Sans, Lucida Sans Typewriter, New Century
Schoolbook, Palatino, Times, and Times New Roman. The testing data consists of an even
mixture of 8, 12, 16, and 32 point sizes. Using the performance criteria as previously
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described, the multi-size and multi-font neural network has achieved a perfect recognition
accuracy. The same network was also tested with the data used for the single-size and
single-font neural network. There was one recognition error among the 1,072,452 testing
characters of 12 point Courier font. The error is documented in Figure 5.

0.6

0.4

0.2

0.0 11 .1 20 40 60 80 94

INPUT OUTPUT

Figure 5. Multi-Size and Multi-Font Recognition Error

B. Analysis
The question arises: if n independent trials of an experiment have resulted in success,

what is the probability that the next trial will result in success? In this context, we employ
Laplace's Special Rule of Succession[13] which yields an estimate of the probability of

success p n +1 . For the single-size and single-font neural network, we obtain
sucesp n+2

p= 072,453 - 99.99991%, and for the multi-size and multi-font neural network,
1,072,454

347,713
p 3 1 = 99.99971%.

347,714
Alternately, we introduce the following statistical analysis in order to quantify a

lower bound for the recognition accuracy on future testing data. Given a testing image
corresponding to the pth character where p r (1,2....,94}, we define two random
variables:

Ap def yp (7)

Bp def pagyk ] (8)

where yp is the output of the pth neuron of the output layer. The correct recognition of a
character requires that Ap > Bp. The conditional probability of error given an input image
of the pth character is derived below.

Prob(errorlp) = Prob( Ap < BpI p) (9)
pE(Ap - Bp) I>E(Ap - Bp) p)
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Var(Ap -Ba)

- [E(ApBp)]2  (11)
Var(Ap - Bp) (12)

Inequality (11) invokes the Chebyshev inequality, and inequality (12) approximates A as
I and Bp as 0. These assumptions are verified by the sample averages obtained from
testing data.

To illustrate the concept, we apply the Chebyshev lower bound to the four most
frequent characters in our data: "e", "t", "a", and "o". These letters are all in lower case
except the letter "o". Since it is an ambiguous character, the samples could also be an
upper case or a zero. The following tables summarize the sample averages and variances
computed during the test run and the resultant bound on the probability of error.

Character Samples E(Ap - Bp) Var(Ap - BP)

( Chebyshev uppr bound)

"e"l 113,060 0.99 1.7 10-5

"1t"_ 80,273 0.99 5.8 10-5
"at* 72,565 0.99 2.9 10-5

"o"1 70,423 0.98 5.6" 10-5

Table 1. Chebyshev Upper Bound for the Probability of Error for the Single-Size
and Single-Font Neural Network

Character Samples E(Ap - Bp) Var(Ap - Bp)
( Chebyshev uppr bound)

Ie' 38,784 0.99 3.9 10-5
1111 25,920 0.99 1.1e 10-4
"ail 24,528 0.99 3.2-10-4
"o"f 26,112 0.99 9.2" 10-5

Table 2. Chebyshev upper Bound for the Probability of Error for the Multi-Size
and Multi-Font Neural Network

The Chebyshev bound is known in general to be a conservative bound, and the upper
bounds on the probabilities of error in Tables 1 and 2 are much higher than those
estimated by the Laplace Rule of Succession.

IV. Conclusions

The study presents a neural network scheme with centroid dithering and a low noise-
sensitivity normalization procedure for high accuracy optical character recognition. The
single-size and single-font neural network has been successfully trained to recognize 12
point Courier font characters. The neural network was trained with a database of 94
character images. The neural network was tested on a database of 1,072,452 character
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images and achieved perfect recognition. Based on the experience of this network, a
larger neural network was successfully designed and trained to recognize characters of 12
commonly used fonts and point sizes from 8 to 32. The latter neural network was trained
with 1,128 character images, and it achieved perfect recognition on a testing database of
347,712 multi-size and multi-font characters. To gauge the tradeoff between the two
networks, the multi-size and multi-font neural network was tested on the 1,072,452
Courier character database, and one error was incurred.
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Two-Layer Linear Structures for Fast Adaptive Filtering

Francoise Beaufays, Bernard Widrow'

Abstract

The LMS algorithm invented by Widrow and Hoff in 1959 is the simplest, most robust, and
one of the most widely used algorithms for adaptive filtering. Unfortunately, it suffers from high
sensitivity to the conditioning of its input autocorrelation matrix: the higher the input eigenvalue
spread, the slower the convergence of the adaptive weights.

This problem can be overcome by preprocessing the inputs to the LMS filter with a fixed
data-independent transformation that, at least partially, decorrelates the inputs. Typically, the
preprocessing consists of a DFT or a DCT transformation followed by a power normalization stage.
The resulting algorithms are called DFT-LMS and DCT-LMS. A fast and robust implementation
of the DFT or the DCT preprocessing stage is itself obtained by using an adaptive filter based
on the LMS algorithm. The overall structure is thus a fully adaptive two-layer linear filter, which
achieves better speed performance than pure LMS while retaining its low computational cost and
its extreme robustness.

Introduction Wo

Signal Xk-1 () Output
Signal

LS Algoit2 + dh

", -,

Figure 1: The DFT-LMS and DCT-LMS algorithms: block diagram.

The DFT-LMS anti J)T-LMS algorithms are represented in Fig.1. The signal Zk is passed
through a tap-delay line whose outputs are transformed by a DFT or a DCT. This transformation
splits the signal into different frequency components that are approximately uncorrelated. The
outputs of the DFT/DCT, uk(.), are then fed to the adaptive filter, whose weights are adjusted using
the power normalized LMS algorithm (i.e. a version of the LMS algorithm where each weight has
a learning rate that is inversely proportional to the estimated power of its input). The DFT/DCT

"The authors are with the Department of Electrical Engineering, Stanford University, Stanford, CA 94305-4055.
This research was sponsored by EPRI under contract RP801O-13, by NSF under grat NSF IRI 91-12531, ad by
ONR under contract N00014-9?2-J-1787.
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preprocessing along with the power normalization tend to make the equivalent input autocorrelation
matrix close to identity and, consequently, to improve the convergence speed of the LMS filter
weights. This approach is to be contrasted with recursive least squares algorithms where the inputs
are whitened by an estimate of their inverse autocorrelation matrix.

The performance of algorithms based on data-independent transformations clearly depends on
the orthogonalizing capabilities of the transform used. No general proof exists that demonstrates
the superiority of one transform over the others. DFT-LMS first introduced by Narayan [1] is
the simplest algorithm of this family, mainly because of the exponential nature of the DFT. It
is our experience though that in most practical situations DCT-LMS performs much better than
DFT-LMS [2]. In addition, it has the advantage of being real-valued.

Since the signals xl, xk-1, ... come from a tap-delay line, their DFT/DCT at a given iteration
can easily be calculated recursively from the DFT/DCT at the previous iteration. This is sometimes
refered to as the sliding DFT/DCT, and requires only O(N) operations per iteration, where N is
the length of the LMS filter. However, in this approach, the propagation and accumulation of errors
due for example to round-off noise in floating point arithmetic makes it necessary to often reset the
DFT/DCT. This increases the overall number of computations and adds to the complexity of the
circuitry. The LMS spectrum analyzer [3] provides another way of computing a DFT recursively
in O(N) operations, but because it relies on an adaptive technique, it automatically adjusts for
possible errors.

In the next sections, we wiLl recall the principle of the LMS spectrum analyzer and demonstrate
its robustness to noise propagation. We will then generalize it to the case of the DCT. We will
conclude by presenting a fully adaptive two-layer linear structure: the first layer preprocesses the
inputs to the second layer, which effects the fast filtering operation.

LMS spectrum analyzer vs. sliding DFT

The DFT of the signals Xk, Xk-1,. .. ,Xk-N+1 is given by

1 1 1 ... 1 Zk- N+lT-I - 2 ... 0-(N-1) Xk N/ 1 - 2 - 4

DFT (1)

where a ! e' *, and A= '.
Let us define the complex phasor Fk! A V [1 ak a2k ... 0 (N-)k]T, where T denotes the

transpose. The series of phasors Fo, FI, ...FN-.1, FN, ... is periodic of period N (i.e. FN=Fo, FN+I=
F1 , etc.) and {Fo, FI, ... FN-.} form an orthonormal basis in the N-dimensional space:

1 n- M(k-1) 0 ifk l(FkT PI 1 ifk=l, (2)

where PI is the complex conjugate of Fl. Eq.1 can be rewritten as

- 1 a-(N-l1)

D -FTk 1 1 ?k-N+1 + 0/2 Z-N + -.. +- [ -2(N-1) jk (3)

a-(N-1) L-(N-i)(N-1)J
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k k

- Z, E-k+,-i = m ,m-k- (4)
m.k-N+l m-k-N+l

k

= p X Fm -,_, (5)
m=k-N+l

where we have defined the diagonal matrix P - diag{1, a, a 2 ,... aN-}.

Sliding DFT. - The DFT at time k + 1 is easily related to the DFT at time k:

k+1
DFTk+l = Ph+' , z, T,,_1  (6)

m=k+I-N+l

k
= Ph+i[ , -T,, Zm ,-i + (zk+l - Zk-N+l) Tk] (7)

ra=k-N+i

= P [DFTk + (zk+l - zk-N+1) pk FkI (8)

= P [DFTk + (zk+l - z-kN+I) FOI. (9)

Each element of the DFT at time k + 1 is obtained by adding to the same element at time k
the contribution of the newest data sample, zk+i, removing the contribution of the oldest one,

Zk-N+l, and multiplying by a phase factor. The update from time k to k + 1 of the whole DFT (N
components) requires thus O(N) operations. This is to be contrasted with the conventional DFT,
which is O(N 2), or its butterfly counterpart, the FFT, which is O(N logN).

LMS spectrum analyzer. - The LMS spectrum analyzer [31 is represented in Figure 2. The
signal to be transformed, dt' (we will see shortly how dF' relates to zk), is used as the desired output
of an adaptive filter. The input to the filter at time k is the complex phasor Fk.

.4 P

SignalW OfTO Be
Tmnobff"DFTk(O)

N 0- + DFTk(1)

,(.Ik  h kj

e ~ ~ w e( 0--Dror

Algrihm

Figure 2: The IMS spectrum analyzer for calculating the DFT.

The adaptive weights of the spectrum analyzer are updated with the complex LMS algorithm [4]:

W4+ = Wk -, j+ eF , (10)
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where W and k are respectively the weight vector and the error signal at time k, and u is the
learning rate. The error eF is defined as the difference between the desired output dj and the
actual output {,F -- -- = dj - T wF Replacing eF in the weight update formula,

Yk k - -

chosing the initial weight vector W F to be equal to zero and the learning rate JA to be equal to
1/2, and using the periodicity and orthonormality properties of the complex phasors Fk, it can be
shown [3] that

k-I kWF_ --E dF F"-" drn_IF Fro,. i

m=k-N m=k-N+l

Comparing with the DFT formula (Eq.5), it is clear that if we choose dF z,, the DFT and the
LMS analyzer weights are related by the simple formula: DFTk = pk Wt'. At each instant k, the
weight vector of the LMS filter is proportional to the DFT of the past N data samples. Note that
the elements of the multiplicative diagonal matrix Pk are precisely equal to the inputs of the filter.
The DFT components axe thus simply obtained by pulling output lines from the adaptive weights
(see Fig.2).

If we compare the expressions for the weight vector (Eq.11) at times k and k + 1 as we did for
the DFT, we find that

WLI = W F + (krl rFk - Xk-N+l "k), (12)

which is identical to Eq.9 since the DFT and the weight vector at time k differ only by the multi-
plicative factor pk. Of course, this algorithm is also O(N).

Although the sliding DFT and the spectrum analyzer look very similar, they differ in how they
handle round-off errors. In both algorithms the DFT is computed recursively; noise appearing in
the DFT at time k thus propagates to the DFT at time k + 1, k + 2,... Because in the sliding DFT
(Eq.9) the elements of the multiplicative diagonal matrix P all have modulus one, those errors will
propagate unattenuated, and will accumulate over time until the calculated DFT is too different
from the true DFT, and a general reset of the DFT is required. This is not the case in the LMS
spectrum analyzer.

Propagation of errors in the LMS spectrum analyzer. - Let us consider the situation
where the spectrum analyzer weight vector is free of any error up to time k - 1. At time k, we
deliberately introduce noise in Wk, and we see how this noise vector, Ek, propagates over time. Let

k' k - q. be the perturbated weight vector. The LMS error signal defined as the difference
between the desired and the actual outputs is given by

ek =dk _ FT- F T W + FT k. (13)

Assuming that the learning rate ja is equal to 1/2, the weight vector at time k + 1 is given by

wE+l = Wk +ek Fk =wk+I -(I- f- Fk) Ck, (14)

where I is the N x N identity matrix. Similarly, at time k + 2, the weight vector is given by

w+2= w 2 -(I- k+ Fk+I)(I- Fk FT) Ck, (15)

and in general, for any time k + j, we havet
i-1-F F Tm)(6

w+ = W4j k l (I -Tk+Fm)k, (16)

tlt can be verified that the order in which the matrix multiplies are effected is irrelevant. This justifies the
otherwise ambiguous notation im
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Without lost of generality, we can assume that k = N so that

m=O
j-I

= WF+j(- 1-1(F.F)N. (18)
m0

Let us now examine how the multiplication by the matrix (I -T FT ) affects the error vector
EN. The vectors {XO, X1,. . .XN-1}, and therefore also the vectors {FO, F1 ,.. .FN-I}, form an
orthonormal basis in the N-dimensional space. Any error vector EN can be decomposed into its N
components in this last basis:

N-1

EN = x, CN(n)F . (19)

n=O

The product (I - FT FT ) EN can be evaluated as:

N-1

(I F )EN =(IT F ) E EN(n) Tn = CN - 'ENN(m) Tm. (20)
n=0

The multiplication of the error by (I - Tm FT ) eliminates its mth component, and leaves the other
components unchanged. Multiplying the residual error vector by (I - Tm+i FT+1 ) will cancel out
its (m + 1)th component, and so on. As iterations go by, the modulus of the error vector decreases
monotonically. After N iterations, all its components have been cancelled, and the error is reduced
to zero.

In software and hardware implementations, errors occur at each iteration. While the sliding
DFT lets these errors accumulate over time and requires periodic resets of the DFT, the LMS
spectrum analyzer can be run without interruption, as long as required by the application.

LMS spectrum analyzer for the DCT

As pointed out previously, it is our experience that in many applications the DCT-LMS al-
gorithm achieves better results than the DFT-LMS. There exist many different discrete cosine
transforms [5], the one of interest here is defined as

DCTN-I(p) = tkp xm cos ,+ 1/2)r) (21)
N in-0N

where DCTN-I(p) is the pth component of the DCT at time N - 1, and the constant kp = 1/VF
for p = 0 and 1 otherwise. Because this DCT has a period 2N instead of N like the DFT, special
care must be taken in deriving an LMS cosine-spectrum analyzer. The th component of the DCT
at arbitrary time k can be written as

Vf _2 k p(m - k+ N - 1+ 1/ 2 )1
DCTk(p) = vE z nCos N(22)

- V N ''N Zm OS N(23)m--k-NNI

k psk" k p.(m + 1/2)
m=k-N+l

+ kp (1)P sin --- k m sin p(m 1- /2)r
N E N

.=k-N+l
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In order to obtain a fully adaptive structure for DCT-LMS, the two sums in Eq.24 must be evaluated
using LMS spectrum analyzers. The LMS spectrum analyzer for the DFT was based on the fact
that the input vectors, Fk, had the double property of being N-periodic (F = Fk+N) and forming
an orthonormal basis in the N-dimensional space. It is easy to verify that the following vectors
have the same properties:

D I ko o(k+1/2)r1 1(k + 1/2)w kN-l cos (N-1)(k + 1/2) 24)
V VN N0 cos N N

S, l( k + 1/2)w k2in 2(k + 1/2)w ., kN sin N(k+
SN = -D5  [k1 sin N N "" N (25)

with

Dk = I if kE[nN (n+l)N[ and niseven (26)
'D if kE[nN (n+1)N[ andnisodd,

where I is the identity matrix and the diagonal matrix D 2 diag{1, -1, 1, . .}. Note that SA was
not obtained by only replacing "cos" by "sin" in Ck, the indices were also "shifted" (i.e. the first
component starts with index 1 instead of 0). This was necessary to ensure the orthogonality of the
S1 vectors. The constants k,.... kN-1 are equal to 1 as before, kN = 1/V2.

By analogy with the DFT case, two spectrum analyzers taking for desired output xz, and for
input Ck or S, have the following weight vectors:

k t

= XM C..I, Wks X Sm..i. (27)
m=k-N+l m=k-N+l

Let us also define two other LMS spectrum analyzers. Their desired signal is

{ X if kE[nN (n+1)N[ andnisevenZ5= (28)
-zk if kE[nN (n+1)N[ and nis odd,

and the input vecrors are Ck and SA respectively. The weight vectors are given by

k k
W -4m ,Cm-1, W -,Sm-.. (29)

m=k-N+l m=k-N+l

Comparing Eq.24 with Eq.27 and 29, and using the definitions for Ck and Sk (Eq.24 and 25), we
get the desired result:

cos 2 Wkc(p) + sin ek W,(p) if p is even
DCTk(p) = (30)I. cos 2-' Wic(p) + sin 'Y- W(p) if p is even

Instead of using one complex LMS filter as in the DFT, we used four real LMS filters of which only
half of the weights (the even or the odd ones) were retained. The four filters can of course be run
in parallel. As in the case of the DFT, noise rejection is ensured by the adaptive nature of the LMS
spectrum analyzer.
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A Two-layer Linear Adaptive Structure

Let us now incorporate the LMS spectrum analyzer into the DFT-LMS algorithm. The resulting
structure is shown in Fig.3. It has two cascaded layers of adaptive weights, but nonetheless it
remains a linear filter. The two-layer DCT-LMS structure is slightly more complicated than the
DFT-LMS one but it is based on the same principle.

r-----------------------------------------------------------------------

Compex ro.er

Signalu thm p L WO Algoith +

Figure ,J: A two-layer linear adaptive filter.

The two-layer adaptive filter shown above and its DCT counterpart are simple linear structures
containing only two or three LMS blocks. They achieve faster convergence of the filtering weights
than pure LMS. They use a minimum of computations, about three times the amount for LMS
alone, and offer excellent robustness properties. Recursive least squares algorithms offer even better
convergence properties, but only in time-invariant systems. They are far more complicated and can
be unstable. All in all, the two-layer DFT-LMS and DCT-LMS algorithms should find increased
use in practical real-time applications.
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Physiological Model for the Self-Organizing Map

Teuvo Kohonen
Helsinki University of Technology
Neural Networks Research Centre

Rakentajanaukio 2 C, FIN-02150 Espoo, Finland

Abstract. The role of the Self-Organizing Map (SOM) algorithm as a genuine "distributed"
neural-network model has recently strengthened, when it has become apparent that this algorithm
has a neurophysiologically justifiable interpretation. First, a laterally interconnected planar network
of neural cells can act as a very effective, self-resetting winner-take-all circuit if one describes its
cells using a simple nonlinear dynamic model. Second, the Hebbian law of synaptic plasticity
can be modified such that if the nearby synapses are made to interact in a particular way, the
synaptic vectors become normalized. Third, the lateral interaction between neighboring cells in the
network in learning may be implemented partly neurally, partly through diffuse chemical agents.
The adaptive, self-organizing process taking place in such a physiological model can then be shown
to be almost identical with that defined by the simpler SOM algorithms.

1 Introduction

The Self-Organizing Map (SOM) algorithm [1,2] may take on many forms depending on the par-
ticular vector-space metrics used for the decoding of signal patterns by the neural cells. In simple
biologically inspired mathematical neuron models, a cell is usually activated by the incoming sig-
nals in proportion to their weighted sum, whereby the weights are thought to represent synaptic
efficacies. A version of the SOM that makes use of such cells can be defined in the following way:

00000-
0000000®00
00000

Fig. 1. Layout of a Self-Organizing Map

Assume a planar network of cells (Fig. 1), all of which receive the same input signals represented
by the vector z = (6, C2,-.., G )T E R. Let each cell i have its own input weight vector mi =

(4 i Ji2,... ,pn)T E R". By means of lateral feedback connections (cf. Ch. 3) the cell with index
i = c becomes the "winner" and is switched into the high activity state if

mTz = max{mTz}, (1)
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whereas, due to the same lateral interactions, the activity of all the other cells is suppressed to a
low value. This switching state lasts for a short period, after which it is automatically reset (cf.
Ch. 3).

"Learning" in the above network means that the cells around the "winner" c are adapted to the
input x at a rate hi, where hcd is a function of lateral distance of cells c and i in the network,
and possibly of time, too. One learning law that is compatible with (1) may be expressed (in
discrete-time steps t) as

m,(t + 1) = m,(t) + hi-(t) (2)
norm of numerator

and if the adaptation steps are small, the first terms of the Taylor series with Ims(t)JI = 1 yield

m,(t + 1) ; m,(t) + hci(t) [x(t) - mi(t)mT(t)z(t)] . (3)

It will be pointed out in Ch. 4 that with arbitrary mi(O), (3) tends to normalize the mi.

A physiological SOM model that behaves like the algorithm defined by (1) and (2), or (1) and
(3) must include and implement the following functions: (i) a winner-take-all (WTA) function that
selects the "winner" and switches its activity on, (ii) a reset function that, after a small delay,
automatically suppresses the "winner", (iii) adaptation of the synaptic weights resembling the law
(3), and (iv) interaction of neighboring cells in the network during learning that resembles the effect
of hi in (3).

2 A simple nonlinear dynamic model for the neurons

The output activity i~, (spiking frequency) of neuron i may be described by an effective simplified
differential equation

d77,/dt = Ii - 7(77) (4)

where Ii is the combined effect of all inputs, e.g., afferent inputs as well as feedbacks, on cell i
eventually embedded in a network of cells [3]. In simple modeling, without much loss of generality,
Ii may be thought to be proportional to the dot product of the signal vector and the synaptic
efficacy vector. Let -y(,i~) describe the resultant of all loss or leakage effects that oppose to Ii. This
is an abbreviated way of writing: since 7i _> 0, (4) only holds when i~, > 0, or when 77i = 0 and
Ii - 7(i7i) > 0, whereas otherwise d1i7 /dt = 0. We have also found that for stable convergence in a
system of interconnected cells, -y(7i) must be convex, i.e., y"(i~i) > 0.

It should be noticed that (4) may also defir . a "sigmoid"-type transfer function: in the stationary
state, with Ii constant in time and dtji/dt = 0, we have

77i = 7-1(h,) (5)

in the domain where 7i is defined; y-1 may, for instance, saturate at high input. However, (4) is a
more general model law, because it can be used to describe dynamic phenomena as well.
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3 The WTA function

Consider now Fig. 2 that delineates the cross section of a two-dimensional network [4]. The larger
circles represent "principal" neurons, such as the pyramidal cells in the cortex, and they receive
external inputs to which they have to yield a selective response. The smaller circles, the "reset
neurons", are inhibitory neurons that have a longer time constant, and in the simplest model each
of them feeds back to the same principal neuron to which it is assigned. Their purpose is to suppress
the "winner" after a certain delay.

X

11.
-. excitatory

- inhibitory

Fig. 2. Simplified model of a distributed neural network (cross section of a two-dimensional
array). Each location consists of an excitatory principal input neuron and an inhibitory
interneuron that feeds back locally. The lateral corrections between the principal input
neurons m-ay or .nay not be made via interneurons.

In a more complete model ["! the principal neurons may be interconnected through a great many
excitatory and inhibitory hiterneurons, whereas each solid arrow in Fig. 2 only approximates this
"polysynaptic" interconnection between cell i and cell k by an effective static coupling strength gik.
For k # i, gik < 0, while gii > 0. This approximation is justified as long as the time constants of the
interneurons, let alone the "reset neurons," are small or at least of the same order of magnitude as
those of the principal neurons [6].

Referring to the more complete discussion in [4] we write the systems equations as

dj,/dt = Ii - a~i - fi)

dC1/dt = b7i - 71(C,) (6)

where a and b are constants, and similar hard-limiting restrictions as in (4) must apply to the
right-hand sides. Moreover we assume that Ii is decomposed as Ii = Ie + I/, where

I e = mTX = Ep,,~ is the "external" input, and

if = E gikilk represents the lateral feedback, respectively. (7)
k

In Fig. 3 we approximate the loss function 71(Ci) by another constant 0. This circuit will be
seen to operate in cycles, where each cycle can be thought to correspond to one discrete-time phase
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in (2) or (3). During each cycle the cell corresponding to the "winner" (maximum mT) will take
over and suppress the other cells. Normally the input would be changed during each new cycle;
however, if the input is held steady for a longer time, the next cycle activates the "runner-up",
after which the "winner" is activated again, etc.

I

17i
0.8

0.6

0.4

0.2

Time... .......................- New input

Fig. 3. Demonstration of the WTA function provided with automatic reset. The first inputs were
applied at time zero. New inputs were applied as indicated by the dotted arrow. The network consisted of
20 cells, and the inputs Ie = mTz were selected as random numbers from the interval (0, 1). The g,- were
equal to 0.5 and the gik, i k, were -2.0, respectively. The loss function had the form (y(q) = 0.1ln _;
other simpler laws can also be used. The feedback parameters were a = b = 1, 0 = 0.5. The network operates
as follows: The first "winner" is the cell that receives the largest input; its response will first stabilize to a
high value, while the other outputs tend to zero. When the activity of the "winner" is temporarily depressed
by the dynamic feedback, the other cells continue competing. The solution was obtained by the classical
Runge-Kutta numerical integration method, using a step size of 10".

It may be necessary to emphasize that the single-winner WTA circuit described above was obtained
when the excitatory feedback connection ( gi, above ) is only made to the same principal cell.
In biological networks it is more plausible that excitatory feedbacks extend to a greater group of
neighboring neurons, making the activity in, say, several hundreds of nearby cells correlate strongly.
Such "bubbles" of activity have been simulated [1,5], whereas a full mathematical analysis has so
far been carried out for single-winner WTA networks only.

4 A non-Hebbian law for synaptic modifiability

The Hebbian adaptation law for a neuron with input signals 4i and output activity r/i means that
for the adaptive changes at synapses we assume dpi/dt - fji. Quite apparently the pure Hebbian
law is unsatisfactory since pj would grow monotonically. In order to make reversible changes
possible, we must take into account the mutual interference between nearby synapses in the same
cell. If this interference is mediated by postsynaptic coupling by nearby synapse r, one of the
simplest and most natural thinkable laws for such a reversible or "active forgetting" effect would
read

dp,,/dt -v (4j - A~i , if). (8)
r
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where X is a decay constant, p , is the postsynaptic effect at synapse r, which proportionally
reduces the synaptic strength pji at synapse j, and index r runs over nearby synapses on the same
cell.

In order to implement a SOM process, the law (8) must still be modified in order to take
into account the interaction of neighboring cells during learning. Such an interaction could be
implemented by another system of short-range lateral neural connections that do not contribute to
the output activities i1i but only modulate the modifiability of synapses of a neighboring neuron (like
the chemical transmitter norepinephrine does), or alternatively, this interaction may be controlled
by nonspecific chemical agents, acting like messengers to nearby neurons. Whatever the nature of
such a spatial modulatory interaction is, it may be described at neuron i by a sum term E, hilyl1 ,
where the hil are interaction strengths during learning, and I runs laterally over the neighborhood
of cell i in the network. Finally we thus get for the form of the non-Hebbian adaptation law to be
used to describe learning effects in the SOM,

dpi/dt = (fi - \pI - pi,&) hili7t. (9)
r l

It may already be discernible from (9), but it has further been justified in [4], that (9) and (3) are
very similar expressions: (9) in discrete time, (3) in continuous time. As a matter of fact, (6), (7),
and (9) together define a continuous-time self-organizing process that has very similar properties
as the SOM. Illustrative solutions for the %j,(t) and pij(t) that confirm this have been obtained by
numerical simulation (Ch. 5), whereby formation of self-organizing maps has been observed, in a
similar fashion as by the SOM algorithm, (1) and (3).

Relating to (9), we may now consider a local subset of synapses at the cell's membrane, such
as the synapses of a large apical dendrite branch of a pyramidal cell, over which index r runs,
and denote the input to this subset by x =( ,.,4) T, with mi = (pjipi2,. .. ,pir) T the
corresponding synaptic weight vector. Further it seems reasonable to resort to a kind of "mean
field" approximation, whereby, from the point of view of cell i, the factor E, hitt/i, which we denote
by a, shall not depend on r/i, or depends on it only weakly. Then (9) can be written in vector form,

dmi/dt = ax - PmimTx, (10)

with ( = \a. This is a matrix Riccati equation, and the author has solved it in his book of 1984 [1].
With time, every mi becomes normalized to the same length ia/J[_l*/vr, where 2 is the mean of
its input! This is exactly what is needed to make (9) compare with (2) and (3).

It should further be emphasized that the cyclic operation of the WTA function, as described in
Ch. 3, in effect samples the input signals. The physiological model, although originally written
in continuous time, then acts as if the signals were expressed as a discrete-time series! Thus the
analogy of the physiological model and the algorithmic SOM is even closer.

5 Animation

Fig. 4 shows three frames from a film that describes the continuous-time self-organizing process,
based on (6), (7) and (9). The input vector x was two-dimensional and had a uniform distribution
over the square frame; this example corresponds to the standard SOM-experiments found, e.g., in
[1], where the weight vectors coincide with the nodes of this net. It took three weeks to run this
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simulation on a Silicon Graphics R3000 computer, because the stepwise solution of the differential
equations (with relative step size I0-') was extremely slow. The corresponding learning process
based on the SOM algorithm (1) and (2) takes only a few dozen seconds.

0 10000 20000

Fig. 4.

It should also be mentioned that the last frame in Fig. 4 does not yet represent the final converged
state, but is still somewhat "shrunk"; we stopped the program after three weeks of running.

6 Conclusion

We have been able to show that the SOM algorithm may describe the behavior of a neurophysi-
ological system rather accurately, while the original algorithm is computationally on the order of
30000 times faster than the more naturalistic description studied in this paper.
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Abstract
The utility and robustness of wavelet features is demonstrated through three practical case studies of de-
tecting objects in multispectral electro-optical imagery, sidescan sonar imagery and acoustic backscatter.
Emphasis is placed on choosing proper waveforms for particular applications, on advantages of using multi-
ple waveform-types to detect local features in an object, and on adaptively computing the waveforms and
their dilation and shift parameters to optimize classification accuracy.

1 Introduction
In any pattern recognition application, proper choice of features is a critical issue. It is well known that

for practical applications with finite training data, increasing the number of features up to a point reduces
the test set misclassification error, while increasing beyond that point increases the error because too many
trainable classifier parameters causes overfitting [1]. Thus, it is important to choose a small number of
features that contain the most discriminatory information. Just as important for practical applications, the
features must be robust to data variations not necessarily exhibited in the training set. We have found in
several real applications that information at different resolution scales provided by wavelet features leads to
highly discriminating, robust classifiers. Additionally, adapting the wavelets to specific applications using
neural networks results in a small number of features that reduces the effects of overfitting.

Wavelets are attractive features for their ability to examine data at different scales and frequencies.
Additionally, unlike windowed Fourier transforms, the wavelet transform allows a choice of basis. Thus,
in using wavelet features, the proper wavelet waveform and a small number of shifts and dilations should
be chosen to provide significant discriminatory information. To address this, we have combined wavelets
and neural networks to adaptively compute a superposition-wavelet filter that is optimized for classification
[2]. Others have also studied wavelet networks, but for function approximation rather than as classifiers
of wavelet-based features [3-8]. ([8] implements the promising approach of determining class boundaries
using wavelets, but this differs from using wavelet features.) Selecting wavelet features for classification is
quite different than for approximation and representation. The different considerations that are important
for classification are: 1) features must contain information that differs between classes, rather than the
information in common to the data, 2) orthogonality is not as important as are waveforms that match
the application to extract the most discriminatory information, 3) selecting the best features need not be
real-time since it is an off-line process.

After a brief mention of the central ideas of wavelets, three case studies are presented. The first [9],
detecting objects from multispectral electro-optical imagery, demonstrates the power of an on-center, off-
center filter to remove background clutter and camera nonuniformities, within the context of wavelets to
proces the data at different scales. The emphasis in the second study [10] with sidescan sonar imagery was
to demonstrate the utility of composite wavelet features, that is, groups of different wavelet waveforms to
identify different local features in an object. The evidence provided by each feature-type is then fused with
a neural network to produce a decision. Both of these studies employed user-specified wavelets, although
the obvious utility of adaptivity will be described. The third study [11], based on detecting objects in active
sonar returns, demonstrates the ability of a combination of wavelet feature detectors and a neural network
to adaptively determine wavelet features that provide the most discriminatory information.

2 Wavelets
The wavelet transform (WT) is a powerful technique for representing data at different scales and frequen-

cies through constant-Q bandpass filters, e.g. [12]. Wavelets are especially attractive from the standpoint of
neural networks because the human ear computes an approximate WT [13], and the eye has been shown to
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have wavelet-like receptive fields (4]. In I-D, the continuous WT is given by

W.(a,b) = J (L.-) ( ) t/a, (1)

where g(t) is the wavelet, a and b are dilation and shift parameters, and we have adopted a 1/a normalization
rather than the conventional I/V/a to allow for unbiased frequency interpretation [14]. The work in Section
3.3 is based on a Morlet wavelet given by

g(t) = exp(-t 2 /2 + j5t). (2)

One of the powerful properties of the WT is the freedom to choose a wavelet basis, with the primary
requirement being that the wavelet have 0 mean. Of course, for classification features, we do not compute
a full WT, but only compute the wavelet or wavelet-derived features needed. The completeness of the WT
is unneeded, since there is no need to reconstruct the original signal for classification. In our work, we have
sampled the continous WT at discrete shifts and dilations. Although a wavelet chosen to fit a particular
application are similar to banks of scaled matched filters, wavelets often perform better because of their
0-mean nature which eliminates background areas through sensitivity to edges of particular shapes [15].
This is demonstrated in Sec. 3. Also, a formulation has been developed to linearly combine the wavelet
function at different dilations to produce scale-invariant wavelet functions [16], which avoid the additional
computation required by a bank of filters.

The discrete WT has received tremendous attention (see [12] for an overview) and a fast O(N) algorithm
exists. We do not consider that here, except to note that work is ongoing to allow more freedom to choose
a particular wavelet waveform while still allowing a fast algorithm [17,18].

3 Case Studies
3.1 Multispectral Imagery

One band from a set of six-band multispectral imagery [9] is shown in Fig. la. The six 480x720-pixel
spectral bands have wavelengths evenly spaced between 400-900nm. In the foreground are the blob-shaped
objects we wish to detect, and various types of clutter are visible.

For comparison, a perceptron with two layers of weights was trained with the six spectral values from
one pixel forming a feature vector. The training set consisted of 21 target pixels (the centers of half the
targets) and 279 clutter pixels. The classification of all pixels (training and test) is shown in Fig. lb.
The classification results are poor, with some blobs not detected and many false alarms, especially along
the boundaries between ground types. Blobs on the right side of the image are missed or poorly detected
because a camera nonuniformity causes the right side of the image to appear slightly lighter than the left.

For the wavelet processing, the wavelet was chosen to have a positive central elliptical area matching
the blobs in Figure la, with a surrounding negative area so that the function integrates to zero (on-center,
off-surround). We have chosen one wavelet with only a single scale and orientation since we know the target
size and orientation for this application. A straightforward method of detecting other scales would be to use
other wavelet dilations. A preferable alternative has been developed to linearly combine the wavelet function
at different dilations to produce scale-invariant wavelet features [16]. The wavelet was correlated with each
spectral band, and another perceptron with two layers of weights was trained on the wavelet-preprocessed
spectral bands in the same manner as before. The classification results are shown in Fig. 2c. Every blob
has been detected and the only false alarms are a few small areas of a resolution chart. Even these few false
alarms could be eliminated by discarding detections that contain only 2-3 pixels (at the cost of missing a
few of the blobs). Thus, wavelet preprocessing significantly improves over classification of the raw data, and
is robust to the camera nonuniformity and diverse clutter types present in the image.

Although we did not test adaptive wavelet techniques for this case study, these would be beneficial in
optimizing the size of the wavelet's negative area, in adapting the waveform to different sensors, and in
computing additional wavelets to reject clutter.
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3.2 Sidescan Sonar Imagery
A sidescan sonar image is shown in Fig. 2a (10]. Objects, predominantly in the righthand-side of Fig. 2a,

appear as highlights with shadows extending in the direction of sound propagation. As in Section 3.1 and as
expected, neural network classification of the raw data produced poor results. In applying wavelets to this
problem, two wavelet filters were selected, one with an on-center, off-surround form to detect highlights, and
the other a similar but horizontally elongated filter to detect shadows. Each wavelet at different scales was
correlated with the input image. A single-layer perceptron with two weights (one corresponding to a pixel
in the highlight correlation image and one to a pixel in the shadow correlation image) was trained to fuse
evidence from the two correlation images at a particular scale. It was shown that the same neural network
would also properly fuse the correlation images at different scales. The classification output is shown in
Fig. 2b, produced with wavelets at a scale matching most of the targets. The results are excellent. (The
responses in the central swath would normally be gated out, but are included in this image.) Wavelets at
different scales, in conjunction with the neural network, were demonstrated to detect objects at different
scales (results shown in [10). Again, the wavelet features are demonstrated to be robust to a wide range of
clutter levels and types.

3.3 Acoustic Signals
Fig. 3a shows representative acoustic backscatter from a metallic object and natural clutter when en-

sonified with a linear-FM transmit signal [11]. The two signal classes have similar strengths and durations,
and there is significant intraclass variation, which creates a challenging pattern recognition task. Synthetic
reverberation noise (20dB) was added to all signals to increase realism. The data was divided into training
and test sets with 222 and 216 returns, respectively (multiple aspects and multiple days of collection). Fig.
3 shows corresponding wavelet transform magnitudes, computed with a Morlet wavelet.

To find the groupings of wavelet features, the algorithm adapts Gaussian patches in the time-scale mag-
nitude space. In that sense, it is similar to a radial basis classifier, but adaptively computes wavelet features
rather than finding boundaries in an existing feature space. The classifier output v. for the nth training
sample is given by

tin=7{ZEwkr exP[-- .k )2+(k b 2)]

where wk, e, in, mk, Ir,k and or~k are the weight, mean and standard deviations of the kth Gaussian patch,
and 7(z) = 1/[l + exp(-z)] (normally denoted by a, but changed here to avoid notational conflict). The
classification parameters are optimized by minimizing the mean squared error between the actual and desired
outputs using gradient descent.

The resulting adaptive wavelet classifier (with 30 Gaussian patches) gives a test set error rate of 0.083 vs
0.130 from classifiying power spectral features. (This is one result from numerous tests at different levels of
reverberation noise, which all have the same qualitative difference.) This difference is not surprising, since the
wavelet classifier makes use of time and frequency information, whereas the power spectral classifier only uses
frequency information. The adaptive wavelet features are robust, in that they generalize well to the test data
that has considerable intraclass variation from the training data, and also contains reverberation noise. Fig.
4 displays the adaptive wavelet classifier weights corresponding to the time/frequency information in Fig.
3b. The Gaussian patches can be seen as well as the areas that are given heaviest weight for classification,
particularly the trailing edge of the return. Ongoing work for this application emphasizes computing a small
set of wavelet-based features that can be quickly computed, rather than integrating sets of WT magnitudes.

4 Conclusion
The three case studies summarized here demonstrate the promise of wavelet and adaptive wavelet classi-

fiers for practical applications that require robust features. This work is heading toward classifiers that use
multiple adaptive wavelet waveforms to provide discriminatory information that is local in time/space and
frequency/scale. The wavelet waveforms are adaptive to particular applications, and can incorporate scale
invariance through appropriate combination of wavelet coefficients.
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(b)

Figure 1: a) 400am band of multispectral electro-optical imagery, b) detections by neural network operating
on spectral data, c) detections by neural network operating on wavelet-preprocessed data.
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(a)

(b)

Figure 2: a) sidescan sonar image, b) detections by neural network fusing evidence from preprocessing with
highlight and shadow wavelets.
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(a)

(b)

Figure 3: a) acoustic backscatter time series from metallic object (left) and natural clutter (right) at different
aspect angles, b) corresponding wavelet transform magnitudes (frequency vs. time).
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Figure 4: Adaptive wavelet classifier weights (frequency vs. time).
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Abstract

The presentation of a series of patterns to a Kohonen network (Self-Organizing Feature Map) is known
to generate a "trajectory" that may itself carry meaningful information. Handwritten signature verification
is a typical application in which each pattern represents a specific portion of a given signature. An
efficient way to compare an unknown trajectory to a reference trajectory consists in using a string
comparison technique developed by Wagner & Fischer (and related to dynamic programming). Editing
costs (for insertions/deletions/substitutions) are determined according to the response of the feature map
following presentation of the sequences to be compared. An example in signature verification is given
to illustrate the method.

L Introduction

The neural network model called Self-Organizing Feature Map (SOFM - described by Kohonen in [3],
[4], [5] and [6]) has been successfully applied to pattern classification (along with LVQ) and vector
quantization problems. However, in several situations, sequences of patterns must be dealt with in
addition to the recognition of the patterns themselves. Upon presentation of such a sequence, specific
cells are activated one after the other, thus generating a trajectory over the entire map that is typical of
the input sequence. [5] has pointed out the above-described phenomenon when studying the feature map
in speech recognition; other applications may produce the same results: character recognition based on
the analysis of successive letter segments ((11], [12]), study of EEG signals during sleep (14], signature
verification [9], etc. These applications show the importance of evaluating the correctness of a test
trajectory generated over a SOFM compared to reference trajectories.

This paper is mainly aimed at the signature verification problem, even though the proposed technique
could be applied to other types of sequences. Let us consider a set of reference signatures obtained from
an individual; these signatures are segmented into various elements from which feature vectors are
extracted; the vectors are then grouped to form a training set for a SOFM; after learning, each cell of the
SOFM is tuned to the shape and velocity profiles of a specific portion of the individual's signature; when
a test signature is to be validated, the resulting trajectory (potentially distorted) must be compared to those
of the references, taking into account possible erroneous, missing or additional elements.

The rest of the paper is divided into six sections. Section II describes the type of SOFM used. Section
III presents sequence comparison problems as well as solutions already proposed in the literature. In
section IV, we present a brief summary of the Wagner & Fischer algorithm and the necessary ajustments
are explained. Finally, in section V, an example using simple signatures illustrates the trajectory
comparison process.
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K. Description of the SOFM

The SOFM network is seen as a tool for the visualization of metric-topological relationships in a
multidimensional vector space. It can be used in pattern classification, clustering and vector quantization
since prototype vectors are formed during learning and correspond to the centroid of sub-domains within
the overall space (these prototypes are actually weight vectors associated to the cells). When an input

vector I(Ois presented to the network, cells compete against each other and the cell having its weight

vector W(t)closest tol(t) outputs the strongest response that allows the inhibition of all the others (the
cell is said to win the competition). The usual measures of proximity include the Euclidian distance and

the dot product between (* and (t). The dot product will be used here and the justification will be
given later in section IV. The activation of a cell (namely cell i) is then given by:

Act,() = f(t)(t) (1)

where (t)and (t)are normalized. Learning is carried out in a classical manner ([4], [5], [6] and [13]):

* presentation to the SOFM of a vector drawn from the training set;
* determination of the winning cell c such that Act, = mx {ActJ}

adaptation of the weight vectors associated to cells belonging to neighborhood N,(t) centered on
cell c:

Wi,(t) + h(rt)(t) ViN()

I W(t) + h(rO)I'

otherwise

with N,(t) -- c; furthermore,

r2 (3)
h(rt) = cc(t)e 2

where a(t) -) 0 with t increasing, and r is the distance between cell i and cell c within a
neighborhood N.(t) of diameter a'. Cells are labelled with a code (e.g. a letter); upon recall, a
given sequence would produce the activation of a series of cells which may be summarized by
a string of codes (e.g. "a e f d c b").

The question now is how to compare such a sequence to a reference sequence.

11L Methods for sequence comparison

Since a sequence possesses an underlying structure (it is made of a symbol 'a' followed by a symbol 'b',
etc.), one could consider the use of a syntactic method (i.e. grammar). Production rules would be
extracted from the references, and test sequences would be recognized depending on whether they fit the
constructed grammar or not. However, many reasons prevent us from resorting to this technique:

difficulty to extract production rules. Extra rules should be added to the set of basic production
rules in order to handle missing or additional elements: this is a type of problem that syntactic
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methods have always had trouble to cope with.
difficulty to deal with variations inherent in the use of feature maps. This turns out to be a key
problem since patterns of a test sequence are often perceived as more or less pronounced
variations of those of reference sequences. If the variations are significant, the expected cells will
remain inactive: their neighbors will come out (according to the fact that the mapping produced
is said to be "topology-preserving", as shown in [41, which implies that neighboring cells possess
contiguous weight vectors in the weight space). Constructing a coherent grammar capable of
handling all possibilities is nearly impossible.

Another approach would favor the use of other neural networks with sequence processing capabilities.
Networks like that of Tank & Hopfield [15], the Time-Delay of [10] or recurrent architectures (e.g. [11)
could be considered. Although some of them were designed to process distorted sequences (whether by
using temporal windows [151 or by learning [101), the "variations problem" remains unsolved: these nets
expect specific input patterns or features, and no substitutes are allowed.

We can finally draw ideas from the study of string comparison: how to optimally transform a test string
into a reference string by using sin, pie editing operations (insertions/deletions/substitutions) associated to
costs. The general string comparison algorithm is derived from dynamic programming (DP) techniques
and it has been used for tackling a large number of problems (see [71 and [8] for a review of these
techniques and their applications). The same concept has been explored independently by Wagner &
Fischer (in [16]) when they addressed the issue of comparing string typed on a keyboard with reference
keywords. They came up with a similar approach to DP that computes a distance between two strings
based on specific costs (depending on the probability of typing error, for example; in that regard, the cost
for confusing ' and e' should obviously be much lower than that of confusing 'r' and 'p'). The analogy
with the problem explained in introduction is striking: the feature map may be seen as a keyboard where
a sequence of keys making up a word corresponds to a sequence of activated cells. As two neighbouring
keys can be substituted with high probability, in the same way two neighboring cells represent (by their
weight vectors) similar shapes or patterns: therefore the cost for their substitution could be a function of
their activations before competition.

This analogy naturally leads to the use of the Wagner & Fischer algorithm as a means of measuring the
dissimilarity between two sequences generated by a feature map.

IV. Wagner & Fischer algorithm

Here is a brief summary of the Wagner & Fischer algorithm:

Let A and B be two strings.
A ={faj ; i = I.length(A)

B = {b,} ; j =1 .. length(B)

In order to transform A into B, three operations are allowed:
- substitution a, -- bj; cost = I (a,-- b)
- insertion X - bj; cost = y (- bj)
- deletion a,-* X; cost = T (a, -X)

where X is the null string.
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The distance between strings A and B is the accumulation of small distances D(i, j) given by:
r D(i-Ij-1) + y(a,-.b) 1

D(i,j) = min D(i-I,j) + y(a -) (4)

[ D(,j-1) + y(-b) I

The cost function y must obey fundamental properties so that the distance can be considered a metric [7]:

1. y(a1-+b) > 0 : nonnegative costs
2. y(a-+a,) = 0 : cost = 0 for two identical symbols
3. y(a-- b) i y(b,-+a) : symmetry
4. y(ai-->b) < y(a:-) + yQ(-+bj) : triangular inequality condition

The determination of costs is a key issue. We set costs y(k-+b) and y(a--)X) to 1: they are considered
as editing costs resulting from the deletion or the insertion of an element with respect to one of the
sequences under analysis. As for the substitution cost 1(a-+b), it should remain low if the element
corresponding to a activates a nearby cell instead of that activated by the element corresponding to b,.
or become high for the alternate case. Intuitively, it is reasonable to suggest:

y(a-b) = Act, - Act, (5)

where Act. = activation of the winning cell (symbol a,) after presentation of a test vector
Act f = activation of the cell (symbol b) that should have won according to reference B

Moreover, knowing that Act. > Act ,r since c is the winning cell, then it follows that 0 < y(a,-+b,) < 2.

If the winning cell is the same as the expected cell, then the corresponding patterns from the two strings
match together and can be substituted with no cost; on the other hand, if the corresponding patterns do
not sustain comparison, the activation of the expected cell will be much lower than that of the cell c, thus
yielding a high substitution cost that is likely to favour a deletion or an insertion operation. It is important
to point out that this cost is bounded since the activation of the winning cell c is less or equal to 1 (with

normalized vectors A(0and Ot)). This fact ensures that the property of triangular inequality is respected.
In addition, one can easily notice that all properties stated in section IV are respected, except that of
symmetry: given that comparisons are made between test sequences and known references, only the test
vectors are supposed available (it is not necessary to keep the feature vectors that produced the reference
sequences). As a consequence, a comparison between a reference sequence and a test sequence cannot
be performed. In any case, it is mentioned in [7] that an asymmetric distance is accepted in situations
where an unknown sequence is compared against template sequences (in speech recognition, for example).

V. An example

In order to illustrate the idea, a basic experiment has been conducted with signatures made of simplc
straight line; (figs. 1-2). Points joined by the lines are actual segmentation points. Feature vectors are
then constnicted with specific measures obtained from the curves (depicted in fig. 3), thus carrying the
following information:

Vector 11 ,sine , cosO (6)

Note that pairs of segments are overlapping: segment #1 joined to segment #2, segment #2 joined to
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segment #3, etc. so that elements are chained together. Due to the selected coding, each segment is
described with respect to the prior segment by angle 0. Since the features are comparable (they are
piecewise normalized so that the vector length remains constant), the vector can be transformed into a unit
vector, as required by the feature map learning algorithm. Learning begins with cx(0) = 0.9 and N,(0) =
90% of map surface (a 4x4 map). The training vectors are those extracted from references RI and R2.
The so obtained map (sketched in figure 4) sets up an analysis framework specific to the genuine signer.
Note that in more advanced signature verification systems the vector (5) is more complete since the
varying curvature of the pen trace between segmentation points along with its dynamics is taken into
account [9].

Reference and test sequences generated trajectories shown in fig. 5. A careful study of test signatures Ti
reveals that TI is similar to RI and R2, T2 counts an extra segment, and T3 is totally different from RI
or R2. We expect:

small distance between TI and Rj
distance between T2 and Rj at least greater to I (the cost due to the deletion of the additional

segment)
large distance between T3 and Rj

Comparisons have been made using the Wagner & Fischer algorithm (described in section IV) and the
optimal matching paths appear in figs. 6 to 8. We see that TI fully matches any reference; the additional
segment in T2 has been removed; deletion of elements in T3 and insertion of others are such that the
resulting signatures now look similar. Moreover, distance measures compiled in table I confirm our
estimations. This simple example shows that comparison of sequences generated by a feature map can
be done with a DP technique: in a classification context, an unknown sequence could be compared against
a set of prototype sequences and the smallest distance would indicate the class the input sequence
probably belongs to.

Distance Ti vs Rj Reference #1 Reference #2

Test #1 0.0234 0.0280

Test #2 1.2494 1.2786

Test #3 4.3052 4.3052

Table 1. Distances between "signatures" as computed by the DP algorithm

VL Discussion

The major constraint limiting the wide application of the algorithm is undoubtedly the requirement about
unit feature vectors, which is sometimes difficult to meet (particularly in our example where the feature
vector was a set of interrelated geometrical measurements). Another definition of activation for the
feature map cells would be possible provided that normalization of the overall map response is made in
order to guarantee a set of costs that is in agreement with the previous:, stated triangular inequality
principle. An alternate activation function for each cell (sigmoidal instead of the standard linear in recall
mode) could do the job, but the gain and the inflexion point of the sigmoid would become critically
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important parameters.

Other pertinent adjustments may also affect the choice of costs: in some cases, elements of a sequence
could have more importance than others, e.g. in signature verification, where the various portions of a
signature may exhibit very different sizes, and thus unequal importance. The retained cost values should
be weighted so that the importance of each element is considered.

VIL Conclusion

In this paper, we showed that a string comparison technique related to dynamic programming (namely the
Wagner & Fischer algorithm) was capable of measuring the dissimilarity between two sequences generated
by a SOFM neural network. Costs associated to editing operations are chosen according to the map
response.
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Handwritten Digit Recognition Using Fuzzy
ARTMAP Network

Natalya Markuzon'
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Abstract

Fuzzy ARTMAP is a supervised learning system which includes nonlinear dynam-
ics in the learning process. A modified learning rule which enables 'forgetting' of
insignificant information is introduced. A handwritten digit recognition task is ap-
plied to evaluate the performance of the network in a real, noisy environment. Two
different preprocessing algorithms, based on either positional or directional informa-
tion extracted from the image, are used. The latter algorithm is more successful. The
fuzzy ARTMAP network is compared to the K Nearest-Neighbor (KNN) algorithm.
Although the modified learning rule improves the performance of fuzzy ARTMAP,
KNN still performs somewhat better. However, the amount of memory and the length
of recognition time required by fuzzy ARTMAP are significantly smaller.

ARTMAP, KNN, and the ZIP Code Database

ARTMAP [Carpenter, Grossberg and Reynolds, 1991] is a neural network architecture that
performs incremental supervised learning of recognition categories and multidimensional
maps in response to binary input vectors presented in an arbitrary order. Fuzzy ARTMAP
[Carpenter et al., 1992] incorporates fuzzy logic [Zadeh, 1965] to classify inputs by a fuzzy
set of features indicating the extent to which the feature is present. To evaluate the per-

formance of the system on a difficult problem, the handwritten digit recognition task was
proposed. Digits were obtained from the United States Postal Office of Advanced Technology
Handwritten ZIP Code Database (1987) which consists of five-digit ZIP codes. Separation
of digits, beyond the scope to this project, was performed manually.

The K Nearest-Neighbor classifier has been examined on handwritten recognition tasks
[Lee, 19913. Compared to a backpropagation network which uses local receptive fields and
shared weights, and to radial basis function networks, it provides a similarly low error rate.
However, KNN requires a very large amount of memory, and is slow in classification. The
KNN algorithm chooses a winning category based on the K training points that lie nearest
to a test point. It is used for comparison with fuzzy ARTMAP performance.

Noisy images are passed through several steps of preprocessing before being presented
to the recognition network. First, the background noise is removed from figures and trans-
formation of images into a scale-rotation invariant representation is performed. Then, two

1Supported in part by British Petroleum (BP 89A-1204)
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Figure 1: Examples of ZIP codes from United States Postal Office of Advanced Technology
Handwritten ZIP Code Database (1987).

types of preprocessing are applied to construct a one-dimensional input vector for the clas-
sifier. The first method incorporates positional information while the second incorporates
directional information. Both fuzzy ARTMAP and KNN show slightly better performance
with the directional preprocessor than with the positional preprocessor. Thus directional
preprocessing is used to compare system performance. Simulations show that there is a
trade-off between the predictive accuracy and the number of nodes created by the classi-
fiers. The following sections describe the preprocessing steps, the classifiers, and simulation
results.

ZIP code data and preprocessing steps

ZIP codes from the postal service data base use a great variety of sizes, styles, and in-
struments. Both the training set and the test set contain numerous examples that are
ambiguous, extremely noisy, and can be misclassified by people. Gray scale images consist
of five digits, and some extraneous marks may also be present, such as pieces of letters from
the address label or underlining. Digits in a zip code may overlap and they are surrounded
by the background noise. Some examples are shown in Figure 1.

Most of the background noise has lower intensity than the digits and was removed
by thresholding. The level of the threshold was automatically defined by the analysis of
histograms of images, computed as an average over the image intensity plus empirical value
that defines the range of noise intensity fluctuations. After thresholding, small spots of high
intensity, several pixels in width that do not belong to digits may remain in the image. A
median filter removed these points. This filter substitutes the pixel intensity value by the
middle value over its neighbors, removing isolated fluctuations of intensity in small areas.

Digits in ZIP codes have different inclinations (Figure 1). To allow separation and to
remove rotation uncertainty, digits were transformed into an invariant vertical position.
The main direction was defined as the one with the highest activity obtained during con-
volution of the image with orientation selective filters of different orientations. The affine
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Figure 2: Digits transformed to a vertical position, with background noise removed.

transformation with the center in the left upper corner of the image transforms the image
to make the main direction vertical. This positions digits in an upright position (Figure
2). After manual separation, a linear transformation fit each digit to the 16 * 16 box. To
transform 2-D into a 1-D classifier input, coarse coding [Seibert, Waxman, 1990] and direc-
tional preprocessing were used. In coarse coding, a featural component is the convolution of
pixel intensities in the image with large overlapping Gaussian-weighted receptive field. The
receptive field was truncated at a diameter of 3 - 4 pixels, and fields overlapped by half.

Orientation selective filters in the form of difference-of-Gaussians were used in directional
preprocessing. The image was divided into 16 cells of 4 * 4 pixels size. The image in each
cell was convolved with filters of several orientations, the number of orientations was fixed
at 6 throughout. Then, for each cell and each filter the maximum activity over the resulting
image was defined, and it was considered as one feature in the input vector to classifier.
This procedure provides a network with the information about directional preferences of
digits in different locations. Input vectors obtained with the positional and the directional
preprocessings contained 49 features and 64 features respectively.

Fuzzy ARTMAP and modified learning rule

Fuzzy ARTMAP (Figure 3) includes a pair of Fuzzy ART modules (ART. and ARTb)
[Carpenter, Grossberg and Rosen, 1991] linked together via an inter-ART associative mem-
ory Fa6 that is called a map field. During supervised learning, ART. receives a stream {a(P)}
of input patterns and ARTb receives a stream {b(P) } of patterns, where b(P) is the correct
prediction given a(P). These modules are linked by an associative learning network and an
internal controller that ensures autonomous system operation in real time. The controller
is designed to create the minimal number of ART8 recognition categories needed to meet
accuracy criteria.

Vigilance parameter p. calibrates the minimum confidence that ART. must have in a
recognition category, or hypothesis, activated by an input a(P) in order to ART. to accept
that category, rather than search for a better one through an automatically controlled
process of hypothesis testing. Lower values of pa enable larger categories to form. These
lower p. values lead to a broader generalization and a higher degree of code compression. A
predictive failure at ARTb increases p. by the minimum amouat needed to trigger hypothesis
testing at ART., using a mechanism called match tracking. Match tracking sacrifices the
minimum amount of generalization necessary to correct the predictive error. Hypothesis
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testing leads to the selection of a new AR T category, which focuses attention on a new
cluster of a(P) input features that is better able to predict b(P) . Match tracking allows a
single ARTMAP system to learn a different prediction for a rare event than for a cloud of
similar frequent events in which it is embedded.

An ARTMAP voting strategy is based on the observation that fast learning typically
leads to different adaptive weights and recognition categories for different orderings of a
given training set, even when the predictive accuracy of all simulations is similar. The
different internal category structures cause the set of test set items where errors occur to

vary from one simulation to the next. The voting strategy uses an ARTMAP system that
is trained several times on one input set with different orderings. The final prediction for a
given test set item is the one made by the largest number of simulations.

Once an ART, category (J) is chosen whose prediction of the actual ARTb category is
correct, match tracking is disengaged, and resonance occurs at ART,. During resonance,
learning occurs at ART. according to the equation

wJnew) = #(I A w o°d)) + (1 )wo (1)

where fast learning corresponds to setting = 1.

The categories created during learning may be represented geometrically as multidimen-
sional "boxes" in the space of input vectors [Carpenter et al., 19921. The important feature
of learning rule (1) is that it allows only increases in the size of these boxes during learning.
However, such a rule results in a great dependency on early training vectors in how cate-
gories are formed. A modified learning rule introduced here reduces this dependency. In
the process of learning, the winning category (J) is now allowed to both expand and shrink:

w (new) -(1 /3)w(old) + /I, (2)
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% correct test set predictions
preprocessing # simulations avg. # of categorie without voting with voting

directional 5 484 89.7-91.6 92.5 - 93.0
positional 5 509 89.5-90.0 91.9 - 92.2

Table 1: Fuzzy ARTMAP performance with directional and positional preprocessing. The
system was trained on 9720 training exemplars and tested on the remaining 2426 exemplars.

where # is relatively small (around 0.2). Simulations have shown that the recognition ability
of the network with learning rule (2) is slightly increased at the expense of reduced code
compression.

Parameters and results

Preliminary simulations were used to choose parameters for recognition methods. In the
KNN algorithm a Euclidean (L2 ) metric was used, and the number of neighbors (K) was
fixed at 5.

ART dynamics are determined by a choice parameter a > 0, a learning rate parameter
E [0, 1], and a baseline vigilance parameter 7 E [0, 1]. All simulation used T = 0 and

choice parameter a = 1.0. Fast learning with 0 = 1 was used in all simulations with
fuzzy ARTMAP as a classifier; for ARTMAP with the learning rule (2), slow learning
with P3 = 0.2 was employed. All inputs were normalized, as well as complement coding
[Carpenter, Grossberg and Rosen, 19911 was used; the number of voters was equal to 7.

The performance was measured on the test set of 2426 exemplars after the system was
trained in the off-line regime on 9720 training exemplars presented to the system in the
random order. Most fuzzy ARTMAP learning occurs during the first epoch, and the system
achieves 100% of correct prediction on the training set in about 20 epochs, while more than
99% is achieved in 10 - 15 epochs. The results of fuzzy ARTMAP performance on the
testing set are shown in Table 1 for both types of preprocessing. The network performed
better with the directional preprocessing: recognition and the compression rate are slightly
higher. The same relation was obtained while using K Nearest-Neighbor classifier - with the
coarse coding preprocessing 93.7% of test exemplars were correctly recognized, compare to
94.7% with the directional preprocessing.

Table 2 shows a comparative performance of kNN classifier, fuzzy ARTMAP, and fuzzy
ARTMAP with modified learning rule (2). All the results were obtained with the directional
preprocessing by using the same training and testing sets. Trained on 9720 inputs, KNN
correctly recognized 94.7% of the test set compare to 92.8% achieved by fuzzy ARTMAP
and 93.8% achieved by fuzzy ARTMAP with the modified learning rule. However, fuzzy
ARTMAP compressed memory by factor of 20, or by factor of 8 with the modified learning
rule, resulting in a comparable speed-up of test set recognition time. This comparison shows
a trade-off between the number of nodes in the network and the level of performance on the
test set.
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fuzzy ARTMAP +
fuzzy ARTMAP modified learning rule KNN

average % of correct test set predictions 92.8 93.8 94.7
average number of committed nodes 484 1261 9720
test set classification time (hours) 0.3 0.5 5.1

Table 2: Performance for three classifiers on handwritten letter recognition task. The
directional preprocessing was used in all three cases. The training (9720 inputs) set and the
test set (2462 inputs) were the same for all networks.
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ABSTRACT

In this paper an adaptive feature extraction nearest neighbor classifier "AFNN" is proposed.
The AFNN consists of a linear adaptive feature extractor "AFE", mapping the original
I-dimensional input to a lower L-dimensional feature space which is applied to an adaptive
nearest neighbor classifier "ANNC-. Both the AFE and ANNC parameters are learned simul-
taneously by maximizing the mutual information of the overall classifier. A stochastic complex-
ity criterion is developed to estimate the optimal number of features and prototypes required for a
certain task. Results of two experiments show the advantages of using the AFNN framework.

1. Introductiom

Distance-based classifiers can be very demanding from the computational and storage aspects depending on two
factors: the number of prototypes and the input dimensionality. The reduced Parzen classifier [1], the learning vec-
tor quantization -LVQ" [2], and the condensed versions of the nearest-neighbor classifier [3], attempt to use a small
number of prototypes while retaining the classification optimality. Although these techniques may lead to signifi-
cant reduction in complexity over traditional methods such as the nearest neighbor classifier "NNC". and the Parzen
window classifier [1], greater reduction can still be obtained by reducing the input dimensionality. Not only does
the large input dimensionality add complexity, it also deters the performance, especially for small data sets [4]. This
drawback may be overcome by extracting a small set of features from the original attributes, without losing the
discriminative information in the data. Feature extraction techniques vary according to their main objective, which
may be either compression or classification. The Karhunen-Loeve transform "KIT" is optimal in data compression
applications such as transform coding, where uncorrelated features result with only few of them containing most of
the probability information required to reconstruct the data [1]. The KLT, however, may be far from optimal for
classification, since it does not address the issue of discrimination between classes. This fact is demonstrated here,
as well asin [1].

In this paper an adaptive feature extraction nearest neighbor classifier "AFNN" is proposed, aiming to overcome
the above drawbacks. It is composed of two parts. The first part is an adaptive feature extractor "AFE", with a linear
singular transform from the original I dimension to a smaller L dimension. The second part is an adaptive nearest
neighbor classifier "ANNC" [5,6], which operates on the L-dimensional space, and has a codebook of Kj prototypes
for the Ja class. Both the transform weights of the AFE and the prototype parameters of the ANNC are learned
together, starting from random values, by maximizing the mutual information of the overall classifier. The MMI
learning is used since it directly minimizes an upper bound of the classifier's probability of error [7]. For the AFNN
architecture to be defined we have to estimate two unknowns, namely: the optimal number of extracted features, and
the optimal number of prototypes. Following the Bayesian model selection framework [8], we derive an expression
for the stochastic complexity criterion for classification "SCC" in the AFNN classifier. This allows us t3 compare
different combinations of the number of features and prototypes, and select the best one: with the least SCC. The
AFNN is tested with two classification experiments. A 2-dimensional synthetic problem, which demonstrates the
drawbacks of the KLT in classification, and a 16-dimension printed letter recognition problem between the letters I
andJ.

I1-123



2. Adaptive Feature Extraciom Nearest Neighbor Classifier: AFNN

The AFNN is a hybrid architecture which consists of two parts: the adaptive feature extractor "AFE". and the
adaptive newest neighbor classifier "ANNC" as shown in figure(l) for a 2-class case.

y2 ANNC P(CIIx)

Fig(l): The AFNN

In the AFE, the I-dimensional input vector x is transformed by a linear singular transform to the L-dimensional hid-
den vector y. This hidden vector is the reduced dimensionality feature vector, which is used as the input pattern to
the ANNC. The linear transforn w has (I) weights, where the weight connecting the xi input to the y hidden node
or feature is denoted by w . When the n, input pattern is applied, the i feature is given by:

Iy1(n) = i Y.t wu (n)(1

The ANNC, as discussed in (5,6], is a nearest neighbor classifier, with a small number of prototypes per class which
adapt their locations to maximize the mutual information criterion, for a given set of training data. For a two-class
case, let the codebook of the ANNC contains K, and K 2 prototypes for class I and 2 respectively. Each prototype is
an L-dimensional vector with each component denoted by my, where j is the class index, and I denotes the i, com-

ponent in the vector. When an input pattern x is applied, a feature pattern y results, and the nearest prototypes to
that pattern (in the Euclidean sense) are m. where j is 1 and 2 for both classes respectively, which may also called
the winner prototypes. A probabilistic approximation of the ANNC presented in [61, assumes that each prototype is
the center (mean vector) of a Gaussian window, and that for a given pattern y, each class probability density function
"PDF" is approximated by the Gaussian centered at the winner prototype. For simplicity, we assume that all Gaus-
sians ae radially symmetric with equal standard deviation u. In that case, the winner prototype with the least dis-
tance to the input pattern, corresponds to the Gaussian with highest value. Following this formulation, the j, class
probability density approximation for the feature vector y, is given by:

L

P(ylO,M',,Cj) = (2= 2) 2 exp- - (y - i )2 (2)

where j is 1 or 2, and my is the 'dh component of the winner prototype in the jk class. Now let us consider how the
AFNN can be used to perform optimal classification. The linear transform maps the data of the jh class to Kj clus-
ters in the feature space, where K. is the number of prototypes in that class codebook. The adaptation of the

transfom weights, and these cluster centers, is aimed to make the clusters of opposite classes linearly separable, so
that the ANNC classifier can form optimal piece-wise-linear decision boundaries. The capability of the AFNN
depends on the number of features L, and the number of prototypes per class Kj, where there is always a minimal
combination of both which is sufficient for the classifier to be optimal. In order to learn the transform and the proto-
type locations we maximize the mutual information for the AFNN classifier, employing the probabilistic formula-
tion presented above.
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3. MM Trauing of the AFNN
For the 2-clas case, the large sample approximation of the mutual information for the AFNN is given by:

1 N, N2
GM! = - " ( log P(CltO,y-,M) + Z log P(C2IO,y,M)) (3)

where 0 is the ANNC parameter vector, and P(CIO,y.) is the posterior class probability model for the jk class,
given by:

P C OY)(y. 0j 'i.Ci) (4)
P(CIy I= OIX1) + P(YO . 102.2.C(

The MI defined in (3) is an implicit function of the original input x and the transform weights w. Since the feature
vector y is their linear combination, (3) becomes:

N, N2

GM= ( logP(Cl10,wI.r,M) + X logP(C210,w,XM)) (5)

where the posterior class probability is defined in (4), but with y being substituted as a function of x and w, as given
in (1). The MI is maximized with respect to the weights and the prototype centers by a gradient-ascent algorithm.
For a given pattern x. from the j, class the MMI weight updating equation is given by:

Aw1 = I, (PI + P2 ) j (mU-ma) (6)

where p. is the learning gain, Pt is the PDF of the opposite class, my, and ma are the 1, components of the winner
prototype mean vectors for the Jh class and the opposite k,, class respectively. Now we turn our attention to the
learning equations for the mean vectors of the winning prototypes. For an input x. from the JIh class, there is one
winning mean vector per class, namely m and mh, from the correct and incorrect class codebooks respectively. The
MMI updating equations for these mean vector components are given by:

PkmPh 1Amy =P P -2) (y, - mi.) , Anti = - V.= Wp --- (YI - MR) (7)

where ., is the learning gain. These learning equations push the mean vector either closer to or farther from the
feature vector, for the correct and incorrect class codebooks respectively. It is to be noted that both weights and pro-
totypes updating is done after the whole epoch is presented (batch mode).

It is well known that the more complex the model is, the more flexible it becomes, and hence can form arbitary
decision boundaries. However, there is always a certain model complexity level over which it starts to overfit the
given training data, resulting in poor generalization to new data. We propose a stochastic complexity criterion for
classification "SCC", which is derived from the Bayesian model selection framework, to find the optimal number of
features and prototes in the AFNN.

4. SCC for the AFNN

The stochastic complexity criterion for classification [6] is given by: SCC = -log P(DC IM), where M denotes
the model under consideration, D, denotes the classifier data (i.e., the training data patterns and their class labels),
and P(DC IM) is the evidence for the classification data given the model, which is also the data-model likelihood of
the classifier, and is given by-

P(DIM) = P(9,wIM) nl P(CjIxn,O,wM) dO dw (8)

where j is the class index of the data pattern x., and P(O,wIM) is the prior probability distribution of the parameters

of the model, which are namely, 0 of the ANNC part and w of the transform part. The SCC of the AFNN model,
which needs to be minimized, is approximated by [6]:
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SCC = - GW(OM,wM) + log detg I(ww) I - [log(2x) - logNI + DSCC.,, (9)

where IWI is the number of weights, N is the number of training patterns, and: (1) Gw(O, ,wjA) is the mutual infor-
mation of the AFNN classifier, at te MMI parameters estimates, (2) I(wM,) is the observed Fisher information
matrix for the weights, which is a symmetric matrix of dimension IWI. If we order the weights of the adaptive
transform network in a vector of a dimension IWI, then the mid1 element of the Fisher matrix, for the AFNN archi-
tecture, can be simplified to:

f 8G d 8GW
N ,= Sw, 8w. (1)

where Q=PIP 2 for class-I data, and its inverse for class-2 data. From (10), the second derivatives needed for the
Fisher matrix can be computed by the gradient information directly, which are already available from the learning
equations, hence simplifying the computational complexity of the SCC significantly, and, (3) The DSCC,, is the
discrete SCC approximation for the ANNC part of the classifier, which is given in [5,6]. Note that uniform prior pro-
babilities for all the parameters were assumed.

Many combinations of the number of features and prototypes for the AFNN are trained by the MMI, their SCC
are computed, and the one with the least SCC is selected as the best candidate among the competing ones.

5. Experimental Results

Two 2-class classification experiments were used to test the AFNN. Here, the results emphasize on the ability of
the SCC to find the optimal AFNN model, and on the comparison between these different models.

5.1. Experiment 1

This experiment is designed to demonstrate the inability of the KLT to perform useful dimensionality reduction
in the context of classification. Here we have two classes of data, with 100 patterns each, as shown in figure(2).

Pig(2): 0Enu(1). Ouiginal Data Dibug fig(3). EzpmmK I). KLT-Trumufoaed Data
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The first class has one cluster, while the second has two clusters, and the two classes are totally separable, however,
nonlinearly, and the optimal attainable classification performance is 100%. The KLT is applied to this data, which is
a 2 by 2 matrix of entries [0.707, 0.707, 0.707, -0.707], and the resulted transformed data with is shown in figure(3).
From this figure we see clearly that if one tries to choose only one KLT-extracted feature, the two classes would be
grossly overlapped. More specifically, if the y,-axis feature is extracted, class-I data and class-2 upper-cluster data
will be projected on the yi axis on top of each others, and a very poor classification results. Similarly, if y2-axis
feature is extracted, class- I data and the fight-most cluster of class-2 will be projected on the chosen axis on top of
each others, and er poorer classification is obtained.
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The AFNN was fust applied with two extracted features (similar to the KLT), and two prototypes per class. The
resultant transform matrix has entries [0.7788, -0.326, -0.495, 0.1971, which are totally different from the KLT
weights. The resulted tansformed data i- shown in figure(4), where AFNN(2.2) means 2 features and 2 prototypes
are used. It is clear that class-2 data is transformed to a single cluster, and that the two classes are linearly separable.

f4) EqurmrI), AFN"ZZ T dD Pz=5 Ewimri) A"I-.Z TnwmdW Dwa
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0.95
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This obviously means that there exists a line which when this transformed data is projected on, they are still separ-
able, i.e., only one extracted feature is sufficient Now, we apply an AFNN with only one feature and two proto-
types per class. Indeed, the AFNN obtained an optimal 100% classification solution, with weights [0.843,-0.5331,
where the data is projected along a line where they are separable, as shown in figure(5), where each projected data
point is represented by an impulse. This experiment shows clearly that the KLT cannot in general be used for clas-
sification purposes, since it is not designed to do so. Instead, we should use a classification-oriented feature extrac-
tion transform, such as the AFNN.

5.2. Experiment 2: 2-Letter Problem

This experiment is a printed letter recognition task, where 16-dimensional patterns for the letters I and J are used.
These 16 dimensions are high-level extracted attributes as discussed in [10], however, as the results show, much less
number of adaptively extracted features is sufficient. In this problem, we also used 100 patterns per class for training
and 400 per class for testing, and the AFNN is compared to the MLP, the LVQ, the probabilistic neural network
"PNM, and the NNC.

Fig(6): Experiment(2). AFNN(2.3) Decision Boundary, Training Dat
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Table 1: Experiment 2, Summary of Results
iamirwr AFNN(2.3) MLP(10) KI.(20) MP40) LVQ3) NNC PNN

%Tea 93 90.4 90.5 90.6 90.6 92.9 93

Warsueter 46 190 380 760 96 3200 3200

In this experiment, the AFNN(2.3) has the least SCC, thus is chosen here for comparison with other classifiers.
The transformed training data with the decision boundary for the AFNN(2.3) is shown in figure(6). This figure
shows how the opposite classes data are transformed to piece-wise-linearly separable clusters in the feature space.
The conclusions of this experiment me: (1) The AFNN(2.3) has outperformed all other classifiers in both the perfor-
mance and the reduction of complexity, and, (2) Although the MLP, the NNC, and the PNN have performed well,
they we inferior to the AFNN in the performance (MLP), or in complexity (NNC and PNN).

6. Smnary and Conclusions

A novel hybrid classifier, the AFNN, is proposed, which is composed of two parts. The first part is a linear
transform which extracts a minimum number of features from the input attributes, while the second uses these
features in an ANNC-type classifier. An MMI learning algorithm is developed to estimate the weights of the
transform and the ANNC prototypes simultaneously. An SCC criterion is also developed to estimate the optimal
combination of features and prototypes, based on the MMI trained AFNN. The results show that high-
dimensionality problems can be mapped into much smaller dimensionality, which results in very compact ANNC
stage, and very compact overall AFNN classifiers. It also shows that, because of the optimal training used, the
AFNN performs as well or better than the traditional NNC. The conclusions of this paper are: The KLT should not,
in general, be used for supervised classification purposes when dimensionality reduction is sought. It is argued
intuitively, and shown experimentally, that the KLT may lead to very poor classification results, for certain prob-
lems. The AFNN, on the other hand, is designed to find a set of features, which are optimal from the classification
perspective, thus will not suffer from the KLT problems. It was surprising to find that only very few extracted
features are sufficient for a classification performance as well as, or better, than a classical classifier such as the
NNC. If this trend is valid for many large-dimensionality classification problems, it may prove to be extremely use-
ful in many ways. Firstly, the overall learning time is small. And secondly, the overall size is minimal, since it uses
the minimal number of features, and the minimal number of prototypes. Finally, the developed SCC criterion is suc-
cessful in estimating the best combination of the number of features and prototypes among many trained AFNN
architectures.
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Abstract

A recently proposed neural network architecture, the parallel consensual neural network, is applied
in classification of data from multiple data sources. The parallel consensual neural network (PCNN)
architecture is based on statistical consensus theory and involves using stage neural networks with either
non-linearly transformed input data or different initializations for the stage networks. When non-linear
transformations are applied, the input data are transformed several times and the different transformed
data are used as if they were independent inputs. The independent inputs are classified using stage
neural networks and the outputs from the stage networks are then weighted and combined to make a
decision. Optimization methods are proposed to compute the weights for the stage networks. The given
experimental results show the superiority of the optimization approach as compared to conjugate-gradient
backpropagation in classification of test data.

1 Introduction

The recent resurgence of research in neural networks has resulted in the development of new and improved
neural network models. These new models have been trained successfully to classify complex data. In
pattern recognition applications, the question of how well neural network models perform as classifiers
is very important. In previous papers [11,12], it has been shown that neural networks compared well to
statistical classificaxion methods in classification of multisource remote sensing/geographic data and very-
high-dimensional data. The neural network models were superior to the statistical methods in terms of overall
classification accuracy of training data. However, statistical methods based on consensus from several data
sources outperformed the neural networks in terms of overall classification accuracy of test data. Thus
it would be very desirable to combine certain aspects of the statistical consensus theory approaches and
the neural network models. However, it is very difficult to implement statistics in neural networks. In [31
parallel consensual neural networks (PCNNs) were proposed and implemented as stage-wise neural network
algorithms. The network models in 13] do not use prior statistical information but are somewhat analogous
to the statistical consensus theory approaches. In this paper the methods proposed in 131 are extended to
include optimal weights for the stage networks. The paper begins with a short overview of consensus theory
followed by a discussion of the PCNNs. Finally, experimental results are given.

*This research is supported in part by the Icelandic Council of Science, the National Aeronautics and Space Administration
Contract No. NAGW-925 and the Research Fund of the University of Iceland
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2 Consensus Theory

Consensus theory [4],[5 is a well-established research field involving procedures for combining single prob-
ability distributions to summarize estimates from multiple data sources with the assumption that the data
sources are Bayesian. In most consensus theoretic methods, the data from each source are at first classified
into a number of source-specific data classes Il]. The information from the sources is then aggregated by a
global membership function and the data are classified according to the usual maximum selection rule into
a number of user-specified information classes. The combination formula obtained in consensus theory is
called a consensus rule. Several consensus rules have been proposed. Probably the most commonly used
consensus rule is the linear opinion pool which has the following form for the information class if n data
sources are used:

n
Cj(Z) = aiP(Wi)(1)

i=1

where Z = [z,..., zn] is a pixel, p(wj[zi) is a source-specific posterior probability and ai's (i = 1,.n., n) are
source-specific weights which control the relative influence of the data sources. The weights are associated
with the sources in the global membership function to express quantitatively our confidence in each source
[4]. The linear opinion pool is simple but has several shortcomings, e.g., it is not externally Bayesian since it
is not derived from class-conditional probabilities using Bayes' rule. Another consensus rule which overcomes
the shortcomings associated with the linear opinion pool is the logarithmic opinion pool:

n

Lj(Z) = (P(wjZO) (2)

The logarithmic opinion pool has performed well in classification of data from multiple sources [4].
It is desirable to implement consensus theoretic approaches in neural networks since consensus

theory has the goal of combining several opinions and a collection of different neural networks should be
more accurate than a single network in classification. It is important to note that neural networks have been
shown to approximate class-conditional probabilities, p(wjlz), at the output in the mean square sense 16].
Using this property of neural networks it becomes possible to implement consensus theory in the networks.

3 Neural Networks with Parallel Stages

A block diagram of the parallel consensual neural network (PCNN) architecture is shown in Figure
1. Each stage neural network (SNN) has the same number of outputs neurons as the number of information
classes and is trained for a fixed number of iterations or until the training procedure converges. When the
training of the first stage has finished, the classification error is computed. Then another stage is created.
The input data to the second stage are obtained by non-linearly transforming (NLT) the original input
vectors. That stage is trained in a fashion similar to the first stage. When the training of the second stage
has finished, the consensus for the SNNs is computed. Thi; consensus is obtained by taking class-specific
weighted averages of the output responses of the SNNs using source-specific weights [4], similar to the ones in
equations (1) and (2). Error detection is then performed and the consensual classification error is computed.
In neural networks it is very important to find the "best" representation of input data and the consensual
method attempts to average over the results from several input representations or different initializations for
the stages. Also, in the consensual neural networks, classification of test data can be done in parallel with all
the stages receiving data simultaneously, which makes this method attractive for implementation on parallel
machines.

The PCNN is self-organizing in the followingsense: If the consensual classification error is lower than
the classification error for the first stage, another stage is created and trained in a way similar to the second
stage, but with another non-linear transformation of the input data or another initialization of the stage
neural network. Stages are added in the consensual neural network as long as the consensual classification
error decreases or a tolerance limit is reached. If the consensual classification error is not decreasing or is
lower than the tolerance limit, the training is stopped. Using this architecture it can be guaranteed that the
PCNNs should do no worse that single stage networks, at least in training. To be able to guarantee such
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Figure 1: Parallel consensual neural network architecture

performance in classification of test data, cross-validation methods can be used. Also, it has been shown [7]
that if all the networks in a collection of neural networks arrive at the correct classification with a certain
likelihood 1 - p and the networks make independent errors, the chances of seeing exactly k errors among N
copies of the network is:

which gives the following likelihood of a sum of network outputs being in error:

k>n/2

which is monotonically decreasing in N if p < 1/2. This implies that using a collection of networks reduces
the expected classification error if the networks have equal weights and make independent errors. It has also
been shown [81 that the standard deviation of the classification of a portfolio of neural networks (such as the
PCNN) decreases as the number of stage networks increase.

In [31 two versions of the PCNN were proposed. Both PCNNs combine the information from separate
inputs and can be considered neural network implementations of the consensus rules in equations (1) and
(2). Here we concentrate on the PCNNS, the consensual neural network version of the linear opinion pool
which will be referred to below as the PCNN.

Related neural network architectures to the PCNN have been proposed by Hansen and Salamon [71,
Ersoy and Hong [91, Deng and Ersoy [101, Valafar and Ersoy [111, Alpaydin [12], and Nilson [131. However,
the PCNN architecture is different from all of these. It uses non-linear transformation between stages and
weights the output from all the SNNs.

4 Optimal Weights

The weight selection schemes in the PCNN should reflect the goodness of the separate input data, i.e.,
relatively high weights should be given to input data that can be classified with good accuracy. There are
at least two possible weight selection schemes. The first one is to select the weights such that they weight
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Figure 2: PCNN with weighted individual stages

the individual stages but not the classes within the stages. This scheme is shown in Figure 1. In this case
one possibility is to use equal weights for all the outputs of the SNNs and effectively take the average of the
outputs from the SNNs. Another possibility is to use reliability measures which rank the SNNs according
to their goodness. These reliability measures are, e.g., stage-specific classification accuracy of training data,
overall separability and equivocation [1].

The second scheme is to choose the weights such that they not only weight the individual stages
but also the classes within the stages. This scheme is depicted in Figure 2. In the case of the PCNN the
combined output response Y can be written in a matrix form as

Y=XW

where X is a matrix containing the output of all the SNNs and W contains all the weights. Assuming that
X has full column rank, the above equation can be solved for W using the pseudo-inverse of X or a simple
delta rule.

Let's now look at the problem of choosing the weights such that they not only weight the individual
stages but also the classes within the stages. In order to find the optimal weights in Figure 2 we define

X = [XI X2 ... X-1,

w,
W2

W=

where Xi i = 1, ... , n are m x p matrices. Each row of Xi represents an output vector of each stage
network SNN i. Wi i = 1, ... , n are p x p matrices representing the weight of each stage network SNN i.
If Y = D is the desired output of the whole network we have

XW = D.

W is an unknown matrix, and its least square estimate W.,t is sought to minimize the square error

IXW - D112.
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This is a well known problem from linear regression, signal processing and adaptive filters. The formula for
Wpt uses the pseudo-inverse of W, i.e.,

Wpt = (XTX)-lXTD

where XT is the transpose of X, and (XTX)-IXT is the pseudo-inverse of X if XTX is non-singular. In
the case that X is not of full column rank this solution becomes ill-conditioned. In that case one can use
dummy augmentation to make W a full column rank matrix in a higher dimensional space and then solve
the problem. There are at least two other suboptimal methods for solving the optimization problem above.
The rest of this section will be denoted to these methods.

The first method is to use sequential formulas to compute the optimal W. Let the ith row vector of
the matrix X be xT and the ith row of the matrix D be daT, then W can be calculated iteratively using the
sequential formula

Wjj= Wi + Pi,i+x (djT~ - TiI
P, 1 ilzT+1 P,

P+1 = P- l + 4+:i i = O, 1 ... , m
-+ZT+iPizi+1

where Wm is the least square estimate of Wep. The initial conditions to the sequential formula are W = 0
and P0 = #I, where /3 is a positive large number.

The second method solving the least square error problem is to choose unitary W which minimizes
lID - XWII. We compute lID - XW112 =D112 - 2 < D, XW > +11X1 2

where < D, XW >= tr(DWTX T ) and tr returns the trace of of its argument matrices. If

XTD = VEUT

is a singular value decomposition (SVD) of XTD then

tr(DWT X T ) = tr(XTDWT)
= tr(VEUTWT)

= tr(EUTWTV)
P

= Ed.i(XTD)tii

i=1

where T =[t.] - UTWTV is a unitary matrix. This sum is maximized when all ti= 1, that is when
W-pt = VU T .

5 EXPERIMENTAL RESI

The PCNNs were - sed to classify a data set consisting of the following 4 data sources:

1. Landsat MSS data (4 data channels)

2. Elevation datat (in 10 m contour intervals, I data channel)

3. Slope data (0-90 degrees in 1 degree increments, 1 data channel).

4. Aspect data (1-180 degrees in 1 degree increments, 1 data channel)

Each channel comprised an image of 135 rows and 131 columns, all channels were co-registered. The
area used for classification is a mountainous area in Colorado. It has 10 ground-cover classes which are listed
in Table 1. One class is water; the others are forest types. It is very difficult to distinguish between the
forest types using the Landsat MSS data alone since the forest classes show very similar spectral response
1l. Reference data were compiled for the area by comparing a cartographic map to a color composite of
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Table 1: Training and Test Samples for Information Classes in the Experiments on the Colorado Data Set

Class # Information Class Training Size Test Size
1 Water 301 302
2 Colorado Blue Spruce 56 56
3 Mountane/Subalpine Meadow 43 44
4 Aspen 70 70
5 Ponderosa Pine 1 157 157
6 Ponderosa Pine/Douglas Fir 122 122
7 Engelmann Spruce 147 147
8 Douglas Fir/White Fir 38 38
9 Douglas Fir/Ponderosa Pine/Aspen 25 25
10 Douglas Fir/White Fir/Aspen 49 50

Total 1008 I011

the Landsat data and also to a line printer output of each Landsat channel. By this method 2019 reference
points (11.4% of the area) were selected comprising two or more homogeneous fields in the imagery for each
class. It has been shown [2],[31 that neural networks are sensitive to having representative training samples.
In order to see how well the PCNNs compared to a backpropagation neural network with a representative
training sample, the training samples were selected uniformly spaced apart in the experiments. Around
50% of the samples were used for training and the rest to test the neural networks (see Table 1). Two
versions of the PCNN were applied in classification of the Colordado data, i.e., PCNN with equal weights
and optimized weights. (The optimal approach reported here was the inverse method but the suboptimal
methods gave similar results.) The PCNN algorithms were implemented using one-layer conjugate-gradient
delta rule neural networks (CGLC) [21,114J as its SNNs. The conjugate-gradient versions of the feedforward
neural networks are computationally more efficient than conventional gradient descent neural networks. The
original input data were Gray-coded but that representation has previously given the best results for this
particular data set [2]. Using the Gray-code and 8 bits for each input stage expanded the dimensionality
of input data to 56 dimensions. Therefore, each SNN had 57 inputs (one extra input for the bias), and 10
outputs. In these experiments the Gray-code of the Gray-code was the non-linear transformation selected.
This is the same non-linear transformation used in [3]. Each SNN was trained for 200 iterations. In order
to get comparison to the results of the PCNN, the single-stage conjugate-gradient backpropagation (CGBP)
algorithm with two layers [14] was trained on the same data with a variable number of hidden neurons.
The CGBP neural networks had 57 inputs, 8, 16, 24 and 32 hidden neurons and 10 output neurons. Eleven
experiments were run for the PCNN with different numbers of stages. The highest number of SNNs used
in each PCNN was fifteen. All the neural networks used the sigmoid activation function. The experiments
were run on a SUN SPARCstation 10/41.

The average results of the experiments with the PCNN are shown in Figure 3 for the two weight
selection schemes and the standard deviation of the training accuracy for the PCNNs is shown in Figure 4.
The results with the CGBP (for different number of hidden neurons) are shown in Figure 5 as a function of the
number of training iterations. From these figures it is clear that the PCNN methods outperformed the single
stage CGBP in terms of classification accuracy of test data. Also, the difference between the equal weight
selection and the optimal weighting method became very clear in the experiments. The optimal approach
clearly outperformed the equal weighting approach in terms of training accuracy. In fact, for training data,
the optimal weighting approach did show monotonically increasing overall accuracy as a function of the
number of stages. This result was expected since the weights in the PCNN were optimized based on the
training data. On the other hand, the PCNN methods showed very similar test accuracies after 15 stages.
On the average, the optimal approach achieved 80.77% overall accuracy for test data as compared to 80.74%
for the equal weighting approach. In comparison, the CGBP method achieved the maximum accuracy of
77% for test data. It is also important to note that the test results with both PCNNs are better than the
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best statistical result achieved in [4].
As Figure 4 displays, the standard deviation of the classification went down as a function of the

number of stages used. Overall, the PCNN results in these experiments were very satisfying.

6 CONCLUSIONS

In this paper optimized weights were computed for the stage networks in the PCNN architecture. The results
obtained showed the PCNN architecture to be a desirable alternative to conjugate-gradient backpropagation
for multisource classification when representative training data are available. The results for the PCNN
outperformed all other methods (applied now and previously on the data set used) in terms of classification
accuracy of test data. The results using the optimized weights were very promising and it is important to
note that the new optimized weighting approach can also be used for the networks proposed in [111 and [121.
Although binary input data were used in the experiments, the PCNN with optimized weights works both
for analog and binary input data.

At this point, the PCNNs require to be tested extensively. Different non-linear transformations and
the various weight-selection schemes proposed here need to be explored more thoroughly. Also, different types
of PCNN architectures are being investigated. These architectures include PCNNs with different non-linear
transforms for each stage and different number of iterations for the stages. The most important remaining
problem in the research concerning the PCNN architecture is the selection of the non-linear transformations.
In this paper we did not concentrate on that problem but used somewhat an ad hoc method, i.e. the Gray-
code of the Gray-code. Using an optimal non-linear transformation could be critical to the performance of
the PCNN.

ACKNOWLEDGEMENT

The Colorado data set was originally acquired, preprocessed and loaned to us by Dr. Roger Hoffer of
Colorado State University. Access to the data set is gratefully acknowledged.

References
I1] J.A. Benediktsson, P.H. Swain and O.K. Ersoy, "Neural Network Approaches Versus Statistical Methods

in Classification of Multisource Remote Sensing Data," IEEE Transactions on Geoscience and Remote
Sensing, vol. GE-28, no. 4, pp. 540-552, July 1990.

[2] J.A. Benediktason, P.H. Swain and O.K. Ersoy, "Conjugate-Gradient Neural Networks in Classification
of Multisource and Very- High Dimensional Remote Sensing Data," International Journal of Remote
Sensing, vol. 14, no. 15, pp. 2883-2903, October 1993.

[3] J.A. Benediktsson, J.R. Sveinsson, O.K. Ersoy and P.H. Swain, " Parallel Consensual Neural Networks",
Proceedings of the 1993 IEEE International Conference on Neural Networks, vol. 1, pp. 27-32, San
Francisco, 1993.

[4] J.A. Benediktsson and Philip H. Swain, "Consensus Theoretic Classification Methods," IEEE Transac-
tions on Systems Man and Cybernetics, vol. 22, no. 4, pp. 688-704, July/August 1992.

[5] C. Genest and J.V. Zidek, "Combining Probability Distributions: A Critique and Annotated Bibliog-
raphy," Statistical Science, vol. 1. no. 1, pp. 114-118, 1986.

[6] D. W. Ruck, S.K. Rogers, M. Kabrisky, M.E. Oxley, and B.W. Suter, "The Multilayer Perceptron as an
Approximation to a Bayes Optimal Discrimination Function," IEEE Transactions on Neural Networks,
vol. 1, no. 4, pp. 296-298, 1990.

[71 L.K. Hansen and P. Salamon, "Neural Network Ensembles," IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 12, no. 10, pp. 993-1001, 1990.

111-135



[81 G. Mani, "Lowering Variance of Decisions by Using Artificial Neural Network Portfolios," Neural Com-
putation, vol. 3, pp. 484-486, 1991.

[9] O.K. Ersoy and D. Hong, "Parallel, Self-Organizing, Hierarchical Neural Networks," IEEE Transactions
on Neural Networks, vol. 1, no. 2, pp. 167-178, 1990.

1101 S-W. Deng and O.K. Ersoy, "Parallel, Self-Organizing, Hierarchical Neural Networks with Forward-
Backward Training," Circuits, Systems and Signal Processing, vol. 12, no. 2, 1993.

[111 H. Valafar and O.K. Ersoy, Parallel, Self-Organizing, Consensual Neural Network, Report No. TR-EE
90-56, School of Electrical Engineering, Purdue University, 1990.

[12] E. Alpaydin, "Multiple Networks for Function Learning", Proceedings of the 1993 IEEE International
Conference on Neural Networks, vol. 1, pp. 9-14, San Francisco, 1993.

[131 N. Nilsson, Linear Machines, McGraw-Hill, New York, 1965.

[141 E. Barnard, "Optimization for Training Neural Nets,"IEEE Transactions on Neural Networks, vol. 3,
no. 2, pp. 232-240, March 1992.

8 0. . . . . .. ". . . . . . . . . . . . .

2 4 6 8 10 12 14

NnAW of sugm (S"W)

Figure 3: Average results for the PCNN with equal and optimal weights as a function of the number of
SNNs. The upper curves represent training results and the lower curves test results.
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Abstract

In this paper we propose an efficient and flexible method of finding the nearest neighbor using a
CMAC. A subset of design patterns are selected as probable candidates amongst which the nearest
neighbor is searched for. This reduces the number of distance computations compared to the traditional
approach. Unlike many other efficient techniques, this system can be trained on additional design patterns
at a later time without affecting the previous learning. Experimental results are presented to demonstrate
the efficiency of the proposed approach.

1 Introduction
Since its formal introduction as a classification tool by Cover and Hart in 1967 [1], the Nearest Neighbor (NN)
rule is being applied in a large number of areas and is still an interesting topic of research [2]. In its simple
form, it deals with the problem of associating a new pattern with the label of any one of the other design
patterns already known. As the name implies, the label of the pattern of the nearest neighbor, measured
using a suitable distance metric, is the one chosen to be associated with the new pattern. An extension
of this rule is the k-NN rule which considers the classes of k nearest neighbors before such an association
is made. The NN rule is not only intuitive, but is also bounded at the upper limit by at most twice the
Bayesian error [1] which makes is attractive for use with patterns whose distributions are not known. For
an excellent and comprehensive survey of NN techniques, see Dasarathy [3].
In spite of serving as an important nonparametric method for pattern classification, the NN approach has
a major problem: computational complexity. The search for the NN involve a large number of distance
computations whose complexity increases with dimensionality. As a result, a number of techniques have been
proposed to reduce this computational complexity, most of which can be classified under one of the following
categories: "condensed" approach,"hierarchical" approach, "pattern preprocessing" approach, "feature space
partitioning" approach, and "neural network" approach.
Among the earliest of the condensed approaches is the condensed nearest neighbor (CNN) rule [4], which is
a method to derive a condensed set of prototype patterns that will give the same result at the original set.
While this approach advocates a subset growing methodology, a similar method called the reduced nearest
neighbor (RNN) rule [5] advocates deriving the minimal set by starting off with the complete original set
and iteratively deleting unnecessary elements. In both approaches however, the goal of minimal subset is
not guaranteed.
Hierarchical approaches that are usually referred to as "branch and bound" techniques, have to do with
constructing a tree to cluster the data. The search for the nearest neighbor is reduced because only a few
branches are examined. The algorithm first suggested in 1975 [6] have since then undergone a number of
improvements [2].
Preprocessing the data has been often suggested as reducing the computational complexity of the actual
NN search. Sethi [7] suggests an approach where all the design patterns are ordered with respect to their
distances from three reference points. Only the patterns within a small neighborhood of the new pattern are
considered while searching for the NN.
Among the earlier and simple methods of feature partitioning is the "cube" algorithm of Yunck [8]. Here
the nearest neighbor of a new pattern is searched for within a hypercube that surrounds the pattern. Use of
a k-d tree [9] is a more recent method used to reduce the search complexity. Partitioning the feature space
perpendicular to each axis in such a manner as to maintain an equal (or near equal) number of patterns on
each side of the partition is the central idea to this scheme. The partition is done recursively until a small
number of samples remain within each partition. An incremental search starting from the root node is then
used for search for an arbitrary set of m nearest neighbors.
Recently, the k-NN rule has been implemented using artificial neural networks (ANN) [10] built on four
blocks; matching network, k-maximum network, counting network and 1-maximum network. In the match-
ing network the training patterns are stored in the interconnections. The matching scores between a new
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Figure 1: Conceptual architecture of the CMAC

!attern and the stored patterns are computed by this block are fed into the subsequent layers to compute the
-nearest neighbors. When the number of training patterns and the value of k is known apriori, the paral-

lelism offered by the network can be exploited by hardware. However if these parameters are not known, the
network has to be redesigned each time, and simulating it in software offers no advantage over the traditional
k-NN classifier,
In this paper, we present a method to reduce the complexity of search for the nearest neighbors by as-
sociating with a new pattern, only a small set of design patterns amongst which to look for the nearest
neighbor. The selection of this small set is facilitated by a model called the CMAC (Cerebellar Model Ar-
ticulation Controller/ Cerebellar Model Arithmetic Computer) which was introduced as a controller for a
robotic manipulator [11]. Later the CMAC found applications in shape recognition [12], and neural network
domains [13]. We adapt the model for the nearest neighbor determination. The use of CMAC in computing
the nearest neighbor offers two major advantages - efficiency and flexibility. Efficiency is offered in terms
of the CMAC providing a small subset of patterns for distance computations, while flexibility is offered in
terms of the CMAC's ability to update its database of design patterns without having to go through the
"learning" process again. While a number of methods described in the literature to compute the nearest
neighbor are efficient, few offer the flexibility of not having to retrain the system when new design patterns
have to be added.

2 The CMAC
2.1 Architecture
The CMAC (Cerebellar Model Articulation Controller/ Cerebellar Model Arithmetic Computer) was first
introduced in 1972 by James Albus. See [14] for a good introduction to the model. It is a serious attempt to
model the functionality of the human brain while maintaining a simplified but close structural relationship
to it.
The CMAC is a system that can be trained to learn even nonlinear transformations. As most neural network
models [15], it operates in two phases; a training phase during when a set of patterns are presented to the
system, and a testing phase when it responds to the inputs presented. Again, as in a neural network, the
input to output transformation is learnt by the system and need not be known apriori. The effectiveness of
the system is gauged by its ability to provide correct or near correct responses to slightly corrupted inputs.
In applications that use the CMAC, three basic properties are exploited. First, when provided with an input
pattern similar to an exemplar pattern that was learnt in the training phase, it produces an output that is
similar to the response that should have been produced by the exemplar pattern. Second, to produce such an
output, it sums up the contents of distributed memory locations. This distribution of information enhances
the robustness of the system. Third, the CMAC uses overlapping low resolution blocks in the input space
to aid in its input/output mapping.
These concepts are illustrated in Figure 1. The input space is divided into a number of "blocks". In the case
of the three dimensional input space shown in the figure, each of the axis is divided at regular intervals, with
each interval labelled with a unique address. Therefore, each block is uniquely addressable. For example, if
along each axis the numbering begins from 0, the address of the block indicated by the thick arrow is 012. A
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set of non-overlapping blocks that partition the input space is called a level. Another set of non-overlapping
blocks with a small offset along each axis, can be generated to encompass the same input space. That would
constitute another level.
If the address of a block is determined by the limits within which it falls along each feature axis, the range
of block addresses can be enormous. This address range that is often termed conceptual memory, can grow
even bigger with increasing dimensions and increasing resolutions of the blocks. In reality, an address in the
conceptual memory, called virtual address is mapped to physical address in physical memory by hashing.
The address of the block into which a pattern falls, is the virtual address of the pattern. Each level is
assigned it own memory partition and generates a virtual address for the pattern encountered. The output
corresponding to the pattern is distributed over hashed physical addresses over all the memory partitions.
A CMAC works as follows. When a training pattern is presented to the system, a virtual address for the
pattern is determined for each level. This is merely the address of the block into which the pattern falls. A
hash algorithm would then give a physical address corresponding to each level. The current contents of the
physical addresses are summed to give an output. The difference between the actual and current outputs
is then used as a correction term, a proportion of which (depending upon the learning rate) is added or
subtracted equally amongst the physical addresses. Thus if a training pattern is presented to the system
repeatedly, its output gets closer and closer to the actual output, until training is stopped or no change in
memory content take place. Recent studies have proved the convergence of the algorithm [16].
In the testing phase, if a new pattern is slightly shifted with respect to one of the training patterns the
output error will be determined by the contents of the virtual addresses that are not common between the
new pattern and the previously trained pattern. A consequence of this scheme is that slightly corrupted
inputs will give slightly corrupted outputs.

2.2 Modifications to the CMAC
We modified the CMAC to be used as a NN classifier. Briefly, the design patterns to be learnt by the CMAC
are identified by their an index and stored. When a new pattern is presented, a subset of the learned design
patterns is retrieved, amongst which the nearest neighbor is computed. The number of patterns retrieved is
a function of four parameters of the CMAC; the memory partition size, the block size, the number of levels,
and the offset of the levels with respect to each other.
The CMAC as a NN classifier operates in two phases; a learning phase and a classification phase. In
the learning phase, the the design patterns indexed by their sequence number are input to the system.
The sequence numbers used are just to identify the design patterns and their ordering has no effect on
the performance of the system. For each design pattern, the system computes a virtual address, which is
mapped to a physical address. The physical addresses are organized as a sequence of bits. A "1" in the ith
bit indicates that the ith design pattern has been hashed into this physical address, while a "0" indicates an
absence of such a hash. At the hashed physical address, the bit that corresponds to the index of the design
pattern, is set. The virtual to physical address hashing and bit setting is done for each level of the CMAC.
In addition, the design patterns are stored in an array in the sequence they are encountered.
In the classification phase the virtual address of the new pattern is first computed for each level which is
then mapped to a physical address. The indices of all the bits that are set to "1 at that physical address are
retrieved since they correspond to patterns that are in the neighborhood (defined by the block size) of the
current pattern. This retrieval is done for each level and a count of the number of retrievals for each index
is kept. The indices selected the most number of times are probable candidates for the nearest neighbor. If
more than one maximum exists, all of the maximums are selected and the distance between the new pattern
and each of the retrieved patterns is computed. The smallest amongst these distances is the nearest neighbor.
Note that it is not necessary for the system to retrieve the same number of samples for each new pattern.
A number of properties of the CMAC, make it attractive for use as a NN classifier. The training is "one shot"
and and does not involve any intense computation. The ordering of the design samples is not important and
they can be input to the system even incrementally without affecting the previously learnt patterns. The
retrieval of a subset of design patterns reduce the number of distance computations making the CMAC an
efficient NN classifier. The size of the retrieved subset of patterns can be controlled by the user to a limited
extent by specifying the various CMAC parameters.

3 Experimental Details
The CMAC NN classifier was implemented on a Sparc station 2 running the 4.3BSD UNIX operating system
using C language. The system performance was graded on two measures - efficiency and recognition rate
which are described in the next section. Three data sets were used in the experiments, the details of which are
described in section 3.2. In Section 3.4 we report the effects of some CMAC parameters on the performance.
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3.1 Performance measures
As indicated in the earlier sections, the CMAC is an efficient NN classifier. It is therefore natural to choose
to measure the computational gain obtained on the data. The measure chosen should be data independent
as much as possible. The efficiency, q/, is defined for this purpose as, q = 1 - where N, is the number of
distance computations using CMAC, and N. is the number of distance computations using traditional NN

N,
classifier. Though data dependent, we also report the recognition rate, -y, which is defined as 7-y, where

Nq is the number of correct nearest neighbors determined and Nt is the total number of test patterns.

3.2 Data
The "vowel" data set, used for speech recognition, has often been used as a benchmark ANN systems to
compare the performance of different networks. The data which was collected by Deterding [17] consists of
11 steady state vowels uttered by 15 speakers, 8 males and 7 females, with each speaker repeating a vowel 6
times. Of the 90 sets, the first 48 sets were used for training and the other 42 sets were used for testing. In
effect, there are 528 training samples and 462 testing samples. The actual data is a 10-dimensional vector
whose components are based on the log area ratios. The published literature [18 indicates that classification
based on this data has been difficult and the "best" classification rate obtained so far is 56% using the NN
approach.
The second set of data called the "sonar" data was first used by Gorman et. al [19]. The data was obtained
from sonar returns bouncing off two types of materials; metal cylinder and roughly cylindrical rock, at various
angles and under various conditions. Each pattern is a 60 dimensional vector whose components are in the
range [0,1]. Each component represents the integrated energy over a particular frequency band. There are
104 training patterns and 104 testing patterns.
The third set, called the "fingerprint" data, consists of 2000 training patterns and 2000 test patterns each
belonging to one of 5 classes. Each pattern has 112 components. The data was obtained from images
of fingerprint impressions following feature extraction. Direction vectors served as features. The initial
correlated 1680 dimensional vector was reduced to 112 by performing the Karhunen-Loeve transform.

3.3 Classification on large data set
Though a recognition rate of 100% can be obtained by adjusting the parameters of the CMAC, we also want
to achieve computational gains. Therefore, subjecting the three sets of data to the CMAC NN classifier, we
tabulate what we consider our best results.

Data set Efficiency, q recognition rate, - 1-NN recognition rate
fingerprint data 0.99 74.95 82.85

sonar data 0.98 67.30 91.34
vowel data 0.91 50.21 56.27

With all the data sets, the CMAC NN classifier is able to perform at over 90% efficiency with slight degra-
dation in recognition rate. Even though the recognition rate of the sonar data using the traditional NN
classifier seems much higher, that same rate can be obtained at the cost of some efficiency. As indicated
above, these values do not reflect the best recognition rates but rather the compromise between efficiency
and recognition rates.

3.4 Effect of number of levels and block size
Figure 2 is a plot of the average number of retrievals versus the number of levels while Figure 3 is the plot
of recognition rate versus the number of levels in the CMAC. These plots are for the "vowel" data. As the
number of levels increase, there is a drastic reduction in the number of samples retrieved initially, after which
it becomes more or less uniform. Also, depending upon the pattern distribution, in general, the smaller th.
initial set retrieved, the less the probability of finding the nearest neighbor in the retrieved set. This causes
the reduction in recognition rate with increased number of levels as seen in Figure 3. The isolated peaks in
the figure, we believe are caused by the distribution of data, and the main point to note here is the general
decrease in performance.
Figures 4 and 5 indicate the plot of the average number of re vals and recognition rate with increase in
block size. The block size is indicated as a percentage of the maximum range of the input vector component.
As the block size increases, more and more patterns tend to be retrieved as one would expect and therefore the
average number of initial retrievals increase, and recognition rate increases. Again, peaks in the performance
curve are caused by the distribution of the design patterns.
While it is possible to obtain a good recognition rate by increasing the number of retrievals, for applications
where the exact nearest neighbor is not so crucial, a reasonably good performance can be achieved by
retrieving only a small set of design patterns. Thus one can establish a tradeoff between accuracy and
computational complexity.
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3.5 Computational savings
The fingerprint data serves to illustrate the performance of the CMAC NN classifier on a data set that is
large and has a high dimensionality. The table below compares the performances of the CMAC NN classifier
with the traditional NN classifier. With little degradation, the the average number of retrievals for distance
computation is reduced drastically. As indicated earlier, in applications where computational speed is more
important than a slight loss in accuracy, the CMAC NN classifier is best suited.

Performance Avg # of distance computations time (in seconds)
Brute force NN 82.85% 2000 1639

CMAC NN 74.95% 6.686 423
3.6 Interpretation of results
The results of our experiments with real-world data point to a number of useful features. Learning is a one
shot process that requires no preprocessing, or ordering of the data, which eliminates the computation for
"preparing" the data that is usually associated with fast retrieval methods. This method can work with a
imited memory, the only effect of using limited memory would be that the retrieved sample set increases.

The number of initial index retrievals can be controlled to a certain extent by specifying the parameters of
the .MAC. For example, if a large set is needed, the block size can be increased.
There is a compromise between the initial number of indices of patterns retrieved and the computational
complexity. For example if more number of indices are retrieved, a larger search for the nearest neighbor
is required amongst the retrieved pattern, while if a small set is retrieved, there is a chance that the actual
nearest neighbor is not in that small set. In applications where the exact nearest neighbor is not crucial,
this method can help reduce the computation by a large factor.
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4 Conclusions and future research
We have presented a new method for finding the nearest neighbor of a pattern, using the CMAC model.
The nearest neighbor is searched for, amongst a small set of retrieved indices of initially stored patterns.
By controlling the parameters of the CMAC, we can control the size of this set. While a large retrieved set
will required a lot of computations to search for the nearest neighbor, a small set will tend not to have the
actual nearest neighbor present. Depending upon the application, a suitable compromise can be reached.
At present, we are looking into two possible extensions of this approach. One is to be able to specify hyper-
spherical shaped blocks, so that, while using the Euclidean distance metric, unnecessary sample patterns
&re not retrieved. The second extension is to order the retrieved small set to obtain the k-NN's of the new
pattern. This is a rather simple extension, though at the moment we have not implemented it.
Acknowledgments: We acknowledge the use of the NIST database for the "fingerprint" data, and the
University of California, Irvine's repository of machine learning databases for the "sonar" and "vowel" data.
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Abstract

When two dimensional images are used as input to a neural network, the noise from the input device and
small deformations in the end parts that occur in the processes of separating each pattern and size normalization lead
to images shifted from the original learned image being input to the neural network which is a maijor cause of
misrecognition. In existing multi-layer perceptrons using standard EBP, it is difficult to solve shift invariant
problems because pattern pixel values are presented directly to the neural network input nodes. Second order neural
network inputs consist of geometrically related nonlinear combinations of two pixels, and can be used for shift
invariant pattern recognition. But the number of Second order neural network input nodes increases in proportion
to N2, where N is the dimension of the input patterns, even if we only consider shift invariance. Such large number
of input nodes lead to slower learning and recognition.

In this paper, we propose a method for reducing the number of shift invariant second order neural network
input nodes using combinations of input pattern pixels and PCA(Principle Component Analysis). Using the
proposed method, we are able to implement a shift invariant second order neural network with 2/5*N nodes. Due to
the reduced number of input nodes, a 50% reduction in the learning and recognition time was obtained.

L Introduction

Multi-layer perceptrons using EBP(Error Back Propagation) learning rule have attracted a great deal of
interest recently in the field of pattern recognition where solutions using existing algorithmic methods, because of
it's simplicity and superior problem solving capabilities. But the perceptron has a low rate of recognition for
patterns which has been geometrically transformed (rotation, scaling, shifting). This shows that the multi-layer
perceptron model has a weak point in recognizing geometrically transformed patterns, one of the basic problems
of pattern recognition[21. Geometric invariance is important in pattern recognition because the target location and
orientation is usually unknown. Among all the variations, shift variation generally occurs in two dimensional
pattern recognition. Shift variation refer to the shifting of the entire extracted pattern as a result of a small amount
of noise at the end points of the pattern that occur during the process of extracting indivisual patterns from the
entire scene[l].

To overcome such geometric variations, researches on using higher order neural networks, which can
learn variations by itself, have been actively conducted. Recent research has shown that because invariances can be
built into the architecture of higher order neural networks, they can be effectively used for invariant pattern
recognition(2,31. But sraightforeward use of higher order neural networks is limited in actual implementations
because of the combinatorial explosion of the number of input layer nodes in proportion to the input pattern
dimension. If the input pattern to be learned is of dimension N, the number of input layer nodes increases in
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(N2), even if we only consider the second order neural networks. This is the major obstacle to actual
implementation. Also, such large number of input nodes lead to slower learning and recognition[5,7j.

There have been many approaches which maintain the geometric invariance properties of higher order
networks while reducing the number of input nodes. For example, sigma-pi networks use a hidden layer of higher
order nodes[ 10]. This strategy retains the higher order network properties, but its learning speed is slower.
Another approach is to use a priori information to remove the terms which are irrelevant to the problem in a single
layer of higher order nodes[5,7]. However since it is often difficult to find the properties of input pattern space a
priori, this stretegy has limited applications.

Recently, the problems of the above methods have been overcome be representing pixel
combinations in the same relation in the context of the invariance wanted by a single representative node[ 1,4,61.
Using such methods allow an O(N) implementation of high order neural networks with N dimensional input
patterns. For example, shift invarient second order neural networks have 2*N input nodes for N dimensional input
patterns. But even such methods still need a large number of input nodes necessitating longer learning and
recognition time.

In this paper, as a part of an on going research to reduce the number of high order neural network input
nodes, we propose a method for reducing the number of shift invariant second order neural network input nodes to
close to the input pattern dimension N using PCA(Principal Component Analysis) and pattern pixel combinations.
Using the proposed method, we are able to implement a shift invariant second order neural network only with
2/5*N nodes. Experiments using the implemented neural network on shifted Korean Munjo character set resulted
in about 95% recognition rate. Due to reduced number of input nodes, reduction in the learning and recognition
time was also obtained.

The rest of the paper is structured as followes. In section 11, we show an O(N) shift invariant second order
neural network implementation using pixel combinations. Section III details the process of implementating a
further reduced shift invariant second order neural network using principal component analysis on the pixel
combinations obtained in section II. Section IV presents the experimental results that show the proposed reduced
second order neural network is superior to the existing non-reduced second order neural network. The paper ends
with a conclusion in section V.

II. Shift Invariant Second Order Neural Network using Pixel Combinations.

Second order neural networks have the lowest order among higher order neural networks and have shift
and size invariant properties. These properties are due to the fact that second order neural networks perceives the
relationship between two pixels combinations.

The operation equation for second order neural network is shown in equation (1). To obtain shift
invariance, we need only to take the two dimentional corelation terms of equation (1) into account. Equation (2)
shows the terms of equation (1) that affect the relative positions of the inputs, only these terms need be taken into
account for shift invariance[2,3].

a n-I a a

hi= X W,.i 2 + XWi(Jk)4i4k + XWiiJ + Wi
j-l j=I k=j+l j=I (1)

2-I a

hi = XWiI4ik
j=1 k=j+l (2)

For shift invariant learning, weights in shifted positions are updated simultaneously according to equation
(3). So equation (2) can be rewritten as equation (4).

wijk =wil- (3)
n-I a

hi= 1: X:Wi~kj
j=1 k=j+I (4)

In shift invariant second order neural networks, since all weights in shifted positions have the same values,
all the two pixel combinations are added beforehand and the cumulative value can be represented by a single input
node of the second order neural network. This feature, summation of all the two pixel combinations for given
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relative position, is called SOP(Summation Of Products) or second order featurel 1,71.sop = ( & ..... )(5)

In obtaining second order features, the direction must be taken into account. There are four directions
which two pixel combinations can have. So, second order feature can be represented by a 2*N - (L+M)
dimensional vector with each element representing the numbers of the relative position pixel combinations. Fig 1.
shows the possible directions of two pixel combinations and an example of the second order feature.

1 direction 1

direction 4 direction 2
direction 3

_vector

direction I 21000 21000 (L-1)
direction 3 21000 21000 (M-l)

10000 10000
10000 10000

direction 2 00000 00000 (L-1)(M-1)
00000 00000
00000 00000
10000 1000010000 10000 (L-1)(M-I)

directin 4 00000 00000
00000 00000
oo00000 o o 0

Fig 1. Directions of two pixel combinations and example of second order feature

As can be seen above, shift invariant second order neural network can be implemented by first order
multi-layer perceptron which has about 2*N input nodes when using the second order features.

HI. Reduction of Second order Neural Network using PCA(Principal Component
Analysis)

Shift invariant second order neural network using second order features considering position and
directional correlations has O(N) input nodes. But the size of the neural network increases twice as fast as the
dimension of the real pattern. To be realistically applied to pattern recognition systems, the learning and
recognition process must be achieved as quickly as possible. Thus it is preferable to reduce the number of input
nodes of second order neural networks as much as possible.

PCA(Principal Component Analysis) is a statistical tool which yields substantial data reduction by
representing each pattern in terms of a relatively small subset of orthonormal features(Principal Component)
extracted from the input setI8,91. The Principal Components are eigenvectors of the covariance matrix formed
from the pattern set. Each eigenvalue is equal to the variance of the projections of the patterns onto the
corresponding principal component. The principal components can be obtained by using the diagonal terms from
the diagonalized covariance matrix. Then the values obtained from the PCA are equivalent to the variance of each
dimension of each pattern. So, the variances of each dimension can be used as Principal Components[8,9.

Fig. 2 shows the top 80% of the variance of each dimension from 990 chracter patterns from the Korean
Munjo chracter set. As can be seen from Fig 2. dimensions of smaller variances differ very little for most of the
patterns. Therefore such dimentions only increase the learning and recognition time while contributing very little
to the overall recognition rate. By eliminating these dimension from the second order features, improvement for
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lesiiing and recognition time can be obtained without adversely affecting the recognition rates.
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IV. Experimental results

Second order neural networks reduced to 2*N input nodes using pixel combinations are shown to be
further reducible by using PCA without adversely affecting the recognition rate through experiments of 990
patterns from the Korean Mungjo charcter set. The experiments compared the results of using a fixed percentage
of the second order features with the highest variance values. We have conducted experiments using the top 10%,
20%, 30%, 40%, 50%, 70%, and 100% of the second order features. Fig. 3 shows the resulting recognotion rate,
learning time and recognition time.

First of all, using second order neural networks rather than first order neural networks show a far higher
recognition rate proving that theshift invariance problem has been overcome. Also, comparing the results of using
the top 20% with the results of using all second order features, we can see that using only the top 20% of the
features results in a 80% reduction in the number of the input nodes and a 50% reduction in learning and
recognition time.
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Fig 3. Results of Experiments using reduced second order neural networks.
From the experimental results, we can see that the second order features obtained through pixel

combination still has redundant information that does not contribute to improving the recognition rate.
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Eliminating such redundant information through PCA can lead to a further reduction in the number of input nodes
without adversely affection the recognition rate while also improving the learning and recognition speed.

V.Condusion

In this paper, we propose a method for reducing the number of second order neural network input
nodes for solving the problems caused by the O(N2) increase in the number of input nodes -- difficulties in
implementations, increases in learning and recognition time -- through pixel combination and PCA. Using the
proposed method, we are able to implement second order network with only 2/5*N input nodes. Reduction in the
learning and recognition time is also obtained.

Because geometric invariances are important for the pattern recognition, there are many researches being
conducted on using higher order neural network. But combinatorial explosion of input nodes is the main obsticle to
research. So, researches for solving this problem is progressively increasing. In the proposed method, we adopt a
statistical tool(PCA) to reduce the number of higher order neural network input nodes. So the proposed method
can be used regardless of the given pattern class.
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Abstract

Temporal (spatiotemporal) sequences are a fundamental form of information both in natural and engineered
systems. The biological control process which directs the generation of iterative structures from undifferentiated
tissue is a type of temporal sequential process. A quantitative explanation of this temporal process is reaction-
diffUsmon, initially proposed by Turing[1952] and later widely studied and elaborated.

We have adapted the reaction-diffusion mechanism to create a novel network and algorithm based on a
chemical "neuron' model, which performs storage, associative retrieval and prediction for temporal sequences.
Experiments demonstrate the ability of the device to achieve any desired depth, limited only by storage capacity,
to remember and predict on the basis of count to any length, and to learn an embedded Reber grammar to 98%
accuracy and permit retrieval with controllable redundancy.

1 Introduction

A fundamental class of biological mechanisms is widely believed to control the growth of repetitive struc-
tures such as insect leg segments, periodic patterns such as the stripes of a zebra, and similar sequences
which are largely but not exactly repetitive. The underlying biological process has been explained quanti-
tatively by the reaction-diffusion process consisting of a set of partial differential equations that describe
the space-time concentration of chemical morphogens responsible for stimulation of growth. Reaction-
diffusion is, in a word, a natural spatiotemporal sequential process which we wish to exploit.

On the engineering side of the ledger, the storage and retrieval of spatiotemporal sequences has
received a good deal of attention by reason of their fundamental place in the simulation of cognitive
processes. A few of the many proposals for TSP(temporal sequence processing) are time-delay neural
nets, recurrent multilayer feedforward nets[Elman 1990, Jordan 1987], gamma delay networksdeVries
& Principe 93], and the gaussian delay network, TEMPO2 [Bodenhausen & Waibel 1991]. The basic
problem is to find a viable procedure for projecting the history of a sequence into the present so that
the past, back to some 'depth', can be made to influence the present or future. Of course, we desire the
device or network to be as fundamentally simple as possible and also biologically plausible.

In the following sections, we will (1) discuss the objectives of TSP and some previous efforts, (2)
explain how reaction-diffusion operates biologically, (3) define our TSP model, (4) discuss some experi-
mental tests of the model and (5) summarize the qualities and limitations of the Re-Di model.

2 Objectives for a Temporal Sequence Processor

The two distinct ways that we want to apply the TSP to process sequences are reviewed next.

1. Embedded Sequence Recognition (ESR) - A number of short pattern sequences, PS =

(psI,P82,...), are to be learned by the device. An unbounded argument sequence ARGSEQ, is
compared to the set, PS, to determine if any one of the stored pattern sequences is embedded in
the ARGSEQ. The stored patterns could be meaning-bearing features of signals and the objective
is to identify the existence of features in a semi-infinite signal. The process of matching a specific
external sequence to internal stored states we will call guided sequence retrieval.

'Communication: ray~cs.uiuc.edu
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2. Sequence-Addressable Sequence Memory (SASM) - A 'long' sequence(s), ST, is stored.
Short address sequences are to be compared to ST for the purpose of locating regions of ST
which match the applied address sequence ('address comparison', a variant of guided sequence
retrieval). If a sufficiently exact match to the address sequence is found, we optionally want to
read the continuation of ST from the match point without further external guidance (free sequence
retrieval).

Upon close examination, storage, guided sequence retrieval, address comparison, and free sequence
retrieval all exert their special requirements on the engineering of the network. Note also that free
sequence retrieval is equivalent to prediction. For example, when the long stored sequence, ST, is a
musical melody or financial time series, free sequence retrieval amounts to using similar past behavior to
project the expected future.

Class Flexibility - It is also highly desireable in many applications of TSPs that the system has
controllable tolerance to variations in the time of symbol occurrence.

In this sense, the stored sequences act as exemplars of classes, a useful condition often found in neural
nets.

We propose to explain how the Re-Di TSP deals with all of these foregoing objectives.

3 Biological Reaction-Diffusion

A well-studied biological experiment consists of the surgical removal of an internal segment of a cockroach
tibia followed by regrafting of the distal and proximal parts as illustrated in Fig.1 [Meinhardt 1982. If
the original tibia consisted of a sequence of similar but not identical segments numbered 123456789,
and the segment, 4567, were removed, it is found that after one or two moults, the internal segment
sequence is regenerated, in this case, in its original order. This experiment implies the existence of
control information and a controlled growth process which stores and retrieves sequences. How is this
to be explained? The quantitative explanation was set forth some 40 years agorTuring 52] as a set of
p.d.e.'s which are self-stabilized and which specify the growth and decay of morphogens stimulating the
regenerative growth of the segments. An example of reaction-diffusion equations are given. 2

6gi g 2 62 9i
= "--g +D (1)

-r _ (2)

i

gi represents the concentration of the ith morphogen which excites the growth of the ith segment of the
tibia, r is the concentration of the common reactant chemical, and the coefficients are constants. The
D's are the diffusion coefficients. Assume that segment 8 emits morphogen g. If r=1, 697/t will grow
by positive feedback for some time and the diffusion term (containing D)will diffuse the chemical into
the segment 8/segment 3 interface, stimulating growth of segment 7 material. At farther locations, the
reactant r, which is set to diffuse rapidly, will suppress growth of g7. Thus the strongest stimulus for
growth of segment 7 will occur at the edge of the segment 8 material. Notice that reactant r is generated
in proportion to the sum of squares of morphogens present (eqn.2, 1st term on right), and, by appearing
in the denominator of term 1 of eqn.1, suppresses the growth of all morphogens.

After segment 7 has grown, it emits ge which excites the regeneration of segment 6, etc. until the
surgically removed tibia segments regenerate(Fig. 1, rightmost sketch).

The reaction-diffusion equations permit calculation of the growth, diffusion and decay of each mor-
phogen in turn which effectively carries the history of previous activity forward in time while distributing
the information spatially by diffusion. This is the natural biological mechanism which we shall imitate
to engineer a temporal sequence processor.

2These equations are somewhat simplified here, hence less than fully accurate, by reason of the limited space

available for explanation. See [Meinhardt 1982] for the complete equation set.
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4 The Re-Di Temporal Sequence Processor

4.1 The Basic Cell

A basic cell of the Re-Di processor or network has the following properties:

(1) The cell has a single label which specifies the chemical(morphogen) which it emits, i.e., the cell
labelled m emits gin.

(2) When activated, the cell emits one unit of its chemical into the medium.

(3) The cell has K receptors. Each receptor specifies the chemical vector which will activate the cell.
The kth receptor has values, V# = (vI, V2,... , vN) where N is the maximum number of chemicals
and vi corresponds to chemical gi. A cell is activated when the chemical concentration vector,
G = (gi, g2,...) at the location of the cell is sufficiently near equal one of the K receptors (V
vectors) of the cell. More precisely, cell C is activated if

NminF, I (gk(z-) - Vjk) j< ff j=1,..

k=1

At birth, all cell labels are blank and all V-vectors equal 0.

4.2 The Architecture of the TSP

A general TSP is composed of a number of basic cells distributed randomly in a volume suffused by a
medium which supports diffusion of the chemicals(see Fig.2). In the present report, we will assume the
basic cells are distributed on an x,y plane at integer locations. In general, there may be any number of
cells with the same label but we will limit ourselves to one cell for each label, that is, there is one source
for each chemical. The network is capable of generating the reactant chemical, r(x,y), at any position
(x,y) where a basic cell exists. It is also assumed possible to locate the particular cell corresponding to
an external symbol.

The growth, decay and diffusion of chemicals in the TSP are governed by the following equations.

The Reaction-Diffusion (Re-Di) Equations

6g(Z)= cg (z) 62gp(z)

6r(z) = N 2(Z Z)D r(Z))

tg ( 7) ,: gp (3) D

T _ = -7 + (4)
p ---

Operation of the TSP is best described with an example which follows.

4.3 Storing a Sequence (Training the Processor)

Assume the processor is in its virgin state and we will follow the steps of storing the sequence, S1 8283...

= cdddf. The chemical concentration, G = 0, everywhere. We will assume a 5 x 5 array of cells located
at z =1,...,5, y=l,...,5.

Upon applying sl = c, one cell is recruited randomly and assigned the label, c. Suppose it is at x=3,
y=3. C(3,3) is labelled the active cell(AC), it emits one unit of go, and the Re-Di equations are applied,
diffusing gc throughout the medium.

Upon applying 82 = d, another blank cell is recruited (say at x,y = 2,3), it is labelled d, flagged as
the AC, and one of its receptors (V registers) is set or trained to the value of the chemical environment
at its location at that moment. Only chemical gc will be non-zero. The AC then emits one unit of gd and
the Re-Di equations are stepped to simulate growth or decay and diffusion of all chemicals in the system.
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Upon applying . = d, the cell labelled 'd' is located, namely C(2,3), which continues as the AC. If
none of the V-registers of C(2,3) is within the a tolerance zone of the current #(2, 3), an unused V-register
of C(2,3) learns (is set to) #-(2,3). Then one unit of gd is emitted and the Re-Di equations are applied.

When s 4 = d is applied, the procedure for 83 is repeated. If o is sufficiently small, the fact of a different
chemical environment for each transition results in a unique activation vector for each transition. That
is, the 2nd d to the 3rd d is distinguished from the 3rd to the 4th d.

Finally upon applying as = f, a new cell it recruited, labelled f, and set to recognize the 1 which carries
the history of the sequence. Eventually, the chemical concentrations decay to zero. The device generates
a chemical 'alphabet soup'capable of uniquely representing the Iistorical context of every trazsition.

Retrieval of a sequence follows the same procedure as the storage process except no V-registers are
altered.

Upon future reapplication of the same sequence for the purpose of recognizing the stored sequence,
if the chemical concentrations are noiseless and applied with the same timing, the conditions stored in
the V-registers will be exactly recapitulated causing the same cell activation sequence to reemerge.

Even if there is some noise or the timing varies, use of a wider tolerance window (greater a) can still
permit the stored sequence to be recognized.

5 Examples

5.1 Count (or Depth) Test

The ability of the network to count can be tested directly by demonstrating that the sequence, cdne
can be distinguished frcm cdn+lf, that is, the occurrence of n d's is distinct from n+1 d's. The
test consists of storing a sequence such as cddddddd... and noting the point where successive d's are
not distinguished by utilizing a new V-register. This experiment was performed with various values of
tolerance, o. The results are shown below.

COUNTING TEST

o n (largest depth)
0 00

.01 10

.02 6

.04 4

.05 3
Metaphorically, larger values of a correspond to paying less attention to the precise count. As the count
or depth increases, the penalty is a proportionate increase in the required storage capacity which can be
defined as: Capacity = NcNv where N, = the number of cells and Nv = the average number of occupied
V registers (activation condition registers) per cell.

5.2 Embedded Reber Grammar

An embedded Reber grammar was generated with all transition probabilities = 0.5. The network was
trained with 500 strings and tested with 500 different strings. Sequence length was unrestricted; string
lengths as long as 29 symbols were observed. We used a hard-lint accuracy requirement, namely, every
transition in a string must be predicted by the network in oeder to score a Pas. Usually prediction of
the penultimate symbol (t or p) by correlation to the second symbol (t or p) is the goal.

Variation of the activation tolerance measure, or, demonstrates the range of generalization possible
during storage of sequences. In the limit asa --+ 0, every transition was learned uniquely which required
about 600 V-registers to record an average 4683 transitions. Every sequence which has ever been presented
is uniquely retrievable when o = 0 during storage. When o increases, some distinct strings may be stored
as equivalent but fewer V registers are used (e.g., about 300 V registers when o = 0.005). Ultimately
when o = 0.5, the representation became context-free, that is, no history was stored - any transition
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between Reber grammar symbols was permitted. Similarly, during Test phase, the acceptable tolerance
for each transition, oTST was varied. With a = .001, OTST = .005, 98.4% of strings were recognized.
Accuracy for various combinations of storage and test tolerance are summarized in Fig. 3.

5.3 Time Flexibility

In the foregoing cases, retrieval was performed with the same timing used during storage. If retrieval
is performed at a rate slower or faster than the rate during storage, the chemical concentrations will be
different. In this experiment, the storage(training) algorithm was performed with a unit time between
each symbol by using a unit step of decay and diffusion. To simulate retrieval at a slower rate than
storage, we performed two or three steps of the Re-Di equations between symbols. In Fig. 4, the error
rate is the percentage of sequences in which at least one transition was not correctly signalled. The
error rate can be reduced by increasing the activation tolerance, 0 'TST. Almost any sequence could be
retrieved with rTST = 0.2. Increasing 0 TST permits an increasing number of transitions to be seen as
permissible, even some which may not have been explicitly seen during the storage operation. Thus, the
cost of retrieving at a rate different from the rate used during storage is that one must accept a higher
level of uncertainty that the object sequence was, in fact, precisely the one that was stored. On the other
hand, temporal spacing in the stored sequence can be distinguished in the retrieval process, if desired,
by using both a small o and small 0 TST at the cost of storage capacity.

5.4 Sequence Addressable Sequence Memory

SASM entails the storage of comparatively 'long' strings addressed by shorter sequences. The storage
algorithm is independent of the lengths of sequences being stored.

An experiment was designed to test the ability of the Re-Di TSP to perform in SASM style. Six
simple musical melodies averaging about 20 notes duration were encoded in a form which represents
both the note and its duration.3 All of the melodies had a common internal subsequence, the objective
being in part to demonstrate that the sequences could still be completely distinguished downstream from
the common point.

After storing the melodies, a brief (3 to. 6 note) initial string from an arbitrary stored string was
used as the address. The address was presented in Guided Sequence Retrieval mode. At that point,
having developed the chemical distributions corresponding: to the initial part of one of the stored strings,
the system reverted to Free Sequence Retrieval meaning that each successive activated node was decided
competitively by selecting the unique (usually) node with the largest activation. In all cases except one
special condition, the expected sequence was correctly retrieved all the way to its terminal symbol.

6 Summary and Conclusions

Temporal sequence processing fundamentally requires memory of the history of the sequence, usually
supplied by a delay kernel. In the current paper, we have explained how history be carried by a
mechanism analogous to chemicals growing, decaying and diffusing according to the reaction-diffusion
process. This obviates the need to propose ad hoc shapes or specifications for the delay kernel. The
proposed system provides full control of depth during storage by a single parameter, o. Increasing
depth increases required storage capacity; decreased depth amounts to expanding class generalization
(decreased resolution)of sequences during storage. Another similar parameter, oTSTr, can be set to
various degrees of tolerance of transitions during retrieval. The system is capable of counting to any
magnitude (i.e., has arbitrary depth). Large depth carries the cost of larger memory capacity, however.
The Re-Di system attained an accuracy of 98% in the severe test posed by an unrestricted-length
embedded Reber grammar. The system is also capable of reading back at a rate different from that
during storage but at a cost of increasing error tolerance as the difference between storage and retrieval

'Unfortunately, space does not permit the full explanation of the encoding and the experiment details. A full
description is in preparation.
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rates increase. It in also possible to store and retrieve not only the spatial vector sequence but also the
duration of each vector.
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Abstract
In this paper we present a computer language that allows you to create neural nets, not by

training them but by programming them.
The language constructs allow you to program at a high-level, schema level. It actually looks a

little like Prolog. However, it is based on a theory which is at odds with the idea of symbolic logic and
predicate calculus.

The idea was born out of the realisation that from a software engineering point of view, the best
way of creating a perceptual recognition network may be to program it rather than to coax a learning
algorithm into learning examples and generalising appropriately.

The language is designed for pattern recognition tasks, e.g. character / speech / face recognition.
A digit recogniser is presented in the paper to illustrate the general principles.

The Connectarine Development Environment is implemented in C under MS-DOS.

Introduction
Connectarine is a language that allows you to explicitly program neural-nets at the schema level.

The program consists mainly of a set of productions that have a similar syntax to Prolog, which interact
to generate all the neurons and all the connections in the network.

The language was originally conceived from the realisation that from a software development
point of view, the best way of producing a character recogniser or speech recogniser may be to connect
one up manually, based on a theory of feature detectors, rather than to use a learning algorithm.

In addition, the resulting neural nets are editable, their operation is comprehensible (they are not
'black boxes' like most other neural nets) and they are very efficient (they are sparsely connected and the
neurons are systematically created). They may even exhibit better perfc mance, because of the element
of design in their construction.

A Connectarine program takes a set of input neurons and a set of 'productions'. It uses these to
generate more neurons, and these neurons to generate further neurons, until the productions don't
generate any more neurons. The weights are generated at the same time as the neurons.

The author believes that neural nets are the most natural and efficient way to do fuzzy
recognition tasks, whether they are trained or programmed.

Introduction to Connectarine
The basic unit in Connectarine is the neuron. A neuron is specified as an identifier with various

parameters. The productions use variables and expressions in place of the parameters to define new
neurons and their connections and weights.

The language allows you to create layered networks, general feed-forward networks, feedback
networks, and it even allows you to define infinite networks.

In order to convey the concepts behind the Connectarine language, let's look at a piece of
Connectarine code and skeleton:

<< input: on(1..12,1..19) >>

edgelet(N-0,x,y) :- on(x-1,y),on(x,y),on(x+1,y),
-on(x,y-1), -on(x,y+l).
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..etc...
<< output: digit(O..9) >>

The line at the beginning and the one at the end interface a Connectarine program with the outside world.
They define the input neurons and output neurons. In the middle there is a list of productions.

In this case, 'on(x,y)' are the input neurons. We also say that they represent the activation values
of those neurons. For example, 'on(3,4)' specifies the activation value of position (3,4) on the bit-map.

The neurons are feature detectors. We often call a neuron a 'concept detector', because they are
used to represent concepts in the more general sense - visual features, complex visual objects, semantic
objects, etc. (We take the unorthodox view that 'meanings' can be assigned to neurons in this way in the
computer as well as the brain. However, our reasons and our qualifications are not discussed here).

For example, "edgelet("-",x,y)" represents a short horizontal edge at position (x,y). Neuron
expressions, where variables are substituted for the parameters, are used in the productions. A production
is something of the form:

<neuron-expr> :- <list of neuron expressions>.

Connectarine starts with the input neurons. It tries to fit them in into all possible places in the right-hand-
side of a production. This 'fitting it in' involves assigning values to the respective variables. These values
then allow us to evaluate the parameters in the left-hand-side and create a neuron with those parameters.

The Connectarine system calculates the activation level of a neuron in the usual way of
summing together the efferent neurons (on the right-hand-side) and passing the result through a sigmoidal
response function. The programmer has control over the steepness and the threshold of the sigmoid
function, (the 'threshold' referring to the x-position of the inflection point).

Connectarine also supports fuzzy logic, however it is the author's view that connectionist logic,
where values are summed and sigmoided and two half-true statements can add to each other, is more
effective and natural in this domain than fuzzy logic. For example, for these purposes it is better that (0.5
or 0.5) > (0.5 or 0), than (0.5 or 0.5) = (0.5 or 0).

We assume that any neuron not in the database of neurons has an activation of zero. (Actually,
this is an oversimplification of the algorithm, but it is generally true).

Programming a Digit-Recogniser with Connectarine
The input to a character recogniser is a matrix of bit-map pixel activations. By creating a level

of edge detectors as illustrated in the last section, we can make a start on the full network.
These edgelets get put together into 'cornerlets' (little corners) and 'curvelets' (little curves) and

'edges' (medium-sized edges). There are also detectors for line-endings.
These features get built together to form medium-sized comer-detectors and curve-detectors of

every possible orientation, and so on. Eventually we get up to more complex features such as 'he top of
a 5' and 'a J-type curve', and finally to '2' and '8' and so on, which are the output neurons.

At each stage, we reduce the resolution of the image by combining together neurons in the same
areas of the bit-map. At each stage we get detectors for more complex features, with larger receptive
fields. Ultimately, we get full digit-detectors whose receptive field is the entire bit-map, and these form
the output layer. The final neural net has about 11 layers.

Here are extracts from a digit-detector program:

<< Sigmoid(70%,6) >>
edgelet("1",x,y) :- on(x,y-1), on(x,y). on(x,y+ 1), -on(x-l,y), -on(x+l,y).
edgelet("I",xy) :- 2*on(x- ,y- 1), 2*on(x,y), 2*on(x+ 1,y+ 1), -on(x,y+ 1),

-on(x-I ,y), -on(x+1 ,y), -on(x,y- 1).

<< Sigmoid(35%,8) >>
cornerlet("_",x/2,y/2) :- edgelet("",x,y+l), edgelet("'",x+l,y+l),
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edgelet("-",x+2,y. 1), edgelet("-",x+2,y).
curvelet(%",x2,y2) :- edgelet(T',x-1 ,y+1), edgelet("_",x+ l,y).
curve(',.f,x2,y/2) :- fuzzy_curvelet(\.",x- l,y), fuzzy.curvelet(".fr,x+ l,y).

I --- character-specific neurons ---- I
lines7 :- edge("7",x,y), edge("7",x,y+ 1).
bottom5 :- curve(".f,x,y), fuzzy_curve(")",x,y+2).

J ---- Output neurons ----
digit("2") :- top2("2",x,y), cusp2(x,y- 1).
digit("5") :- side5(x,y), top5(xy), curve("5',x2,y2).

In all things, we do not regard features as either being there or not. They just have a higher or lower
activation value. For example, the feature detector for a cross will get activated by the tiny serif at the
bottom of a '1'. Even these very small activations play a part in the overall process. They might represent
some feature which should be there, but because of bad printing or bad handwriting isn't properly there.
They can still affect the overall outcome.

This network will recognise a character no matter where on the bit-map it is situated. It
recognises characters of different sizes, within upper and lower limits; this is a consequence of rules such
as:

curve("J",x,y) :- curve(%,x- 1,y), curve(%_",x,y), curve("J",x+l,y), curve("J",x+2,y).

where the sigmoid response function is tuned to respond when just some of these are activated. When
every level of the network has rules such as this, it causes recognition to occur regardless of size, except
above a certain size and below a certain size.

It will also cope with a certain degree of rotation, as an intrinsic feature of having feature
detectors that accept distortions. In fact, you can look at wha! happens as you rotate the digit: the
activation strength of the output neuron representing that digit is at a maximum when the character is
near its normal orientation. As you move it around, the activation strength drops off, until there is no
recognition (activation - 0).

A Digit-recogniser in perspective:
This program recognises single digits from bit-maps. It takes the image as an input vector, and

has 10 output neurons corresponding to the 10 digits. All the neurons in the middle represent various
features at various positions. For example, if you do a query to look at the activation of the horizontal

e-detecrs on an image such as:E you getbapi
The activation of each of the 10 output neurons corresponds roughly to the probability it is that digit. You
can either look for the highest activation, or look for the highest activation but require that it be
significantly higher than the next highest, or just take all the output neurons and feed them into a higher-
level network.

If you want to put it into the context of something like a post-code recogniser, you might need
digit-detectors with position parameters so that at each position of the bit-map (at a low resolution,
however), you have neurons detecting each digit. You should get something like this:
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2-detectors:
1-detectors: . ..
5-detectors: - -

4-detectors: .

There is interest at the moment in recognising characters from stroke information. In other
words, you get a full description of the trajectory of a pen rather than a bit-map representation of a
character. This is a very important component of the new pen-based notebook computers. This is
no problem for a character recogniser of the type described above. You just get rid of the first layer, and
have the edgelet layer as the input layer. So the stroke-information is translated directly into activations
of each of these edgelets, by software outside the net, and then exactly the same network can be used to
do the character recognition.

This neural net recognises characters based on the juxtapositions of the various features, (not by
merely looking at sets of features, e.g. "it has a cross and a horizontal concavity"). If the goal of a neural
net is to recognise words, this idea can also be taken further by allowing the neural net to look at the
characters surrounding a given character in order to help categorise it. In other words, the various
activation values for potential characters feed into a 'frequent English syllable recogniser', which then
outputs a single identifier or goes back to the letter level to output the individual characters.

If we go up the next level to word-root or word recognition, we can even recognise misspelt
words, just as we recognise distorted characters.

According to the author's theory, tasks such as text recognition and speech recognition should be
done in this way, rather than by a process of hypothesis testing. Each level outputs a set of possibilities
with various activation values into the next level, and I or more neurons in the next level will fire. In
other words, a feed-forward neural net is sufficient for these tasks. The fact that humans can recognise
handwritten text pre-attentively supports this theory.

Of course, the language also supports recurrent networks, so a hypothesis-testing model could
also be explored.

Results:
A Connectarine interpreter and development environment has been implemented, in C, in MS-

DOS. A Connectarine compiler (compiling Connectarine to C or object-code) is planned.
The digit-recogniser described in this paper has been implemented. It has not been tested on any

public database of character bitmaps, however it is 99% accurate on one set of 100 12x19 digit bitmaps.
The first 50 digit bitmaps were used to develop the program, and the remaining ones were used to test the
program with no further development. This full database is reproduced below, so the reader can verify
that the digits represent a variety of possible digit bit-maps and the recogniser can cope with distortion
and noise (as well as translations and differences in size).

This program consists of 550 lines of Connectarine code (including comments etc). The
development of the digit recogniser was a non-trivial task, and one requiring the author to acquire a
certain amount of expertise in the methodology. The program is far from perfect, but also far from
plateauing out. As the 3 days of programming progressed, recognition rates improved steadily as bitmap
quality decreased.
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In other words, given the Connectarine development environment, a general tool for all fuzzy
recognition tasks, a fully functional optical digit recogniser was created after just 3 days' work.

Relation to Other Work:
This is the only project we know of which uses the idea of explicit programming of neurons and

feature detectors, or implementing production rules as neurons. There has been a lot of work done on
hybrid connectionist expert/production systems, [Gal88] and [Kas90]. The need for a toolbox of
alternative methods is expressed in [Kan92]. Connectarine could be viewed as a forward-chaining Prolog
with connectionist logic (or fuzzy logic which is also supported) and with arithmetical unification.
However, the issues raised by the language are not related to traditional logic programming.

Fukushima's Neocognitron' deals with feature detectors and pattern recognition ip a sinilar way
[Fuk88], [Fuk88b. This project involved the creation of a deep neural network capable of recognising
hand-written digits in a translation-, size- and distortion- independant way. In this case, the network was
created by providing it with training sets of intermediate features at several levels, and having it learn to
recognise these given the processing from the lower levels. There was an explicit architecture of
alternating generalisation and categorisation levels, which is in a sense how this digit recogniser works.

Other approaches to handwritten character recognition are given in [Jak88] and [Nak92]. In
these systems, a single layer of Prepogrammed feature detectors is created by traditional programming
methods and then fed into a neural net. This first layer would presumably take longer to develop without
a language such as Connectarine than in Connectarine. Also, the performance of the neural net from that
point upward might suffer from being a shallow net, when the problem intrinsically requires a deep
neural net to avoid combinatorial explosions.

There are programs which allow you to create neural nets by wiring up and calibrating
individual neurons or tracts of neurons, for example MacBrain for the Macintosh, but these are not
suitable for serious use on a neuron-by neuron basis. These systems, and numerous other systems, allow
one to configure broad connectivity patterns, but the idea there is to work with learning rules which do all
the real work.

There are many opportunities to combine this kind of approach with other approaches to neural
nets. A network like this could be combined with trained neural nets by concatenating neural nets along
layers. For example, Connectarine might be better at doing the lower levels or higher levels of a
perceptual network. Conversely, Connectarine could benefit from training algorithms in certain ways.
Connectarine could also be used to define a good starting point for a learning algorithm, because it
creates networks that are already close to some kind of local or global minimum.
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There are not many techniques for creating deep neural nets. Connectarine is one such
technique. Deep neural nets are appropriate for tasks such as this, because the variety of transformations
that recognition is supposed to be invariant under would otherwise lead to a combinatorial exsplosion.
The Neocognitron is one such system, but this requires the collation of large sets of intermediate features.

Connectarine could also be applied to other categorisation problems, the type expert systems are
more commonly used for. It has the advantage that its operation is not opaque, that it is possible to
analyse the network and to validate that it will not generate wildly inappropriate responses.

Connectarine has enabled the author to study the theory of perception in a neural net with a view
to explaining, although not mimicking, the human perceptual cortex.

However, the system in itself is primarily intended as a serious tool for performing fuzzy pattern
recognition. The next development will be to apply it to another domain, such as speech recognition or
recognition of pathologies in cytology slides.
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Abstracg
In this paper, described are a neural network model and system implementation for recognizing

characters extracted from license plates of moving vehicles. A method for selecting features
appropriate for recognition is proposed based on relationships between character features and
recognition rate, and an enhanced back-propagation algorithm is also proposed which effectively
selects training patterns and dynamically modifies learning rate. Based on the proposed algorithm, a
character recognition system for license plate is developed and tested against real data. In the test
performed on vehicles running on the roads, the system demonstrated recognition rate higher than 95
percent.

1. Introduction
Neural networks have been successfully employed in various applications of pattern recognitions. Especially,

neural network has demonstrated good performance in recognizing noise-stained characters and hand-written
characters, and thus neural network implementation might be appropriate for recognizing characters extracted from
moving vehicles(5, 6, 7]. Real-time recognition of characters for vehicle license plates is very difficult, as the size of
characters varies depending upon the position of the image extraction, motion of the camera, and speed of the
vehicle. The required complexity of the system is very close to that of recognizing hand-written characters.

Researches on developing neural network-based character recognition systems have mainly used features
extracted based on heuristics. However, the feature extraction methods currently being used have not proved their
validity through systematic analysis, and the features tend to lose its distinctive features, because of the uncertainty
involved in feature extraction and overlapped features. In addition, the number of features is so large that
recognition requires enormous computation time and thus makes it almost impossible to implement on current
hardwares.

Back-propagation has been known to be useful in training multi-layered neural networks. However,
disadvantages of the algorithm are that it requires a large computational time for training, possibly converges into
local minimum, and forgets previously learned weights in the process of training[3, 4, 91.

In this research, a back-propagation algorithm is employed to recognize characters in the license plate of
moving vehicle in real-time. Input-node removal method is proposed as an effective way of extracting features from
the object, and an enhanced back-propagation algorithm is employed based on selective training pattern to prevent
oscillation and to facilitate fast convergence. The proposed methods were successfully employed in recognizing
characters in the license plate of moving vehicles.

2. Neural Network Design for Character Recognition
Character recognition system based on neural networks consists of four sequential steps: preprocessing, feature

extraction, training, and recognition. Preprocessing step is comprised of segmentation, noise filtering, and
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nonlzato7, 9J. Feature extraction is a process to determine how to explicitly describe the character pattern,
generally by constructing feature vectors representing characters, and thus have a strong influence on overall
recognition rate. Improperly selected features frequently lead to low recognition rate and require complex
recognition algorithms[l, 7, 91.

Analysis on the relationship between features and overall recognition rate in back-propagation algorithm can
lead to performance improvement of the recognition system by selecting relevant features. As the features propagate
its influence up to the output nodes, a direct relationship between input features and recognition rate can be analyzed
by activating neural networks, purposefully removing relevant input nodes, and then measuring recognition rate.
Although an attempt has been made to measure the influence of input features by analyzing distributions of weights
in hidden layers[21, the interpretation of weight vectors is very difficult.

Removal of irrelevant input nodes can be done by setting values of those input nodes to zeros, which in turn
sets the weighted summation of hidden nodes, net.(=L wx.) zero and thus lead to none contribution to output
values. Accordingly, we propose that the influence of extracted features on recognizing characters can be known by
the analysis of the relationship between the removed input node and the recognition rate, thus system performance
can be improved by effective feature selection.

Box-1 : Enhanced Back-propagation Algorithm
Step !: Selective Learning

current tss = 0.0
Loop number of input for each pattern

computeactualoutputO;
compute_errorO;
current_tss = current tss + currenterror;
If current_error > averageerror Then

adjust weightsO;
end_if

end of loop

Step II: Adapt Learning Rate
averageerror, = current_tss /numberof_ input,
deltaerror = averageerror,., - average-error;
tolerance -number of output * number of input /E6;
If deltaerror > tolerance Then

oscillation = oscillation + 1;
end if
oscillationcriterion = epoch mod number ofinput;
If oscillation criterion = 0 Then

learning rate = initiallearningrate * oscillation / number ofinput;
oscillation = 0;

end if

In back-propagation algorithm, the dynamic modification of learning rate and the effective selection of training
patterns can improve system performance. The effective selection of training patterns can be done in the following
operations: divide the total error sums obtained in the forward pass by the number of training patterns to calculate an
average error, and then train patterns which have error larger than average error in the backward pass. This process
is described in step I in Box-1. In general, training the partial set of input patterns would lead to oscillation and it
can be solved by dynamic modification of learning rate. Dynamic modification of learning rate can be implemented
by counting the number of oscillation when the error size increases over the predetermined range, reflecting the
ratios in setting learning rate, and eventually decreasing learning rate in case of oscillations, while increasing
learning rate in case of convergence, to get the faster convergence of the training. Box-I describes enhanced
back-propagation learning algorithm.

In the enhanced learning algorithm, tolerance value, in addition to the initial learning rate and momentum, must
be determined to measure error increase for detecting oscillation. Also, periods of modifying learning rate should be
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deuznnined. In the algorithm the learning rate should be modified whenever the number of epochs increased is equal
to the number of training patterns, as described in step II in Box-I. Selective training patterns might reduce
computation complexity in each epoch, and dynamic modification of learning rate might effectively prevent
oscillation frequently encountered in back-propagation algorithm. Both mechanisms might improve convergence
speed and degree of generalization. In the applications of real world problems, the enhanced back-propagation
algorithm effectively solved a set of complex training patterns. In case of easy training patterns the number of
epochs in the enhanced algorithm tends to become larger than in the conventional algorithm. However, the total
training time in enhanced algorithm was reduced through effective decreases of computation time each epoch.

3. Recognizing Characters in Vehicle License Plate
Currently, in Korea the vehicle license plate consist of eight characters, except some special use. The first two

characters in the upper row are Hangul(Korean script) characters (geographical regions), and the third character in
the upper row is a numeral (vehicle class). The first character in the lower row is a Hangul character, while the next
four characters in the lower row are four numerals as in the Figure-i. Part (a) in Figure-I depicts a license plate in
512*480 gray-scaled vehicle image captured by CCD camera, while part (b) depicts digitized result of license plates
after operations of segmentation and preprocessing for each character. The resolution ratio of preprocessed character
strings, except four numerals of relatively large size in the lower row, is very low, which imposes complexities and
inherent difficulties on pattern recognition. In the review of 200 images of license plates in the experiment it was
found that the size of Hangul characters in the upper row varies from 13*15 to 27*29 pixels, and the size of Hangul
characters in lower row takes various ranges of 16*23 to 38*47 pixels. The size of numerals varies too; numerals in
the upper row change the size from 8*17 to 20*24 pixels, while numerals in lower row change from 10*49 to 29*60
pixels.

a) License Plate in Vehicle Image b) Segmentation and Digitized Result

Figure-i: Korean Vehicle License Plate

The first two Hangul characters in the upper row indicate geographical region, one of the six registration cities
and nine registration provinces. Five out of the six types of Hangul syllable[8J are included in the composition of the
two characters. The resolution of two characters' image is so low that it is very difficult to separate vowels and
consonants, and to extract features via Bar Masking. When combining two characters into a complete pattern after
separately recognizing individual character was attempted, the uncertainty exponentially increases. Therefore,
method of simultaneous recognition of two characters as a single pattern was employed. The first Hangul character
in the lower row has the structure of "consonant + vowel", generating 84 different character patterns. In the Hangul
character recognition, a single character is divided into vowel and consonant. A structural method was employed for
vowel recognition, while neural network was employed for consonant recognition. The vertical consonants of
Hangul characters are written in the simplified form but horizontal consonants are written in the cursive style. It is
advisable to divide consonants into horizontal consonants and vertical consonants, and to recognize each of them.
Numerals are comprised of 10 different patterns from 0 to 9, and it is more effective to divide numerals into small
size numerals and large size numerals and recognize each of them. Figure-2 depicts Hangul characters and numerals
which are used in Korean vehicle license plates.
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Figure-2: Characters used in Korean Vehicle License Plates

In this research of neural network application, constructed are five neural networks, each for geographical
regions, small size numerals, large size numerals, vertical consonants, and horizontal consonants of Hangul
characters. Out of 300 license plates extracted from vehicles running on the roads, 200 license plates were used for
training and another 100 license plates were used for testing recognition rate. For the purpose of network
architecture, the number of input nodes was determined by the features, the number of hidden nodes was by
experience, and the number of output nodes was by the number of output codes.

4. Experiments and Results
In the experiments, training was done until recognition of training patterns was 100 percent correct, and then

variations of recognition rate with removals of input nodes was investigated. Investigation on the geographical
region codes showed that 15 features out of 34 features, when they were removed, did not have a strong impact on
recognition rate, generally less than 1 percent. In particular, 5 features had completely no influence on the
recognition rate. However, when all of the 15 features were removed simultaneously, the recognition rate was
lowered to 59 percent and therefore it was revealed that the overall recognition rate wvas greatly influenced by the
removal of irrelevant nodes. The recognition rate was easily recovered by adjusting weights with a small number of
iterations. With the respect of feature selection, only small number of training patterns can effectively determine
features of trainable patterns. Table-I shows the architecture of neural network employed in the experiment, number
of patterns, the number of features for each character, and test results of characters recognition of vehicle license
plates.

Table-1: Experimental Results of Characters Recognition

Items Neural Nets Experimental Patterns Feature Selection
TopologV Number of Number of Number of Number of Number of Recognition

C a(input *hidden Training Test Features Removable Detemined Rate (6)Iharacters otput) Patterns Patterns Features Features

Geographical Region 29*29* 15 200 100 34 15 29 96.0
Small Size Numeral 25 * 25 * 10 200 100 37 15 25 95.0
Vertical Consonant 14 * 14 * 14 152 78 16 6 14 94.9
Horizontal Consonant 14 * 14 * 14 48 22 16 7 14 90.9
Large Size Numeral 25 * 25 * 10 800 400 37 14 25 98.3

In the Table-i, the number of removable features, having no impact on overall recognition rate even with the
removal of the features, was determined in the beginning step considering that even simultaneous removal of some
features would not have any impact on recognition rate. In case of numeral recognition, relatively many features
could be removed without a significant impact. However, in case of Hangul characters and regional codes, because
of the low resolution, all the features showed relevant to the overall recognition rate.

In this research, the enhanced back-propagation algorithm was employed for neural network application. The
algorithm was useful and effective for overcome local minima reached possibly when the regional code "A 71
(Kyunggi)" was trained as "M '-(Kyungbuk)" for similar character pattern, and for speeding up the convergence.
The newly developed algorithm demonstrated much improved performance level when applied to complex and
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difficult patterns, but showed almost equal performance to conventional algorithms when applied to easy patterns. It
was found that the tolerance value used for determining error increase to detect oscillations is very sensitive to
learning speed. The degree of generalization was much enhanced and better results were demonstrated in the
experiment when the training patterns were uniformly distributed and the size was large.

5. Conclusion
In this paper, an enhanced back-propagation algorithm and feature selection method are described for

improving convergence speed and were employed in an character recognition systems of license plates extracted
from moving vehicles. The proposed algorithm can enhance system performance through effective feature
extraction, reduction of recognition time and learning speed, and increased recognition rate. The vehicle license
plates recognition system implemented in T800 Transputer-based environmentIO] showed that the time for a
complete recognition required only 0.09-0.11 seconds after digitized and segmentation, which was not problematic
in real world applications. The recognition rate, even though varied depending on the results of preprocessing step,
was generally above 95 percent, relatively high performance. This research requires further experiments on training
more samples, especially needs further research on new feature extraction methods and improving the degree of
generalization.
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ABSTRACT

A dual-use neural network technology, called the Statistical - Multiple Object Detection and Location
System (S-MODALS), has been developed by BoozAllen & Hamilton, Inc. over a 5-year period, funded by various
Air Force organizations for Automatic Target Recognition (ATR). This conference paper will detail improvements
in the MODALS neural network architecture that led to the Statistical - MODALS architecture which has a natural
extension to multi-sensor fusion (Visible, IR, SAR) and multi-look evidence accrual for tactical and strategic
reconnaissance. Since S-MODALS is a learning system, it is readily adaptable to object recognition problems other
than ATR as evidenced by this S-MODALS investigation into the automated database query of DRUGFIRE forensic
imagery. The pattern matching problem of microscopic marks for DRUGFIRE shell casings is analogous to the
pattern matching problem of targets for the Visible component of the S-MODALS design. That is to say, the
physics; phenomenology; discrimination and search strategies; robustness requirements; and error level and confidence
level propagation are all of a similar nature.

1.0 Overview of the MODALS Approach

The Multiple Object Detection and Location System (MODALS) distinguishes itself from many classical
Automatic Target Recognition (ATR) approaches because it simultaneously detects, segments, and identifies
multiple targets in an image [1-41. Classical ATR approaches carry these operations out independently in a
sequential fashion. This sequentially independent approach can result in mistakes at each step, thus reducing the
overall system performance to the product of the performances of each step. MODALS consists of three layers each
working together to bring about a target identification. The conceptual methodology behind MODALS is quite
simple: find features that distinguish the training targets from each other, associate the positions of these features for
each training target, and try to find the same set of target features in the same geometry in the test images.

Based on a training target, MODALS learns a set of distinct features. Several features, small squares of
pixels, are learned for each training target perspective. These features are used to estimate whether a target occurs at a
given location. However, features must be successfully acquired that are effective for both discriminating one target
from another and discriminating the targets from background. This discrimination capability is accomplished in
MODALS using a neural network learning technique. After learning the features, each feature type and feature
location is associated with the desired target type to produce a final neural network ATR performance system,
MODALS.

The Mi. i)ALS performance network consists of three layers: the Feature Extraction Layer, the Spatial
Location Layer, and the Object Detection Layer. The Feature Extraction Layer computes matches between each
feature and all areas of the test image using a similarity metric. The Feature Extraction Layer's similarity metric is
based on minimizing the error between the learned feature and the test image. The similarity metric is invariant to
changes in ambient illumination and robust to changes in directional illumination, rotation, scaling, and noise. The
Spatial Location Layer locates the best feature matches in locations close to where features were learned in
training. These locations are defined by Spatial Location Layer masks. The size and shape of each mask is a
function of the desired amount of robustness to rotation and scale. The Spatial Location Layer produces both the
position and value of these feature matches for all possible target locations. The last layer of the MODALS system,
the Object Detection Layer, is responsible for target detection and identification. Feature and position information
c p g to each training target perspective is combined to accumulate detection evidence for a training target
perspective. In parallel to the combination of feature errors, the Object Detection Layer also computes whether the
positions of the best feature matches correspond to a valid rigid body rotation. This computation involves the
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calculation of a Positional Mean Square Error (PMSE). a measure of how much the locations of the detected features
corespond to a rigid body rotation of the training target. The combination of feature errors and positional errors
results in an ersor measure for every training target perspective at every possible target location. This error measure
can be interpreted as the overall error between the image at that location and each training target perspective. The
Object Detection Layer evidence for each training target perspective is spatially competed, resulting in one or more
spatially separated potential target detections. After the training target perspective competition, an Object Detection
threshold controls which target error measures are low enough to be considered detections. This threshold shifts the
ATR system operating characteristics along the classic probability of detection/false alarm ROC curve.

2.0 Probabilistic Modification of MODALS

The Feature Extraction Layer similarity metric is a measure of each feature's normalized mean square error
(mse). To obtain the training target perspective output response, MODALS simply averages the normalized mean
square errors across the features in a training perspective. This evidence accrual method produces the Object
Detection Layer output. Different objects consist of different numbers of features and averaging in error space was
the method chosen to measure overall target error in a consistent way. However, this evidence accrual method has
two drawbacks. First, it does not take into account the different statistics of different features. For instance, an mse
value of 0.1 for a complicated feature may be highly indicative of a target, whereas the same mse value may be a
very common response to background for a relatively uniform feature. Second, averaging a few poor mse values
with many good mse values can have an unwarranted effect. These few outliers can bias the Object Detection output
to the point where it equals the average of many mediocre mse values caused by the background. One of the most
evident results of this combination anomaly was the initial, relatively poor performance of MODALS on occluded
targets versus unoccluded targets [1]. An evidence accrual method was needed which would compensate for the
differences in the statistics of different features, and would not allow a few poor mse values (caused by occluded
features) to spoil the Object Detection outpuL

Ideally, the Feature Extraction output would represent the probabilities that each feature is present, and the
Object Detection output would represent the probability that the target is present. If this was the case then, given
certain assumptions, Probability Theory provides the following equation for combining the Feature Extraction
output:

PO---I -rl(I-pFj)

P0 is the probability that the target is present, PFj is the probability that feature j is present, and j is I to N
features.

To interpret this equation, remember that PFj is the probability that feature j is present, so (1-PFj) is the
probability that feature j is absent. ]I(I-PFj) is the probability that all features are absent (assuming independence).
So, I-fl(1-PFj) is the probability that not all features are absent (i.e. at least one feature is present). Therefore, if we
can determine the probability that each feature is present, we have a method for determining if the target is present.

Can we determine PFj given the me output of the Feature Extraction similarity metric (fj)? In Probability
Theory, this is called a conditional probability and is given by the formula:

P(Fj I fj)=P(fj I Fj) P(Fj) / P(fj)

where P(Fj I f9 is the probability that feature j is present given an me of fj, P(fj I Fj) is the probability distribution
of fj if the feature is actually present, P(Fj) is the probability that the feature is actually present regardless of the mse
value (ie. the target density), and P(fj) is the probability distribution of fj regardless of whether the feature is present
or not.

All measured mse values can be used to approximate the distribution P(fj). However, only those mse
values measured in the presence of the feature can be used to approximate the distribution P(fj I Fj). In order to
accurately approximate the function P(fj I Fj), it is necessary to have a large number of examples of each feature for
training. This implies a large number of examples of training target perspectives. In its current form, MODALS
requires only a small number of training target perspectives. This characteristic is one of its advantages. It is both
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undesirable and impractical to attempt to directly approximate the function P(fj I Fj) by increasing the number of
training images required. Something other than P(F I fj) must be used to compute the Object Detection output.

As mentioned above, P(fj) is a distribution which is fairly easy to approximate, however, it is a
probability distribuon and not a raw probability. P(mse < fj), called the cunulaive probability, is the integral of
P(fj) fm zero to fj. P mse < fj) represents the probability of observing an mse value less than fj (regardless of
whehr the feature is present or not). Since the features are taken from the target and the features are rare in the
background, the mse and P(mse < fj) will be lower when the feature is present than when it is absent. The
S-MODALS evidence accrual method uses (as the Object Detection output) the probability of observing a set of mse
values which ae less than the measured set of mse values:

o = r1 P(mse < fj)

Here, a high Object Detection output indicates that doing better than all the measured mse values is fairly common.
A low Object Detection output indicates that doing better than all the measured mse values is rather uncommon.
So, low Object Detection outputs indicate targets, while high Object Detection outputs indicate background. Note
that m P(mse < fj) close to one (e.g. from an occluded feature) will have little effect on the product, whereas a very
small P(mse < fj) will have an extreme effect.

The advantage to using P(mse < fj) instead of the mse value fj can be seen in the following example.
Consider two features FI and F2 both taken from the same target perspective. Fl is not very distinctive (e.g. almost
entirely uniform), and F2 is very distinctive (e.g. a comer or edge). Clearly an mse value of 0.1 for FI is much less
indicative of a target than an mse value of 0.1 for F2. The probability of getting an mse value less than 0.1 for FI
might be 90% whereas the probability of getting an mse value less than 0.1 for F2 might be 5%. Moreover, the
probability of both mse values being less than 0.1 is 0.05*0.90=4.5%. Note that combining the mse values directly
would have meant assigning equal confidence to the presence of both features, when in fact their is much less
confidence in the presence of F1 than F2.

Until now in this discussion, we have been assuming that the Spatial Location Layer mask is only one
pixel (Le. there is no difference between the Spatial Location output and the Feature Extraction output). We will
now remove this assumption. In the original formulation of MODALS, the Spatial Location output was simply the
minimum Feature Extraction mse over some elliptical region. If we continue to do this, a method is needed for
appropriately combining Spatial Location values. We can not combine Spatial Location values directly, but we can
combine the probability of getting lower than a Spatial Location value the same way we combined the probability of
getting lower than an Feature Extraction value.

o=fl P(min mse < sj)

How is P(min mose < sj) related to P( mse < fj) if sj is the minimum of fj over some region? P(min mse < sj) is
the probability that the minimum mse is less than the observed minimum mse (i.e. sj). This would be true if one
or more mses in the region were less than sj. Put another way, this would be true if not all mses in the region are
more than sj. The probability that any one mse in the region is greater than sj is

l-P(mse < sj)

The probability that all mses in the region are more than sj is

(l-P(mse < sj

where Nj is the number of pixels in the region for feature j. The probability that not all rses in the region are
greater than sj is

P(min me < sj) = 1-(1-P(mse < s))NJ
1

so, the formula for the Object Detection output becomes (Note that this degenerates to our earlier formula when Nj
equals one.)
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o = n1 (-oI-P(ms < si) Nb

The above formula represents the theoretical basis for the Statistical - MODALS evidence accrual technique.
This evidence accrual method compensates for the differences in the statistics of different features, and does not allow
a few poor rose values (caused by occluded features) to spoil the Object Detection outpuL Figure 1 shows a set of
representative S-MODALS test imagery and Figure 2 shows the improvement of S-MODALS versus MODALS on
occluded targets. The sane evidence accrual technique can also combine evidence from different sensors, different
representations, and over time. This formula provides S-MODALS with the ability to perform multi-sensor and
multi-lodk evidence accrual for tactical reconnaissance.

3.0 DRUGFIRE

Recognizing the benefits which could be derived from the application of state-of-the-art computer
technologies to the discipline of forensic firearms identification, the FBI has developed the DRUOFIRE system.
DRUGFIRE is presently a database driven multimedia imaging system which significantly increases the
effectiveness of forensic laboratories in maintaining and searching either their own individual or shared multi-agency
unsolved case firearms evidence files. In the latter case, this new technology supports the establishment of regional
computerized firearms evidence clearinghouse operations which facilitate the sharing and linking of forensic
information between regionally clustered forensic laboratories. In so doing, it materially extends the capabilities of
forensic firearms identification examiners.

Since the introduction of the ballistic comparison microscope in 1925, which allows side-by-side
examination of the microscopic marks on two bullets or cartridge cases, firearms examinations have been limited to
the simultaneous comparison of two specimens on the same microscope. DRUGFIRE seamlessly integrates a
relational database, video, digital image processing and manipulation, audio and telecommunication technologies in a
manner which emulates and augments the functions of the ballistic comparison microscope. In the old microscopic
technique, two cartridge cases are presented in the same field of view under the microscope. An optical hairline
divides the two cartridge case images from each other. When similar microscopic markings are found on both
cartridge cases, the analyst can overlay the two images in an attempt to create a continuour ' ,nage of the particular
marks being analyzed. The overlay is accomplished by manipulating the optical hairline, c& dge case holders and
lights of the comparison microscopes. The DRUGFIRE system digitally emulates this manual process on the
workstation monitor. Through the use of software, digital and video cartridge case imagery can be manipulated in
the same fashion as having the two physical shell casings under the microscope. The software permits the scaling,
rotating, and translating of the imagery, as well as edge enhancement and contrast/brightness control. The digital
images of the microscopic marks on representative fired cartridge cases and shotshel casings are stored in a relational
database and linked to the appropriate alphanumeric encodings for the descriptive forensic firearms identification
characteristics such as caliber type, firing pin impression type, and breech/bolt face mark type. The images, which
depict the highly reproducible microscopic features that cannot be effectively classified by alphanumeric encodings,
are captured in accordance with standardized DRUGFIRE system formats and protocols and are annotated so as to
indicate their orientation and the presence of distinctive features. A database query based on the descriptive forensic
firearms identification characteristics returns the cartridge case images in a tile (5 images x 5 images) format for the
analyst to visually inspect and select the most similar images for more comprehensive side-by-side comparison.

It has been recognized that the effectiveness of the DRUGFIRE system could be substantially improved
through additional automation of the querying process. The querying of the database and the searching of a large
number of images is still a rather labor-intensive process in the present system. This automated enhancement will
greatly increase the effectiveness of searching the microscopic marks in the DRUGFIRE system, particularly when
stored image files become voluminous and difficult to search using only the descriptive forensic firearms
identification characteristics of the current DRUGFIRE system. For the DRUGFIRE application, the pattern
recognition capabilities of S-MODALS directly exploits the highly reproducible microscopic marks that cannot be
effectively classified by alphanumeric encodings unlike the quantitative descriptive forensic firearms identification
characteristics.

4.0 DRUGFIRE Image Database Query With S-MODALS

In conjunction with the FBI, Booz.Allen's Advanced Computational Technologies Practice investigated the
application of S-MODALS to the imagery data from the DRUGFIRE Imagery Database. The objective of the
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investigation was to closely approximate the hit performance level of a firearms examiner using an automated pattern
recognition system. S-MODALS was trained on the image of the primer area of only one fired cartridge case from a
particular criminal case. S-MODALS then processed all of the other candidate cartridge case images of the same
firearm caliber type retrieved from the DRUGFIRE Imagery Database. The S-MODALS database query produces a
prioritized list of cartridge case image matches for the forensic expert from best match to worst match. The
investigation included testing 9 cartridge case images covering four different firearm caliber types (.40S&W, 10mm
Auto, .32 Auto, and .380 Auto), where each firearms caliber type had a different number of test cartridge case images
(45, 26, 30, 176). In each test the top match returned by S-MODALS was the training image. The next match
returned by S-MODALS was an actual DRUGFIRE hit. For the .380 Auto fired cartridge case image, S-MODALS
returned the two known hits as the top two candidates among 176 cartridge case images. In each instance where there
was more than one cartridge case to match with the training image, S-MODALS reduced the imagery search space
down to its smallest achievable amount, except in one incident. The exception was that S-MODALS rejected one of
the actual DRUGFIRE hits because the cartridge case image's magnification was much smaller than its labeling in
the database. In this incident S-MODALS actually performed quality control on the imagery.

Based on the promising potential expressed by this investigation the FBI is presently "blind" testing the
S-MODALS technology under a three phase test. Each phase includes searching a database of 200 9mm Luger
cartridge case images for hits with four unknown cartridge case images. Since twenty-five cartridge case images
make up one tile, the test consists of a potentially common operational condition where a firearms e- ,r must
search 8 tiles of imagery. Upon recently completing phase one, the performance of the S-MOe iattern
recognition capabilities has ranked all of the DRUGFIRE hits within the top five matches except for istance
when a catridge case was placed on the second tile as the 38th match overall. Figure 3 shows the top four
S-MODALS candidates for one of the unknown cartridge case tests. The top three candidates are related DRUGFIRE
hits. The fourth match is the next best match.

S.0 Conclusion

A neural network technology, called the Statistical - Multiple Object Detection and Location System, was
developed for multi-sensor fusion (Visible, IR, SAR) and multi-look evidence accrual for tactical and strategic
reconnaissance. Since S-MODALS is a learning system, it is readily adaptable to object recognition problems other
than ATR as evidenced by this S-MODALS investigation into the automated database query of DRUGFIRE forensic
imagery. The pattern matching problem of microscopic marks for DRUGFIRE shell casings is analogous to the
pattern matching problem of targets for the Visible component of the S-MODALS design. Other on-going
investigations include applying S-MODALS to face recognition and medical imagery for the Air Force.
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Abstract
Medial axis transform (MAT) based features and a two-layer feedforward neural network were used in

this study for human chromosome classification. Two approaches to the MAT, the "skeleton" and the
piecewise linear (PWL), were examined. The medial axis based on the "skeleton" approach, as well as,
the chromosome classification results based on this approach were slightly better than these of the PWL
approach. Several chromosome features, like the density profile, the centrometric index and the length of
the chromosome, as well as, combinations of them, were tested. The probability of correct training set
classification using all the available features and the neural network classifier was almost perfect (99.3-
99.6%). The probability of correct test set classification was greater than 97% using features based on the
"PWL" approach and over 98% using features based on the "skeleton" approach.

1. Introduction

Human chromosome inspection is a vital task in cytogenetics, especially in clinical prenatal analysis,
genetical syndrome diagnosis (e.g., Down's syndrome), cancer pathology research and environmentally
induced mutagen dosimetry (7], [10]. Cells used for chromosome inspection are taken mostly from
amniotic fluid or blood samples. One of the inspection aims is to detect deviations from normal cell
structure. Abnormal cells can have an excess or deficit of a chromosome and/or structural defects like
breaks, fragments or translocations (exchange of genetic material between chromosomes). However, even
today this inspection is performed manually in most of the cytogenetic laboratories in a time consuming,
repetitive and expensive procedure [9], [10].

Efforts to develop automatic chromosome classification techniques have been made through the last
40 years. However, all the efforts to make the chromosome analysis automatic had limited success and
poor classification results compare to those of a trained cytotechnician [2], [7], [9], [10]. Some of the
reasons for the poor performances are the inadequate use of the expert knowledge and experience and the
insufficient ability to make comparisons and/or eliminations among chromosomes within the same
metaphase. In addition, the systems always require the operator interaction to separate touching and/or
overlapping chromosomes and to verify the classification results [7], [10].

Neural networks make it possible to overcome most of these limitations. This is mainly because they
permit application of expert knowledge and experience through network training. Furthermore, human
chromosome classification based on neural networks requires no a priori assumptions or knowledge of
the data to be classified as some conventional methods need. Finally, it is well known that the problems
best solved by neural networks are those that humans do well, and classification of chromosomes is one
of them.

# This work was supported in part by the Paul Ivanier Center for Robotics and Production Management, Ben-Gurion
University, Beer-Sheva, Israel.
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2. Feature description

Appropriate feature description is considered to be one of the most important part of classification
procedures, and in human chromosome classification it is probably the most important one. In some
studies, global features, like the histogram of gray levels [3] or the 2D Fourier transform components [4].
have been used. In this study, we have employed 3 types of features: the density profile (d.p) along the
medial axis [1], [5), [7), the centrometric index (c.i) (the ratio of the short arm length to the whole
chromosome length) [2], [5], [7] and the length (Ing) of the chromosome [5], [7]. The Medial Axis
Transform (MAT) is almost always required for the extraction of these features.

2.1 The MAT

The MAT is widely used as a convenient transformation for elongated objects, e.g., in character
recognition or chromosome analysis where the width of the objects contains little (if any at all) useful
information. The MAT of an object cannot only reduce storage and time requirements, but also to
preserve the topological properties of the object.

Two different approaches to MAT were used in this work, namely, the "skeleton" and the PWL
approaches [5]. The "skeleton" approach is based on finding a preliminary medial axis of chromosome
via the realization of the fire front's propagation and extinction [11]. This preliminary medial axis is
further processed to get one extended continuous medial axis. Removing irrelevant points of the
preliminary medial axis on one hand and completion of necessary points on the other hand complete the
postprocessing of the medial axis in this approach. The second approach employs a piecewise linear
(PWL) approximation [2], [5] to the medial axis. The PWL is preferred over the use of existing
polynomial approximation techniques whenever a chromosome is not straight [2].

2.2 Feature extraction

The MAT in both approaches enables us to transform the 2D image of the chromosome to ID
representation. By calculating lines perpendicular to the medial axis points we can integrate (or average)
the intensities (gray levels) of all the image pixels along these lines and to obtain a density profile (d.p).

The method we have used in this study to calculate the centrometric index (c.i) is based on searching
for the closest pair of opposite contour points on the clipped contours of a chromosome [5], similarly to
the method described in [2]. However, instead of using an exhaustive search for the closest pair we
searched for the closest pair along the lines perpendicular to the medial axis. No fundamental difference
in results of the two methods is expected. However, our method is faster than the method in [2] (there is
no exhaustive search of all the pairs of opposite points). The length of the chromosome was calculated
along the medial axis.

All the features were further normalized. The d.p feature vector was normalized both in length and in
value. Normalizing in length yields suitable feature representation (all classified vectors are in the same
dimension) and invariance to scale change. The length of the normalized d.p vector was set to be 64 both
from chromosome length and from practical considerations. The 64 values of the d.p vector, the
centrometric index and the chromosome length were normalized into the [-0.5,0.5] range, in agreement
with the MLP requirements.

3. The neural network classifier

In this research, a two-layer feedforward neural network trained by the backpropagation (bp) learning
algorithm [8] was chosen for the chromosome classification. The bp algorithm is an error driven
parameter estimation algorithm where the objective is to minimize the output squared error function by
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adjusting interconnection weights and node thresholds. The network was initialize using random weights
in the [-1,1] range. The number of hidden units of the network was set according to the Principal
Components Analysis (PCA), applied to the feature vectors. The number was set to be the number of the
largest eigenvalues, the sum of which accounts for more than a pre-specified percentage of the sum of all
the eigenvalues [6]. This pre-specified percentage has been called by us "var". In the implementations,
the "var" parameter was set to values of 70-90%.

4. Data set

Images of amniotic fluid cells were acquired from the Institute of Medical Genetics of Soroka Medical
Center, Beer-Sheva. The pictures were obtained with the aid of a light microscope and captured by a
CCD camera (Cohu). The pictures were digitized with a frame grabber (VISIONplus-AT). The size of the
digitized picture was 512 X 768 pixels and each pixel was represented by I byte (256 gray levels). No
pre-processing techniques were applied. The segmentation was done manually using a graphical software
package on a 486 PC computer. Chromosomes of 5 different types, namely types "2", "4", "13", "19" and
"x" were extracted [3], [4] from more than 150 different cells.

For each chromosome the MAT was extracted and the 66 features (64 d.p + c.i + Ing) were computed
using the procedure described in [5]. Several variations of features were tested to evaluate their
importance to the classification procedure, e.g., d.p alone, d.p + c.i, d.p + c.i + Ing and c.i + lng. The d.p
features were extracted both using the integral representation and the average representation and in both
approaches: "skeleton" and PWL.

5. Results

The input vector to the neural network was either 2 or 64-66 dimensional (depend on the type of the
features). The output vector was 5 dimensional with one component set to "1" (actually 0.9) for the
correct classification and "0" (actually 0.1) elsewhere.

Optimization of the neural network parameters regarding the chromosome data is described elsewhere
[6]. The learning rate (p) was set to be 0.026, the momentum constant (a) to be 0.97 and the training
cycle was set to be 4000 epochs, although only 500-1000 epochs were required to get almost the best
results. Training and test vectors were chosen randomly from the same data set where the number of
training vectors was 70-90% of all the vectors (depending on the experiment) and the remaining vectors
were reserved for testing. All the simulations were repeated (at least) 3 times, with the same network
parameters but with different sets of randomly chosen training vectors, and the results were averaged.

5.1 The PWL vs. the "skeleton" approach to the MAT

Two major conclusions can be made [5] while comparing the PWL and the "skeleton" approaches.

..l a a

(a). (b).
Figure 1. A comparison of the (a). "skeleton" and (b). PWL approaches to the MAT.
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The first is that the medial axis of the "skeleton" approach is finer than the axis of the PWL approach and
follows very accurately the chromosome band pattern (Figure 1). The second conclusion, which can be
concluded from Figure 2, is that while the probability of correct training set classification is similar in
both approaches, the probability of correct test set classification is larger using the "skeleton" features (in
about 3-5%). Both conclusions seem to be very close related. Figure 2 depicts the classification results of
an experiment in which the percentage of training vectors ("per") is 70-90% of all the vectors and the
"var" parameter is set to be 70-90%.
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Figure 2. Classification based on the density profile features.
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Figure 3. Chromosome clustering into a 2-dimensional feature space spanned by the centrometric index
(c.i) and the chromosome length (Ing). ("o"- chromosome type "2", "*"- chromosome type "4", "+" -
chromosome type "13", "."- chromosome type "19" and "x"- chromosome type "x").
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5.2 Feature evaluation

The relative importance for the classification procedure of four sets of features was examined. The
first set includes only the density profile (d.p) features, while the second set includes, in addition, the
centrometric index (c.i). The length of the chromosomes (ng) is the additional feature in the third set.
The forth set includes only the (c.i) and the (Ing) features. To learn about the significance of these two
last features, we have plotted in Figure 3 the two of them one against the other for the entire data set. We
can see that these two important features are almost sufficient for the classification of the chromosome
data into it 5 types. However, these two features would not be enough when we will try to classify the
chromosome data to all its 24 types.

The probability of correct classification of the neural network, using the 4 sets of features, for the
PWL approach, is given in Figure 4. The probability of correct classification in the training and in the
test sets using the first set of features (d.p) was 99.15-99.5% and 89.3-92.9%, respectively, for various
combinations of the two parameters- "per" and "var". The probability of classification of the second set
of features (d.p + c.i) was 99.3-99.5% and 92.1-96.45% for training and test, respectively, and this of the
third set (d.p + c.i + lng) was 99.3-99.6% and 94.2-97.2% for training and test, respectively. The
probability, using only the (c.i) and the (Ing) features, was 93.05-94.4% for training and 86.9-92.9% for
the test. These results indicate that the 2 features are almost equally important as the 64 d.p features for
the classification of the 5 particular classes (types of chromosomes). This conclusion will be definitely
changed whenever all the 24 chromosome types will be used. The probabilities achieved using the
"skeleton" approach were equal or little higher compare to these of the PWL. It can be clearly seen from
the figure the importance of combining different features, especially whenever the "var" is relatively low
(small amount of information is retained by the PCA).
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Figure 4. The probability of correct test classification using the 4 sets of features and the PWL approach
to the MAT.

6. Discussion and Conclusions

Medial axis transform based features and a two-layer feedforward neural network were used in this
study for human chromosome classification. Two approaches to the MAT, the "skeleton" and the PWL,
were examined. The medial axis based on the "skeleton" approach, as well as, the chromosome
classification results based on this approach were slightly better than these of the PWL approach. Several
typical chromosome features, like the density profile, the centrometric index and the length of the
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chromosome, as well as, combinations of them, were tested. When classifying only 5 types of
chromosomes, as was done in this study, the relative importance of the centrometric index and of the
length of the chromosome is very high. The probability of correct training set classification using all the
available features and the neural network classifier was almost perfect (99.3-99.6%). The probability of
correct test set classification was greater than 97% using features based on the PWL approach and over
98% using features based on the "skeleton" approach.
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ABSTRACT

We describe the use of neural networks to perform context dependent thresholding of grayscale three-
dimensional images of trabecular and cortical bone as measured in vitro by high-resolution x-ray computed
tomography ("micro-CT"). Classifiers are constructed on the basis of a simple model of the blurring neces-
arily associated with the tomographic measurement. We discuss the procedure used for training and testing

and illustrate the application to actual experimental data.

1 Introduction

The ability to measure with high (better than 100 micrometer) resolution the three-dimensional structure
of small specimens of human and animal bone has the potential for substantially increasing understanding
of many aspects of growth, remodeling, and mechanics of bone [1-3]. Typical cross-sectional slices extracted
from full data sets are shown in Fig. 1. For purposes of the present discussion, it is sufficient to regard
the measuring system as generating an estimate of density at each point of a three-dimensional lattice
superimposed on the object of interest. In the present case, the lattice spacing is 50 Am and a typical
cros-sectional dimension of a bone specimen is somewhat less than 1 cm (i.e., 10000 pm). The density
estimates, which were reconstructed from two-dimensional images, are approximately the convolution of the
actual density of the object with a spatially isotropic resolution function. The full width at half maximum
(FWHM) of the system as considered here is approximately 59 pim.

Many structures of interest in trabecular bone, which is often described as consisting of plates and rods,
are of order 100-200 pm, i.e., not much larger than the resolution of the measuring system. The accessible
structures in cortical (dense) bone are the marrow cavities, which can have dimensions smaller than 100
pm. Though both trabecular and cortical structures are typically clearly visible in images such as Fig. 1,
quantitative analysis such as by use of stereological techniques requires each sample point to be labelled
as foreground (bone) or background (non-bone). A simple threshold, either that used in Fig. 1 or any
other, is easily seen to be inadequate. The underlying cause is the interaction of measurement resolution
with structures of different sizes and degrees of curvature. For equal intrinsic bone mineral densities, the
measured density (or gray level) that distinguishes bone from non-bone will be higher in the vicinity of a flat
or concave bone surface than near a convex surface. For example, the image gray level in the center of an
easily visible cortical cavity is as high as that of much of the bone in the trabecular region. Our approach is
thus to base our estimate of a particular lattice point's classification not only on its own measured density
values but also on its spatial context, i.e., on the densities of its close neighbors.

2 Construction of Input Vectors
Input vectors are obtained by moving a volumetric window through the data. On the basis of preliminary
experiments, we have chosen a 33-element input vector, consisting of the central point and the 32 neighbors
located within 2 lattice spacings. This choice is a compromise between retaining as much context information
as possible and minimizing the number of network parameters by restricting the number of input variables.
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Figure 1: Tomographically reconstructed slices from three different human iliac crest core biopsy specimens
are shown in the top panels. A fixed-threshold binary version of each slice is also shown. Within each
specimen cortical bone appears at the top and bottom, while the open structure of trabecular bone occupies
the remainder of the volume. The plastic in which the specimens were embedded is visible, as is debris
resulting from the process of obtaining the specimens. The scale of size is the same for the horizontal and
vertical directions.

3 Generation of Training and Testing Sets

It was not feasible to obtain experimentally a large, representative selection of correctly labelled exam-
ples, since available higher resolution imaging methods, e.g., light microscopy, are largely limited to two
dimensions. (We have, however, used direction microscopic examination as a standard in evaluating analy-
s based on data thresholded by earlier methods [3].) As an alternative, we have generated input-output

training pairs from mathematical "phantoms" constructed to posses curvatures and structural thicknesses
that are representative for this application. Such a phantom, shown in Fig. 2, consists of a set of concentric
spherical shells of unit density. Spherical symmetry was chosen to avoid embedding unwarranted anisotropy
into the classifier. Both locally convex and locally concave Toreground/background interfaces are present.
This is important, since trabecular surfaces are frequently convex, while the bone surface as viewed from
cortical cavities is predominantly concave.

The phantom is folded with isotropic Gaussian resolution (FWHM 59 pmo). An input vector is generated
by sampling the blurred phantom at a selected central position and at 32 neighboring samples on a 50
micrometer lattice. The corresponding target output value is the binary value of the unblurred phantom at
the central point. Both training and testing instances are generated by selecting randomly placed instances.
Our initial trial utilized uniformly distributed training instances. We observed, however, that most errors
in testing came from the regions very close to the foreground-background interfaces and disproportionately
represented regions of low radius of curvature. Hence, we adopted an alternative procedure in which we
preferentially select training instances from regions that straddle the interface radii. This has the effect
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Figure 2: The center slices of the phantom from which training vectors are obtained. The binary phantom
at left is subjected to Gaussian resolution to produce the blurred phantom on the right. The thickness of
the shells represents 100 jm.

of excluding from training the approximately 40 percent of possible instances that are centered on largely
uniform regions. Further, we give more weight to instances near surfaces of high curvature by selecting the
regions that straddle each interface with equal probability. In the results reported here, we used training
sets of 20000 instances. For testing we employed 531441 instances selected uniformly from a similar phantom
whose interface radii interleave those of Fig. 2.

4 Networks

4.1 Binary Tree Network

Our implementation of a binary-tree network, based on ideas presented in (4], was described briefly in [5].
Using a conjugate-gradient algorithm, each node of the network generates for the collection of instances
presented to it the Fisher linear discriminant direction in the space of the input vector. The instances
are then projected onto this direction. A splitting point along this direction is determined on the basis of
minimum entropy 14] or minimum number of misclassifications. If the node branches, the entropy criterion is
employed; if the node is terminal, the minimum errors criterion is used. One way for the node to be terminal
is for the split to be pure (i.e., for the instances presented to the node in training to be linearly separable),
in which case the two criteria yield the same split point. If the split is not pure, the node may still be made
terminal if it yields insufficient entropy reduction or if fewer than a specified number of instances would be
propagated to each of its prospective branches. Finally, a branch of a nonterminal node may itself be made
terminal if too few instances are assigned to it or if the entropy of the ensemble of instances is smaller than
a specified value.

Such termination criteria are an attempt to optimize the generalization capability of the resulting network
by not overfltting the training data. Determining the optimal growth of binary tree classifiers has been the
subject of considerable discussion [6], and we recognize that a priori criteria are likely to be less than optimal.
In the present cae, however, we have plentiful examples beyond those used directly for training, permitting
us to perform a simple backward pruning to minimize the misclassification rate. (In order that a node made
terminal in the pruning process can be given the split point that minimized errors on the original training
set, we retain during training both the bias weight that corresponds to the split for minimum entropy and
the bias weight for minimum number of errors.)
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A potential advantage of tree networks is that the first few nodes tend to separate off the obvious cases,
saving time in training, tosting, and application. A potential disadvantage is that the decision boundaries are
constructed from hyperplanes. If a curved decision boundary is required for best performance, a binary tee
may run out of training instances before enough nodes are grown to allow the boundary to be approximated
adequtely.

4.2 Layered Networks

We trained conventional layered networks of several architectures, ranging from a single nonlinear node to
networks with two hidden layers. Training was performed with both standard backpropagation (SBP) and
a method, called NDEKF, based on a node-decoupled extended Kalman filter [7]. The training parameters
for NDEKF were the default parameters described in Reference [7]. Twenty cycles through the training set
were used for NDEKF, while 200 cycles were employed for SBP.

5 Results of Training and Testing

The binary tree generated from the training set had 44 nodes, and produced a misclassification rate of 0.98%
on the set of 531441 from which the 20000 training instances were selected. Based on the larger set, an
optimal pruning was carried out, reducing the tree to 34 nodes and the misclassification rate to 0.94%.
When applied to the 531441 independent instances of the testing phantom, the error rate was 2.2%.

Taken together, the nodes beyond the root node make a small but important contribution to classification
accuracy, at a cost of somewhat in excess of a factor of two in the average computation time required to
classify an instance; if the tree is restricted to the root node, the misclassification rates are 1.4% and 2.5%
on the original and testing phantoms, respectively.

Using the NDEKF approach, a single nonlinear node yields an error rate of 0.11% on the original phantom
and 0.18% on the testing phantom. Standard backpropagation did not do quite this well, but the error rates
of 0.29% on the original phantom and 0.31% on the testing phantom are still very good. (It must be
mentioned that man trials were required before we found SBP parameters that led to effective training.)

We also employed SBP and NDEKF to train single-hidden-layer networks containing 2, 3, and 4 hidden
nodes and various networks with two hidden layers. Though several performed very well, none of these larger
networks proved more effective at generalization than the single-node NDEKF-trained classifier.

The weights of both the first node of the tree network and the single node of the network trained by
NDEKF display considerable cubic symmetry, reflecting the symmetry of the phantom which is used to
generate the training sets. This suggests that a symmetrised version of the weight vector of the single-node
network would be effective. Carrying out the symmetrization by averaging appropriate weights resulted in
approaimately the same performance on the testing set as noted above. By averaging input-vector elements
related by symmetry, the input vector can be reduced to 5 elements. We did this and retrained single-node
classifie s using both SBP and NDEKF. Training proceeds more rapidly and the misclassification rates in
testing are virtually identical to those reported above.

In order to assure that the outstanding performance of the NDEKF-trained single-node classifier is not
overly sensitive to the resolution used in creating the training and testing instances, we repeated the testing
with instances generated with resolutions smaller (54 pm) and larger (64 pm) than the original. The error
rate. were very good, 0.34% and 0.21%, respectively, indicating a considerable degree of robustness. In a
further test, the foreground and background of the original phantom were reversed. The error rate for this
was 0.11%.

6 Application to Experimental Data

From the standpoint of neural networks, the relevant generalization has already been discussed. However,
from a practical standpoint, the important consideration is performance on experimentally obtained data.
This performance, in turn, is influenced by several factors that are not addressed by the evaluation of network
performance just presented. Primary among these is the degree to which the simple model used in creating
the phantom reflects the true transfer function of the measurement process. In particular, our model as
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Figure 3: The slices of Fig. 1 classified by the binary-tree network (top) and by the NDEKF-trained single-
node network (bottom). For reference, images of the phantom in binary and blurred forms are shown in
proper scale in the bottom-right comer.

presented does not include statistical noise, which is certainly present experimentally. Further, the phantom
used to generate examples for training and testing does not model either spatial variations in the intrinsic
mineral density or variations in the density of the material in non-bone regions.

With these cautions in mind, the trained networks can be applied to experimental data. The density
(more properly, linear attenuation coefficient) range of the data must be scaled to the range of densities of the
blurred phantom. This is accomplished by creating density histograms for the entire 3D experimental data
set and the 3D phantom, and then matching central measures of their respective foreground and background
peaks. This permits the same trained network to be applied to a succession of data sets for which the relation
between mineral density and measured attenuation coefficient varies, as might be caused by slightly different
x-ray primary energies.

In Fig. 3 we display the results of applying the optimally pruned binary tree and the NDEKF-trained
single-node classifier to the data of Fig. 1. It should be noted that, because of the volumetric window, the
network classifiers make use of more information than appears in the gray-scale images shown. Though the
two classifiers yield slightly different results, each is successful in preserving cortical cavity structure without
unduly thinning the delicate trabecular structure.

7 Discussion

The weight pattern of the single-node classifier has a particularly simple structure. The central value is large
and positive, the nearest neighbors are much smaller and positive, and the remainder negative. The sum
of the elements, together with the bias, determines the threshold for a uniform region and is found to be
perfectly reasonable, i.e., right in the middle of the density range.
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An obvious extension to the binary tree procedure, which should be useful for many other applications,
is to ue NDEKF a n alternative means of determining the weights for each node of the binary tree. A
possible scheme, which we are investigating, would be to generate both the Fisher direction and the LMS
direction by the NDEKF procedure. The split point would then be chosen, as mentioned above, on the basis

Seitber minimum entropy or minimum errors, with the better direction used in either case. This elaboration
does not appear to be required in the present application, since a single node, determined by NDEKF, leaves
little to be desired. However, extension to cases with anisotropic resolution or other complications would
likely require more than a single node.

8 Conclusions

We have described the application of neural networks to the problem of classifying the points of resolution-
degraded 3D data sets in terms of an underlying binary structure. The method used is based on simple
models for the resolution and the physical structures of interest. The networks employed perform well on
test instances generated in the same way as those used for training. Application to actual data is also quite
satisfactory, and this method is currently being used as the first step in an analysis procedure.

Though not described here, the model with which examples are generated has been extended to include
noise. This is found to be useful when the classifier must be applied to data in which the noise level is higher
than in the data shown here.
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Abstract

A new iterative algorithm is proposed to compute the energy function coefficients of a Hopfield Network. The
coefficients specify the relative weights of the energy function components. The components, typically,
correspond to an objective function and some constraints when solving optimization problems. The energy function
components compete and cooperate with each other as the network settles down to a stable state. The Hopfield
Network's Liapunov function is mapped to the energy function to derive the connection weights and the bias inputs
for the neurons. The descending capability of the Liapunov function is shared by the energy function components
based on the relative weights of their coefficients as the Hopfleld Network evolves towards a final solution state with a
minimumn energy. Attention must be paid as to how these energy function coefficients are found since they directly
affect the validity and the quality of the solution into which the network converges. Determining the right set of
coefficients is nontrivial when analytical methods are employed. The iterative algorithm treats the energy function
components as errors and adjusts the coefficients iteratively to minimize the errors. The validity of the algorithm is
verified with a dynamic time warping Hopfield Network which can be used in the pattern matching phase of a
pattern recognition system.

1. Introduction

Hopfield Network is a fully connected, recurrent neural network with symnetric connection weights [6]. It found
applications in various fields such as optimization [7], [261, pattern recognition (121, (251 and signal processing (Ill.
Moreover, the similarities beten the Hpfield Networks and spin glasses attract physicists to descibe the disordered
media [141. The existence of a Liapunov function for the Hopfleld Network, which is analogous to the energy function,
permits the use of statistical physics methods to determine the stability points [271. It is possible to construct a Hopfield
Network with predefined dynamically stable configurations and consequently the network can be used as an associative or
content addressable memory [13]. The Hopfield Networks provide a basic model for the cognitive and computational
neuroscience fields [27]. Furthermore, it is feasible to implement the ikpfield Network in silicon with the present analog
VLSI technology [20].

This paper describes a new iterative algorithm to compute the energy function coefficients that specify the
relative weights of the energy function components which could be an objective function and some associated
constraints when solving an optimization problem using a Hopfield Network. Once the energy function is defined,
it can be mapped to the Liapunov function of the Hopfield Network to determine the connection weights and the
bias input for the neurons. Finding the proper set of coefficients is critical since these coefficients directly affect the
connection weights and the bias inputs which in turn determine the validity and the quality of the solution into
which the Hopfield Network converges. Thus, attention must be paid as to how these coefficients are determined. In
most of the studies reported, these energy coefficients are found empirically [11, [41, M, [21]. Recently, some reseamers
proposed that the eigenvalues and the eigenvectors of the connection weight matrix can be exploited to find the energy
coefficients when the nonlinear system equations for the Hopfield network are approximated by linear functions [3].
Others suggested that useful relationships among the energy coefficients can be obtained and the ranges for the energy
coefficients can be found by analyzing the stability of the dynamical fixed points (9]. The proposed algorithm provides a
systemaic means to compute the energy function coefficients directly. There is no need to approxmate the network
nonlinearities nor analyze the stability of the dynamical fixed points to apply the algorithm. The new algorithm is tested
with a dynamic time warping MW) tpfJd Network which was reported previously [221, [231. The DTW is an
optimization algorithm which compares patterns to find an optimal match under some constwaints. It is used in pattern
recognition applications such as speech recognition, speaker identification and speaker verification [16], [17], [191.
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Solving optimirzaion prolksis using a Hopicid Network is explained in the next section . The new iftsative algorithm to
And the energy anction coefficents is presented n Section 3. Section 4 describes the DTW using Hopfield Network The
exrimental results verifying the validity of the approach are given n Section 5. Finay, the conlusos are drawn an

Stin6.

2. Solving Optimization Problems with a Hopfleld Network

Table I summarizes a procedure which can be used to set up a Hopfield Network to solve an optimization
problem:

Step 1. Fnd a neural network reptentaion for the problem
Step 2. Determine a number representation with the neurons
Step 3. Define a Liapunov Function L(v) for the Hopfield Network
Step 4. Devise an energy function E(v) for the optimization problem
Step 5. Derive the connection weights W and the bias inputs b by equating L of Step 3 and E of Step 4
Step 6. Comput the energy function coefficients c

Table 1: A General Procedure to Solve an Optimization Problem with a Hopfield Netwok.

In step 1, a neural representation scheme is found. It is necessary to assign a meaning to every neuron or group of
neurons as to what these neuron outputs depict when the neural network converges to a final state. Then, a number
representation scheme with the neurons is determined in step 2, since most problems require their solutions to be
in numerical form [21). Step 3 requires the definition of a Liapunov function. The majority of the studies utilize
tLe following quadratic function which was proposed by Hopfield [6] as L(v) = -1/2 v Wv - bv + 'L Jdag1
where the integral is from 0 to vi and i ranges from 0 to N-1. The outputs of the neurons are represented
collectively by the vector v, the connection weights between the neurons by the matrix W, the bias inputs by the
vector b and the activation functions of the neurons by g. In step 4, an energy function consisting of an objective
function , possibly with some constraints is defined. This function is minimized to obtain the best solution under
the constraints. The c acteristics of this function should match that of the Liapunov function of the Hopfield
network since there will be a mapping between the two to determine the connection weights and the bias inputs for
the neurons. Typically a quadratic function would be suitable but any other class of functions could also be used as
long as a corresponding Liapunov function is found for the network. The constraints can be added to the objective
function to make the mapping easier between these two functions. It has been shown that inequality, as well as
equality constrained optimization problems can be effectively solved by means of the Hopfield Network [2]. In
general, the energy function can be devised in the form E(cv) = 1/2 co Eo (v) + 1/2 cl El (v) + ... + 1/2 c E (v)
where the Eo component corresponds to the objective function and the remaining components El through EK
represent the constraints. There is no straightforward method to find the energy function for a given problem.
Each problem requires a different approach and the energy function for a particular problem is not unique. The
Liapunov function L(v) and the energy function E(v) are equated to each other in step 5, and the connection
weights W and the bias inputs b for the neurons are found by comparing the linear and the quadratic parts. During
this derivation, the integration component of the Liapunov function is ignored since its contribution is negligible
became of the high gain of the activation function [6]. Also, the constant term in the energy function E(v) is
ignored since it does not have any effect on the result while minimization is taking place. Note that the connection
weights and the bias inputs which are found by equating the energy function to the Liapunov function assure the
minimization of the objective function along with the constraints by enforcing the neuron outputs to follow a
monotonically decreasing energy path as the network evolves. Consequently, when the network reaches a
minimum energy state, a solution to the optimization problem is achieved. Step 6 is explained in the following
section.

3. Computation of the Energy Function Coefficients

The energy function coefficients c weigh the objective function, and the associated constraint components, and specify
their relative shares in the descending capability of the Liapunov function L(v) as the Hopfidd Netwok evove towards a
final solution state with a minimum energy. These energy components cooperate and compete with each other during the
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itmations of the neural network Since they comrol die enrgy functo direonly they determine the quality of the solution
iwo which the network conavers.

Figeu I shows a sdmatic rpresentation of the algorithmL The objective is Io adjust the energy function codficients
c in inch a way that the energy function cmponents F4 (that we treated as errrs in this context) are pushed towards their
mIa so that high quality solutions ie achieved while maitaining the validity of te result

The energy function omponents desced as the netwok converges to a stable ste since the connection weights W
and the bis inputs b am computed by equating the energy function E(v) to the Liapumcw function L(v) which
monoonically deceases during the itertions. This also guarantees the convergence of the algoithm that is confirmed by
the compur simulations perftmed in Section 5.

To be able to use this algorithm, for each constraint component 4 the maximum and the minimum values (Ei
ml and F." ) have to be calculated. Then the eroranges can easily be found as shown in Table 2. Also, one

has to decide on the training set and determine what values to use for the puraneters validity threshold NI (the
number of times the neural network has to converge to a valid solution in a row), and the adjustment factor Ac.

The selection of the training set depends on the applicaum field and the quality-vabdity tradeof. The ideal training
set would be all possible combinations of the iputs. For some problems, thms appuoac may not practical due to the
abndnce of input data. In such cam the mse of a repiesentave sulet can be suffMcient as we did for the TYW
applications in this work. The optimal selectim of the training sd cm be quite conplicated and is beyond the scope of thisstuy.

The initial values of the energy function coedients are selected asc=O, c= 1,c = , c= 1, c4= 1, cs= 1. Tis way,
the competing elect of the ojecive function with the constraints i elminated at the beginning. Having one as the value
for the constraint coeffiient gives equal efct to evey energy function constraint componen During the iteations of
each run of the neural network, the onstraint components are eaamined whether they reach their nmma mid the
coefficient with the highest relative ero is updated in acordance with the proposed algorithm. Once the netwok
achieves NI times valid results in a row (im the algorithm, "valid" is the counter used for this purpose) tha the dective
fuiction coecient is updated O Push the nemrk sowards finding bm quality resul With this new value of theda.-ve function co ekient the abo e process is reped until the network reaces an ivalid find sate Once this
octn, the value of the objective function co tcient is kept onstant and the coustraint coeffidients ae updated as b v
until the network acieves N, times valid solutions in a mOw agan. When this validity threshold is exceeded, the network
is ready for a hiSher otj fuoctim codef t. This contnes until no fulrther improvmnt is possible for the
*cive function coecient. The improvenet is measured by mews of the dective funcd to constrint coefficients

ratios (c/c) as defined in Table 2. In this study, if my of these ratios decreases thin the algorithm terminates. Better
impwvenent checking mediansins cm be developed by cosidering more than one decrease in a row (checking the
aveage of the rados over a few nins rather than halting at the first deease), the at e ofcbap othe ratios and so forth.
The se o the validity threshold NI depnds on the application. If the invalid solutions do not degrade the
perfomance of the system significantly as reprtied in [22], [24], then this value can be iosen smal. This results in a
larger objective function coefficient whid in tam pmotes higher quality somtions but more ohm invalid results. If the
quality of the solution is not the primary cacemn (having a valid solutio is c higher priority) then the validity threshold
N cm be set to a large value whidch suppresses the enlargement ofthe objective fumction co fcie In our experiments,
the validity threshold NI is picked as 10. The ajsnet ham Ac is another 1 ru, F of the algorithm which is used to
calilrte the energy function coefficents. A consta adjutment facor, namely Ac = 0.1, is used in this study. Analyial
methods can be developed to find more precise values which would elicit better tuing of the energy function coefficients.
It should be noted that this parameter does not have to be a constant. Faster and better results might be achieved by
employing an adaptive ajustment fcor during the i erations.

4. Dynamic Time Warping Using a Hopfield Network

DTW is a pattern matding algorithm which is used to conpare an input test pattern with a refuenc pattern tempate
and obtain an aptimuin mat subject ID ain oistraMts [8]. The associated distance between the two patterns is also
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deI~mined during the process. The DTW algorithm eliminates the nonlinear x-sxis variations to compensate for the
nonlinea temporal distortions which might arise due to the variations in the speaking rates of the speakers in speech
procesuing applications. Consequently a better comparison is achieved as opposed to an ordinary direct template matching
procedure which might yield a larger distance between the two pattens despite the similarity. It is widely utilized in
pattern reconitiox anm such as speech recognition, speaker veification and recogntion and contributes significantly to
the perfomances of these speech processing systems [161, [171, [19). While effective in pattern recognition the DTW
algorithm is lacking in that the processing time bexnmes a major consideratio for real time applications as the number
and the size of the patterns increase. A parallel computing architecture becomes the only avenue to achieve the high
comnputational rate demanded. A possible remedy toward this end is the use of a Hopfred Network.

The DTW algorithm can be formulated as a minimum cost path problem as illustrated in Figure 2. This way the
problem is transformed to finding an optimal alignment path m = w(n) between a refernce paen r(n) and a test patn
t(m) over a 2-D finite cartesian grid osize N x N, where N is the length of the patns, n and m are the discrete time
scale indices for the reference and the test patens respectively. Each grid node v(nm) has a specified cost d(r(n),t(m))
which corresponds to the distance between the referce paten sample r(n) and the test paten sample t(m). The problem
is to obtain the minimum cost path from v(0,O) to v(N-I,N-1). Note that, the paens r(n) and t(m) could be
multidimensional feature vectors representing the data to be compared.

In order to implement an effective and efficient DTW algorithm, it is necessary to specify a number of factors and
constraints on the solution which could vary depending on the application field [15]. These are typically endpoint
constraints, local and global path constraints, axis orientation and distance measure specification. The endpoint
constraints match the boundary points of the test and reference patterns (i.e., w(0) = 0, w(N-1) = N-1). The local path
constraints [8] allow only the arcs with slopes 0, 1 or 2, and avoid consecutive zero slope arcs. These constraints guarantee
that the average slope of the warping function w(n) lies between I/2 and 2, provide path monotonicity and prevent
excessive compression or expansion of the time scales of the patterns as depicted in Figure 2. The endpoint and the local
path constraints give rise to the global path constraints. The global path crstraints define the domain of the matching
operaou which is a parallelogram (indicated by a dashed line) as shown in Rgure 2. The axis orientation may affect the
performance of the system If the path constraints and/or the distance measure are asynmetric [18]. In this study the
reference pattern is mWed to the abscissa, and the test pawna is mapped to the ordinate as shown in Figure 2. The
absolute difference metric d(r(n),t(m)) = I r(n) - t(w(n)) I is used as the distance measure. So. the total distance along the
optimal path w(n) from the grid point (0,0) to the grid point (N-1,N-I) can be written as D = min,,()(L d(r(n), t(w(n))))
where n runs from 0 to N-I. The type of the distance measure used by the DTW algorithm may affect the matching results
depending on the properties of the patterns compared [5]. A succinct review of the distance measures can be found in [10.

With all these constraints in mind, we can reiterate the definition of the DTW problem as finding an optimal warping
path m = w(n) through the grid points v(nm) (in Figure 2) to match the refeence pattern r(n) with the test pattern t(m)
subject to the constraints such that the total distance D is minimized. Thus, for the particular example illustrated in Figure
2, the optimal warping path m = w(n) (indicated by the solid line) goes through the grid nodes v(0,0), v(1,1), v(2,I),
v(3,3), v(4,4) and v(5,5) and coresponds to the best match between the two patterns with the associated total distance 10
(2+1+2.0+2+3). Note that none of the other valid paths (which satisfy the constraints) within the parallelogram have
smaller total distance.

To be able to realize the DTW algorithm using the Hpfleld Network, the procedure given in Table 1 is followed:
Every grid point on the (nm) plane in Figure 2 can be naturally represented by a neuron. Thus, a two dimensional array
(of size N x N) representation is used for the neural network with a total number of N2 neurons. The neuron outputs will
be denoted by vt, with subscripts x (for ordinate m) and i (for abscissa n) showing the row and the column indices
respectively. The optimal path m = w(n), which coresponds to the optimal match between the test and the reference
patnes, will be determined by the neurons which have outputs I when the network converges to a stable state.

The second step of the procedure given in Table I can be omitted since there is no need to find a number
representation with the neuron groups for the implementation of the DTW algorithm. The neuron outputs of the
continuous Hopfield Network stays in the range 0 through 1 and the neuron outputs with binary states 0 and I are
sufficient to represent the warping path m = w(n). To ensure the validity of the path, the neurons are forced to have binary

III- 190



values 0or I by meams ofan approiate constraint component in the DTW energy function. As a result of this constraint,
the neuron stales converge to either 0 or 1 outputs when the Hopfid Network reaches a minimum ergy stable state
which conesponds to one of the corners of the NxN dimensional hypercube.

Hem by scutinizing the warping path m = w(n) through the grid nodes in Figure 2, and considering the objectiv
flmcik. D (total distance along the optimal path w(n)), and the DTW constraints described, the following energy funcion
E(v) can be cmnstructed for the DITW algorithm

f o N-IN-IN-In dE()ff "= 0 I R J dyI) X~ vyi i - l ~ Vxji Vyi- 1
2 XIO i=0y=O ' yiixyii xi yi-

y x+2

c 4 N-IN-I N-I c N (IN 1 2
+ V fNI 2vx~1

2 x=O i=j x,i vx,j 2 x=O i=O -2x

li-Ji*I

whee nmodulo N is used for the subscripts wherever applicable (i.e., N = 0.). The detailed explanation of ie energy
function and the derivations of the connection weights and the bias inputs can be kund in [22].

The last step of the procedure given in Table I is the cmputation of the energy functio coeffimnts c. By using the
energy function E(v), and the following equations (With N=10), the number of the neuons at each column and the total
number of neurons -including the lmundary neurons if any - within the boundary of the parallelogram (An example for
N=6 is shown in Figure 2) can easily be calculated. The number of neurons at column n is mH (n) - mL (n) + I and the
total number of neurons are equal to L [mu (n) - mL (n) + 1] where n = 0,..., N-i. Ience, starting with column 0, the
number of nerons at each column are 1, 3,4,6,6,6,6, 4,3, 1 which adds up to 40. Now, in the sucieeding paragraphs,
we will analyze each component of the DTW energy function E(v), and calculate the numerical values of the error ranges
for the energy function constraints

The component Eo (weighted by co t2) correspoids to the objective function that minimizes the total distance D
between the two piatterns along the warping path w(n) through the grid points.

The component El (weighted by cl /2) stands for the Itakura path slope constrainL The sopes of the arcs between the
grid nodes are pushed to 0, 1, or 2 by this component. It takes its minimum value zero when all neurons have output zero.
The maximum value is reached if all neuron outputs are one. For colum i, there can be 7 aliowable arcs (with slopes
other than zem one or two) connecting adjacent nomons at column i+1. Therefce 7x10x10=700 is the maximum value
of the function for the entire NxN grid. If we cousider only the paralelogram, then it is
0+4+12+20+21+20+12+4+093. Therefore the error range for this energy function component is 93 -0=93.

E2 (weighted by c2 2) foces evay sample of the rdaenem pattern to be visited once during matching with the test
pattern. It becomes minimum (zeo) when all neurons outputs are zero. The maximum value is reahed if all neum
outputs are one. For column i, there are 9 possible multiplications. Therefore 9x10x10=900 is the maximum value of the
function for the NxN grid. For p it is lx0+3x2+4x3+6x5+6x5+6x5+6x5+4x3+3x2+lx0=156. So, the wo
range is 156-0=156.

Bemu of E3 (weighted by c3 /2), the networc ends up having N active neurons (output value one) when a stable state
is readied. E3 has the minimum value zero if all neurons have zero outputs. Tlhe maximum value is attaied when all
nuon ouputs are one. Thus is the maximum the function can get fo the complete NxN grid. For the parallelogram, it is
(40-10 = 900. Croosequmdy the eror mne is 900.0=0.
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Successive ro slope arcs in each row are avoided by the component F4 (weighted by c4 /2). It reaches its minimum
value zo if all neuron outputs awe equal to zero The maximum value is acquired when all neuro outputs a equal to
one. For row x, thee are 8 neurm couples (for which the outputs are to be multiplied). Hence the maxnmu value of the
function fr the whole NxN grid an be 8xl0x10="80, and for the b 1eginning with row zeo is
0+2+12+12+12+12+12+12+2+0=76. The error range for this conponent is 76--76.

E (weighted by cs /2) helps the neuons to have 0 or 1 output when the network coverges to a minimum energy state.
Es reaches its minimum value -100 for the NxN grid when all neuron outputs are either zero or one. For the
parallelogram it is -40 since there are 40 neuros inside (including the border) thep. The maximum value is
obtained if all naim outputs are 0.5 which is the fuzziest state for the neurons with (1-2x0.5)=0, and the error range is 0-
(-40)-40.

5. Experimental Results

The dynamical behavior of the Hopfield Network is represented by the differential equation U = Wv + b. The
number of equations is equal to the number of the neurons in the network, and the operation of the neural network
is simulated by solving these differential equations simultaneously. The equations are solved numerically using
Eulers method [22], [23].

Fvrst, to elucidate the operation of the new iterative algorithm (given in Table 2), an illustrative experiment is
carried out with the adjustment factor Ac = 0.2. and the validity threshold N, =5. The reference pattern r and the
test pattern t, shown in Figure 5 (a) are used as the training input. Figure 3 shows the progress of the energy
function components E, (i = 0,...,5) per run for 100 runs (50 iterations each). The energy function coefficients
converged to co= 0.8, cl = 4.0, c2 = 4.8, c3 = 1.2, c4= 1.4, c5 = 1.6 at the end of 100 runs. The initial values used for the
energy function coefficients were co= 0, cl = 1, c2 1, c3 = = 1c=, c= I as suggested in the algorithm. Note that the
energy function components descend smoother and more consistently during the iterations as the coefficients are
adjusted at each run.

Next, to carry out the subsequent experiments, the algorithm is run with the adjustment factor Ac=0. 1 and the
validity threshold N, =10. The reference r and the test patterns t and t2 shown in Figure 5 (a) and (c) are utilized
as the training input. At the end of the training, the energy function coefficients are computed as cO= 2.0, cl = 13.8,
c2= 13.8, c3= 4.5, c4= 6.3, cs= 1.5. The initial values of the coefficients were CO= 0, cl = 1, c2= 1, c3= 1, c i1, c 5 = 1
as suggested in the algorithm.

To evaluate the performance of the network, uniformly distributed random reference and test signals are
generated. From these signals a distance matrix d is produced (absolute differences between the signal samples as
shown in Figure 2). The distances are normalized to the unit square. Using d, the optimal warping path
corresponding to the global minimum total distance and the path with the global maximum distance are
determined by going through all of the possible paths within the parallelogram, as shown in Figure 2. Then the
DTW Hoptield Network is employed to find the optimal path. A distance measure is defined to compare the results
as dam = (min - mino )/ (maxo - min )xlOO, where mino and max0 are the global minimum and maximum
distances corresponding to the best and worst warping paths and minm is the minimum distance corresponding to
the optimal path found by the network. dam is the percentage of the distance to the global minimum and represents
the independent variable on the horizontal axis in Figure 4 (a) and (b). The y-axis denotes the number of times dom
occurred out of 500 runs. Two tests are run to measure the performance of the DTW Hopfield Network with the
constraints coefficients cl = 13.8,2 = 13.8, cq = 4.5, c4 = 6.3, cs = 1.5. In the first test, the numerical value of the
objective function coeffiient is taken as co= 2.0. Then the same test is repeated with a more aggressive objective
function coefficient, co = 4.0, to demonstrate its impact on the solution validity and quality. Figure 4 (a) shows the
test results with the energy function coefficients cO= 2.0, c¢ = 13.8, 2= 13.8, C3 = 4.5, c4 = 6.3, cS= 1.5. The network
converged to a valid solution 96 % of the time and reached the global minimum 20 times. In our previous study
(without using the new iterative algorithm) the results were 85 % and 6 times respectively [ 23]. With the energy
function coefficients co= 4.0, c1= 13.8,2= 13.8, c3 = 4.5, c4= 6.3, cs= 1.5, the result summarized in Figure 4 (b) is
obtained. Using this set, the DTW Hopfield Network reached a valid solution 72 % of the time and converged to
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the global minimum 56 times which were 63 % and 27 previously [23]. In this case, the quality of the paths found
are superior to the prior case as expected. The reason for this is that while the constraint coefficients cl , c2 , c3 , c.,
c5 enforce the validity of the warping path tie objective function coefficient co, competes with them to minimize
the total distance associated with the path. Thus, the quality of the DTW path can be improved by increasing the
value of Co but this results in more frequent invalid paths. For both cases, the network converges to a valid solution
in less than 50 iterations (peaking around 20) and the results achieved show that the network is capable of
matching the reference and test patterns effectively.

The purpose of the last experiment is to demonstrate the superiority of the pattern matching performed by the
DTW Hopfleld Network over the ordinary direct template matching. Frst, the direct template matching is applied
to the reference pattern r and the test patterns t I, t2 which are shown in Figure 5 (a) and (c). The absolute
difference distance metric (I x i) is used to calculate all distances. The distance between r and t, is found as 62 (20-
14 + 15-3 + 5-1 + 4-0 + 11-4.9 + 14.9-13 + 20-14 + 19-15 + 16-5 + 7-0), and the distance between r and t 2 is
found as 55 (20-15 + 15-15 + 12.5-5 +10-0 + 10-4.9 + 14.9-10 + 20-10 + 15-7.5 + 5-5 + 5-0). Thus, according to
the direct template matching, the test pattern t2 is more similar to the reference pattern r than the test pattern t1 .
Next, the DTW Hopfield Network (with the energy function coeffcients Co = 4.0, c, = 13.8, c2 = 13.8, c3 = 4.5, c4 =
6.3, cs = 1.5) is used to find the distances between the same patterns. This time the distance between r and t , is
found as 1.93 (in 14 iterations) and the distance between r and t 2 is found as 3.77 (in 20 iterations). Figure 5 (b)
and (d) illustrate the effect of DTW clearly. As the results show, the DTW Hopfield Network can compare patterns
more intelligently and achieve better solution than that of the ordinary direct template matching.

6. Conclusiom

The main objective of this study is to show that the proosed iterative algorithm can be used to compute better energy
function coefficients for a Hopfild Network A DTW algorithm, which ompares two patterns to obtain the best match
under some constraints, is used to varify the validity of the approach. The idea behind this algorithm is to find the optimal
balance among the energy function components to cbain a high quality result while maintaining the validity of the
solution. The algorithm has the flexibility to accommodate different quality requirements of diverse optimzation
problems. The results provided in Section 5 verify that, this algorithm finds a good set of energy coefficients which
induces a suerior pattern match than that of the ordinary direct tenplate matching. The same set of energy function
coefficients was also used to imare the performance of the DTW Ebp&e Network relative to the traditional DTW
algorithm. Using the DTW 1o4ld Network along with the new iterative algorithm, more satisfactory results are
achieved in comparison to our previous study (23].

The procedure given in Section 2 provides a methodical approach to solve optimization problems using the Hopfield
Network. Most of the steps in this procedure are straightforward, except the neural network representation and the
definition of the energy function. There can be more than one valid neural network representation and energy function for
a given prbem. The DTW energy function E(v), defined in Section 4, is neither unique nor claimed to be the best
energy function for the DTW problem. Combining some of the constraint components and/or incorporating them into the
objective function would reduce the number of energy function coefficients. But then it would not be possible to contro the
efcts of these components independently. It should be noted that the components of the energy functions compete and
cooperate with each other, while the neural network descends with the Liapunov function, as dictated by the energy
function, toward a stable minimum energy state. The energy functin coefficients co through c5 define the characterstcs
of this falling motion. There is a delicate balance among these components which are weighted by the energy function
coefficents. It would be interesting to study the effects of changing the energy functio coefficients dynamically (as a
function of energy) as the neural network evolves toward a solution state. This could aid the DTW Hopfld Network to
reach lower mininm with faster convergence rates

The effect of the objective fiction (relative to the constraint components) could be reduced by caliraung the energy
coefficents if maintaining a valid result has a higher priority than the quality of the solution. For the signal recognition
system desaibed in 24], the quality of the path was the main concern (validity of the path had secondary importance)
since only uncorelated signals pulled the network to the invalid state space. When the signals were similar, the neural
network remained in the valid state space.
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Find error ranges E R for constraints:
EiR +- EiMAX - EiMIN; i=l,...,K

/* K: Number of energy function constraints */
Initialize energy function coefficients:
ci +-I; i--l,...,K 1* constraint coefficients E0
co --0 /* relax objective function coefficient / Hopfield Network E
Initialize improvement ratios: W, b

CoiuOLD -colci; i=l,...,K E K

While (training is not sufficient) Co  C1  c(K
Apply an input to network from training sete (Co/flE W .Co/iOLD ?>0); i= ...,K Figure 1: A Schematic Representation ofWhile(c c/ 0;i1.

valid +-0/* reset validity in a row counter */ the Iterative Algorithm that Finds the
Find connection weights W and bias inputs b Energy Function Coefficients
While (valid < N1 ) I* below validity threshold */

Initialize neurons and run network

if Ei = EiMIN ; i=1 ,...,K

then /* valid result */
valid +--valid + I
else /* invalid result */
I m = w(n)
valid ,-0 m t(m)
Fid max normalized error and its index j 4 1 2 - .

ma E /.i 1 :2,.- 4S i= ,..,K;j 5 ..............

Adjustc : c -c + Ac ....... ...... ........
3 A 2

Find W and b 2 1 2 ......... .......... 2 6 0) l...i......... ...... ".,.
S . 3 ..410 3

end While
Adjust co: co -co + Ac 0 2 01

Update improvement ratios: 0 1 2 3 4 5 n
OLD NlEW; i=I,.,K 6

C01f +-Con 11coli ONEW NEW.:; 3

end-While
end While 0 1 2 3 4 5
Stop

Table 2: An Iterative Algorithm to Find the Energy Figure 2: A DTW Example Depicting an Optimal
Function Coefficients cO,...,cK Alignment Path m = w(n) to match r(n) to t(m)
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Abstract

This paper explores a hierarchical arrangement of neural networks applied to pattern classification
problems. The structure consists of a switching network and a collection of leaf networks. The switching
network has the responsibility for selecting which of the leaf networks will ultimately perform the
classification. The number of leaf networks, as well as the classes assigned to each leaf network, is
determined by iterative application of a clustering algorithm. The iterations terminate when an objective
function is minimized. The advantage of this method is the modularization of the network structure
which dramatically reduces training time and allows locally confined network maintenance. For the
multi-font character recognition problem considered here, classification accuracy remained comparable to
that of a single back propagation network and training time was reduced by a factor of 20. Greater
speedups can be achieved if parallel training and clustering are used. A classification problem is also
presented for which the classification accuracy exceeds that of a single back propagation network and
reduces training time.

Introduction

The usefulness of neural networks for classification problems is based upon a network's ability to construct
arbitrarily complex decision surfaces. This is frequently accomplished by training a single network to
separate all classes simultaneously. Thus, the training algorithm must find a single set of weights which
accurately classifies all samples. This is analogous to sorting a million names by moving all of them at
once and hoping that the resulting ordering is closer to a sorted list. People sort large lists by first
separating the elements into smaller groups, such as by the first letter in a name. The resulting sublists
are then sorted. A similar approach is taken with the network structure described here. The classes are
first grouped into clusters and a separate neural network, a "leaf' network, is associated with each cluster.
A "switching network" is responsible for selecting the appropriate leaf network to perform the final
classification task.

This approach has several advantages over the traditional monolithic training algorithm. First, the
resulting network is a collection of "plug-in" components. If a more efficient switching network can be
identified, that component can be removed from the tree and replaced with the new network without
disrupting the operation of the leaf networks. This structure does not require homogeneous topologies or
training algorithms, giving the designer flexibility to attack localized problems with appropriate solutions.
Similarly, if additional data from one class becomes available, the corresponding leaf network can be
removed, retrained and reinserted into the tree without affecting the remaining networks. A second
advantage is that the resulting networks are smaller and thus require less time to train. In addition, since
fewer separating surfaces must be identified, each network has a simpler problem to solve than a single
network. This too contributes to decreased training requirements. Third, since the networks operate
independently, they can be trained in parallel. A multi-processor system or a collection of workstations
can be used to train the structure in approximately the amount of time required to train the largest
network in the structure.

The idea of creating a hierarchical structure of neural networks is not new. Tree structures have been
used to decompose problems as well as to increase reliability through combining decisions from multiple

111-198



branches of a classification tree 121. Of particular interest are the CART algorithms, which generate
neural tree classifiers, and have been shown to be very effective [l1][71110][11][12][131. Neural tree
classifiers combine classification trees with neural networks by utilizing relatively small neural networks
at the interior nodes of the tree to identify splitting rules. The CART (classification and regression tree)
method for constructing classification trees proceeds in two phases. First is the growing phase which
recursively finds splitting rules at interior nodes by optimizing a criterion such as an impurity measure.
Traditionally, the splitting rules have been based on single features or linear combinations of features.
Neural networks have been used to generalize this method by finding nonlinear combinations of features
on which to base the splitting rules[5]. The second phase is a pruning phase in which a subtree is selected
based on minimization of an error-complexity criterion. Leaf nodes are associated with a single class.
Our approach is to associate leaf nodes not with single classes but with clusters of classes. A neural
network serves as a switching device to select the correct leaf network. A leaf network is then used to
perform the classification within the cluster. One advantage of this approach is a reduction in the height
of the tree and an accompanying reduction in classification time. More importantly, the switching
network and all of the leaf networks can be trained in parallel which greatly reduces training time.

Method

The structure consists of four components the switching network, the leaf networks, the clustering
algorithm, and the error recovery algorithm. Note that a single decision network may not be appropriate
for every problem. A hierarchy of switching networks was also implemented, and while effective, was not
necessary for the problems studied. However, other classification tasks may benefit from an additional
layer of switches.

The algorithm can be described as follows:
step I :Cluster the classes
step 2 :Train a switching network to classify a vector as a member of a given cluster
step 3 :Train each leaf network to discriminate between the classes for which it is responsible.
Note that all of the leaf networks and the switching network can be trained simultaneously.
step 4: Present a testing vector to the switching network. The switching network will select a
leaf network. The leaf network will classify the vector or have an insufficient response to make a
classification. In that event, the switching network selects the next most likely candidate and
repeats step 4.

The first step, determining the number of leaf networks and the class distribution, can be accomplished by
a clustering algorithm. A maximum distance clustering algorithm was the most effective of the well
known algorithms we investigated [3][6]. However, we introduce a variation designed to produce a
relatively even distribution of class assignments. Three competing elements must be balanced in selecting
the proper network topology : the number of leaf networks, the difficulty of the classification task each
must perform, and the difficulty of selecting the correct leaf network. As the number of leaf networks
increases, the difficulty of the individual tasks decreases but that difficulty is simply transferred to the
switching network. Alternatively, if too few leaf networks are used classification accuracy suffers and as
the network sizes increase so does the training time. The algorithm presented below seeks to balance
these competing interests.

The clustering algorithm used here can be summarized as follows:
step I : Select an initial value, n, for the number of clusters. This is an artificial starting point
and will be adjusted by successive applications of the algorithm.

step 2 : Select cluster seeds. The process of selecting seeds for the desired number of clusters is
described inductively. The first two seeds, s, and s2 , are chosen so that d(s ,s,)=ls-s.11 is a
maximum. Suppose S=SlS2,..Sk) is the set of seeds chosen for the first k clustes. Select
x *S, such that:
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is a maximum and set s,+i-x Repeat the process until all n seeds have been selected.

step 3 : Select a point p to add to a cluster. Each point not yet assigned to a cluster is considered
intu m A point is tmpoa added to custerCjand:

Sjx-yH

is computed. The point is assigned tothe cluster for which the above sum is minimized One
additional consideration must be explored. If a point p is a member of a class c, and p has been
asigned to duster C what does that imply about other elements of c? One possibility is to allow
individual points to be assigned without reference to prior assignments of other elements of c.
This implies that more than one leaf network may be responsible for classifying vectors in a
given class. This is only practical if a sufficient number of training samples is available for
each leaf network. Another possibility is to force all elements of a class to be grouped in the
same cluster. This can be done by assigning one element in a class using the technique
described above then assigning all other elements of that class to the same cluster. An alternative
method is to perform the above calculation using classes instead of individual points.

Steps 1-3 can be computed in parallel for a variety of n values. To determine an optimal number of
clusters, compute the average cluster tightness, where average cluster tightness is defined by:

1" 2

whem n is the number clusters and n is the number of points in cluster C,. Let N= ,ni, the total number
of points. As n increases from I to N, Tn decreases, first rapidly and then more slowly until T, = 0.
Judgment is used to select that value of n for whichAT, that is Tn+ -Tn, is sufficiently small.

In these experiments all networks wre trained with back propagation, but it is not necessary to do so or
even to have all networks trained using the same algorithm One of the advantages of the "plug-in"
components is that any type of network can be inserted at any point in the tree.

An error recovmy algorithm is necessary to handle situations in which the wrong leaf network was
selected by the switching network. In many situations, if a network is not able to classify a vector, it will
produce small output at each of the output nodes. The current solution is to set a threshold value and if
none of the outptts reaches the threshold value, the current leaf network is declared to be inappropriate
and an alternate selection is made. The leaf network which received the second largest output value from
the swiching network is selected and the process is repeated.

Experimental Results

A Sample Problem

A sample problem was devid to test the effectiveness of this algorithm relative to a single back
p network. The data was produced by generating random points within fourteen overlapping
spheres. The elements of each of the fourteen classes were randomly divided in half with one group used
for training and the other for testing. The clustering algorithm was applied to the data and produced four
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clustems, each with three or four classes. Note that the classes are not linearly separable. The topology
used for this expermet was a switching network and four leaf networks each with three input nodes, four
hidden nodes and 4 output nodes.. The back propagation network consisted of 3 inputs nodes, a single
hidden layer with 8 nodes, and 14 output nodes. The number of hidden units in the back propagation
network was varied from 6 to 13 with the bet classification accuracy produced by a 3-8-14 network. The
accuracy for the back propagation network was 95% correct on the testing data while the hierarchical
netwoik was able to classify 100% of the test vectors correctly. The switching network made the correct
selection on the first try 100% of the time. Training time was reduced by a factor of two without using
parallel training. We report this experiment to demonstrate that problems do exist for which this network
can reduce training time and improve classification accuracy relative to a single back propagation
network

Character Recognition

A more difficult problem is that of multi-font character recognition. Computer generated characters in six
fonts were digitized and a feature extraction mechanism was used to create 156 vectors, each containing
14 elements [4][8]. These were divided into groups of 78 vectors. One group contained vectors
representing each character in three fonts and was used for training The other group of 78 vectors
contained the remaining three fonts and was used for testing.

The clustering algorithm produced four clusters each with six or seven classes. The switching network
used was a neural network trained using back propagation and consisted of 14 input nodes, a single
hidden layer with 4 hidden nodes and 4 output nodes. Each of the four leaf networks was also trained
with back propagation and contained 14 input nodes, 6 hidden nodes and 7 output nodes. A single back
propagation network with 14 input nodes, 20 hidden nodes and 26 output nodes was trained. This
topology produced the best results for the multi-font character data set as reported in [8].

Several criteria were used to compare this approach to a single back propagation network. First, consider
the size of the network. A network with 14 input nodes, 20 hidden nodes and 26 output nodes contains 60
nodes and, including bias weights, 846 weights. The number of weights is particularly important sn
each must be updated for one iteration. Training was stopped at 700 iterations by the criteria that the
change in the error over a 100 iteration period was smaller than a predefined epsilon. This resulted in a
total of 592,200 weight updates. Since weight updates are the most expensive part of the algorithm, this
is a good measure of relative speed. In contrast the decision tree neural network with its five networks
contained 130 nodes and 636 weights. However, since each leaf network is assigned a simpler task, fewer
training iterations were required. The average number of iterations for all five networks was 400,
resulting in 254,400 weight updates. In this case, the decision tree neural network required approximately
25% less storage for weights and reduced the number of weight updates by approximately 420/.

Timings were also conducted using a Sun Workstation. The single network required 5.39
seconds/iteration to train, or a total of 3773 seconds. Two timings must be considered for the decision tree
network. First, code was written to train the networks on a single processor machine. The total time was
402.8 seconds However, one of the advantages of this architecture is that all five networks can be trained
in parallel. Thus, a five processor machine, or five processes running on five dedicated workstations, can
produce the weights in approximately 168.4 seconds, or the maximum of the five independent training
times. Thus, training times were reduced by 89% for the single processor implementation and 95% using
parallel training. Note that the number of weight updates is reduced by 42% while training time is
reduced by 89% even for the sequential implementation. This difference can be attribued to the fact that
the amount of time required for a weight update is dependent upon the size of the network.

Classification accuracy was also measured. The single network had an accuracy of 100% on the training
vectors and 90% on the testing vectors. The multi-stage network also classified 100% of the training
vectors and 90% of the training vectors correctly. Thus, performance was not affected and the time and
space required to achieve this performance were significantly reduced. Note also that the switching
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netwock was able to identify the correct lf network on the first attempt 100% of the tia for the training

data and 98.7% times for the ting data.

CoacJNioa

This research attacks the problem of pattern classification when the number of classes is large and rapid
traiing time is necessary. An emphasis was placed on designing a topology which could exploit large-
grain parallelism or benefit from a distributed computing environment. The approach is to cluster the
classes, use a neural network as a switch to slect the appropriate cluster, and uilize neural networks to
build intracluster separating surfaces. The switching network and the leaf networks can be trained in
parallel as can instances of the clustering algorithm with different numbers of seed points. Experiments
using this topology have produced classification accuracy comparable to that generated by a monolithic
back propagation network and training times have been consistently reduced. For the multi-font character
data, a spedup of afactor of 20 was achieved including the time required to generate the clusters. An
additional benefit of this structure is the creation of "plug-in" components, that is, individual networks
can be removed and replaced with more effective structures or retrained as additional data becomes
available without affecting the remaining networks in the hierarchy. Not all of our experiments have been
reported here, but our results consistently show accuracy comparable to that achieved by the best
monolithic back propagation networks with significant training time reductions.

Future work will concentrate on finding faster and more effective clustering algorithms as well as making
improvements to the network learning rules. One planned addition to the leaf networks is the
incorporation of the "don't care" training algorithm. In a don't care network, the separating surfaces are
combinations of surfaces which separate pairs of classes rather than the traditional approach of separating
one class from all others. The algorithm is folly described in [91 and has proven very effective in a variety
of applications. As with the structure described above, don't care networks build complicated separating
surfaces from simple components, each of which is easier and quicker to identify than the single
separating surface. Further reductions in training time should be possible with this method.
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1 Introductlon

Multi-Layler NPMWons (MLPs) are presently used in a large vatiety of pattern recognition tasks,
so they really constitute a clear example of general-purpos devices. However, when dealing with
rel-work! applications lik OCR, ML~s are seldom utilied in a plain form: in fa they are
usually tailored to speific rqie nts, and somnetimies they become part of more complex

danfyngsystem
This SUM from the fact that, although its operation principle is quite straightforward, yet t

design of an efficient MLP classfe constitutes a complex task, since at least three main issues
are to be considere.

1) ER Imental- results clearly show that pedrforance cannot be set fre from the way
information is encoded into the examples. Data Prep rocessing strategy thus assumes mjor
relevance, in that it can dramatically affect the final result as well as the amount of resources that
suffices to achieve it;

2) Given the application, we would likm to detennine the optimal Network Architecture by
Means of few spcfctosand design rules. As a matter of fact, such process instead relies upon
heuristir -hoices;,

3) The Larning Procedure usually involves several parameters. Again, their values must be
determined mainly on a trial-and-error basis, especially if advanced technques lik weight deca(ii
are, adopted.

It is thence evident that additional hints are needed in order to properly address the desgn
stgy. In fact, several solutions have been proposed that exploit suggestions often provide by
the applicaion itelf. For instance, several works are concerned with prior extraction of relevant
featture from the raw data- this is done by means of traditional algorithmstli, by setting up hybrid
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ntwArP.41, or via highly constrained achitectur with several hidden layers 5) that apply to
MLPs ome ideas owned by the Neocognitronfl' An alternative interesting approach leads to the
deffaition of MLP committes in conjunction with data resampling and the generation of synthetic
patternm.

On the other side, we nmst take into account the existence of conventional techniques that
already proved to be very effective, especially in the OCR fieldl's. Compared to them, Artificial
Neural Networks can rely on their own intrinsic, massive parallelimn but this winning
characteristic cannot be exploited by softwre simulations on serial processors. So we think that it
is required to give priority importance to the hardware fesUbility of the proposed solutions. This
concept, while forcing us to cope with stringent constraints, amazingly turned into a guideline
along the formulation of those answers to the above issues that are described in the following
sections.

2 Data Preprocessing

For our training expeimnents we chose a database of hand-written digits collected by the US
National Institute of Standards and Technology (NIST). It consists of 223125 samples stored as
binary images inside ti of 128* 128 pixels each.

We performed only scaling operations on the original data to produce patterns with specified
dimensions and number of grey levels. For this purpose we developed two different algorithms:
the first one forces the character to "touch" all four borders of the output image, while the other
one preserves its original aspect ratio.

At first we utilized such procedures to build two distinct training sets of 16* 16 binary patterns.
We then carried out several simulations using two copies of the same MLP to assess the best
alternative solution. Unfortunately, in any case we did not obtain encouraging results. However,
we achieved substantial improvements by averaging the responses of the two nets. This fact
suggested the opportunity of feeding a single MLP with both versions of the same data. In order
to reduce the number of input components without losing information, we decided to use smaller
patterns (8*8) with an higher number of grey levels (64).

Fig. 1 shows some examples of patterns that have been subjected to this kind of twofold
preprocessing (only 5 grey levels are displayed).
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3 Network Architecture

In view of future hardware implementmion, we identified three primary requirements to be
followed in the architectura definition of the net:

1) Every neuron must have a limited number of synapses (we imposed a maximum of 32 plus
the threshold);

2) Interconnections must be planned so as to allow an easy routing of the communication lines;
3) No additional constraints specifically related to OCR are to be imposed, so in principle the

same solution can be directly utilized for other classification tasks, or scaled to fit their
requirements.

We therefore designed a MLP provided with modular architecture. The number of modules
equals that of the classes to be distinguished. Every module can be viewed as a partially connected
subnet with only one output neuron.

Fig. 3 emphasizes the general organization of the net: in particular, it can be seen that different
modules do not share any connection. We can take great advantage of this, because we can plan
to physically realize only few modules and then multiplex them. Their actual number can be
settled to allow an efficient pipelining of the preprocessing stage with proper MLP operation.
Moreover, this highly parallelizable structure guarantees low spatial cross-talk among hidden
neurons, thus resulting in a fairly high convergence rate during the training phase[91.

Fig. 4 shows the inner structure of the single module. The output neuron is completely
connected with the hidden layer of 32 elements. At its turn, each hidden unit has access to only 28
input components in a cyclic, sequential fashion: i.e., inputs 1-28 are connected to the first
neuron, inputs 29-56 are connected to the second neuron, .., inputs 113-128 and 1-12 are
connected to the fifth neuron (that depicted dark in the figure), and so on. These choices take care
of two important features: first, each module covers the input vector an integer number of times,
so that the very same connection scheme is preserved along the network; second, different hidden
neurons in the same module are connected with different subsets of the input vector.
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4 Learning Procedure

The special architecture of the net had a profound impact on the learning strategy itself In fact,
we noted that in this case random initialization of the weights could be avoided. We therefore
started with null values (an entire class of MLPs with logistic neurons and generic number of
hidden layers can be initialized in this way. Details are in 1101). Such a chance carries some
interesting properties:

1) We get rid of one heuristic parameter, i.e. the maximum absolute value of the initial random
weights;

2) Since neurons are provided with logistic transfer function, they lie in the farthst state from
saturation. In other words, they are maximally sensitive to the error signal.

Of course, it was necessary to avoid the sudden spreading of weight values towards a
substantially random distribution after few updatings. To do this, two solutions appeared that
took the serious drawback of slowing down of the system evolution. That is:

1) Performing a by epoch training;
2) Using low learning rate.
Concerning the first point, we found a satisfactory trade-off by making one update every 100

patterns presented to the net, thus realizing an intermediate "batching" of the error back-
propagation.

We then started with low learning rate (0.01), and then changed its value according to the
V~gl adaptive technique[lM. After 100 training epochs, we halved all the weights and kept on with
the same procedure for 50 additional epochs. Although this operation can be considered a very
crude form of weight decay, nevertheless it have already proven to be quite effective[121.

Figures 4 and 5 show the behaviours of the learning rate and of the Mean Square Error (MSE)
on the outputs vs. the number of training epochs. It should be noted that, as long as the learning
rate increases, MSE tends to saturate until it stops decreasing. When this happens, the learning
rate gets halved, thus allowing narrower zones of the error surface to be explored. As a result,
MSE starts going down again.

Lewang Rat. vs Number of Trining M MSE vs Number of TronkVi Epochs
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5 Performance Evaluation

In June 1992, NIST organized a world-wide contest with the purpose of evaluating the state of
the art in the OCR field. For what concerns hand-written numerals, NIST provided a suggested
training set (the one we previously described) and a test set of 58646 samples purposely taken
from a very different population. Therefore, recognition performance on the latter database is very
revealing about the generalization capability of the system. We preprocessed such samples in the
same way we did for their training counterparts (except for the fact that in this case we used only
16 grey levels), and then we tried to classify them by means of our modular MLP.

In particular, we were mainly interested in checking the behaviour of the net when constraints
on the resolution of both memory and computing elements are applied[1 .141. We then quantized all
the weights using 6 bits, and the trander function of the hidden neurons using 4 bits. Here output
neurons are not involved. In fact, since their transfer function is monotonic, we can determine the
winning class directly on their activations. In analog implementations these quantities are usually
expressed in terms of currents, and very simple circuits can be designed to select the highest
one1 15J.

With this configuration, when we forced the net to take a decision anyway, we achieved 3.69%
error rate on the NIST Test Set. It is worth nothing that performance worsening is very limited in
comparison with the usage of floating-point weights and neurons, since it amounts to about 0.1%.
This stems from the fact that weight values result more uniformly distributed once decay is
applied and additional training epochs performed.

We then rejected the most dubious cases by imposing lower thresholds onto the winning
outcome: clearly this is not the most effective solution, since the amount of information provided
by the net is not fully taken into account. However, it has been chosen for its simplicity. Fig. 6
smmarizes the results we obtained: dots in the graph show the behaviour of the error rate with
regard to the percentage of rejected samples.

Emi Rate vs R*jwu-m, Rat. on NIr Thut Set
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6 Conclusions

We showed how a large, real-word task like the recognition of hand-written numerals may be
efficiently and economically aomplished by means of a rather general-purpose MLP. In fact, our
classifier correctly recognized more than 96.3% of the samples contained in the NIST Test SeL
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Therefore, it ranks sixth in the corresponding graduatel list even in the presence of the constraints
we imposed for hardware fea'Ribility purposes.

We want to point out here ie plainness of the solutions that allowed us to achieve this result:
no complex features are extracted from the raw data, no "a priori" knowledge about the problem
to be solved is used in the architectural definition of the net. Moreover, the sysiem has a total
amount of 9610 fe prazners: soit isabout as large as acompletely connected MLY with 128
inputs, one hidden layer of only 69 units, 10 outputs.
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Abstract

A novel method for recognizing unconstrained handwritten numerals based on the self-organization
of local feature maps is presented. The proposed network is hierarchically configured with three blocks
of layers. The bottom layer has local feature maps that represent distinct shapes and locations of local
features of individual numerals. Those feature maps are self-organized into groups to represent the
fundamental composition of individual numerals. The middle layer has maximum selection networks,
which generate an output from each feature group as the matching score of a local feature that has
maximum matching with the given input sample. Finally, the top layer is a backpropagation network
for making a final decision based on the outputs of individual feature groups of each numeral. The
proposed network achieves robustness to translation, rotation, and scaling by defining areas of feasible
feature locations in the feature maps defined in both the Cartesian and Polar coordinates. Distortion
is handled by a number of representative shapes generated by self-organization of each feature group.
The self-organization of feature maps is accomplished by automatically recruiting local features and by
describing their correlations from training samples based on the evaluation of network performance. The
experimentation with the CEDAR' data base demonstrates that the proposed method is superior to the
existing benchmark results [1, 2].

1 Introduction

Handwritten zip codes and character data manifest that real data are subject to large amounts of distortion,
scaling, and rotation. But, many of the previous approaches developed for off-line handwritten character
recognition can only provide a partial solution to those real-world problems. Thus, it is essential to develop a
recognition system robust to various forms of deformations present in real data, yet computationally efficient
for real-time applications.

As a means of achieving the above goal, we have proposed a Dual Cooperative Neural Network (DCN) in
which a Cartesian Network (CN) and a Log-Polar Network (LPN) cooperatively determine the pattern class
[3]. DCN is intended to combine the strengths of the Cartesian and polar coordinate data representations:
for instance, rotated and/or scaled input patterns in Cartesian coordinates appear in polar representation
as horizontally or vertically shifted patterns, which can be easily detected by nearby horizontal or vertical
shift invariant feature detecting cells in polar coordinate feature maps. Furthermore, the discrimination
power of DCN is increased by the two sets of local feature maps that are selected independently as the most
salient geometric features in the Cartesian and polar coordinates, respectively. The proposed DCN has been
shown effective in handling handwritten numeric patterns corrupted by translation, rotation, scaling, and
distortion, as demonstrated in [3].

In this paper, a new network architecture is proposed for DCN with the emphasis on the self-organization
of local feature maps. The proposed network architecture has a hierarchical structure with three blocks of
layers: a local feature map layer, a maximum selection/correlation layer, and a decision layer with back-
propagation networks (BPNs). In network learning, not only the weights of BPNs in the decision layer are

1The Center of Excellence for Document Analysis and Recognition, SUNY, Buffalo
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Figure 1: Proposed Network Architecture

iteratively updated, but also the features of the local feature map layer are automatically recrutited for each
feature group whenever necessary for improving the network performance. The proposed self-organization
of feature maps avoids the difficulties of selecting shape features in Neocognitron approach [4], and of de-
termining the number of required bidden units or local features in the backpropagation based network
approaches [1, 2]. The network achieves the robustness to translation, rotation, and scaling variations based
on the tolerance of feasible feature locations in the feature maps defined in the Cartesian and polar coordi-
nates. Whereas, the robustness to distortion and thickness variations comes from a variety of representative
feature shapes defined in the maps by self-organization. The proposed network has been successfully tested
with the standard CEDAR data base.

2 Network Architecture

Fig. 1 illustrates the proposed network architecture. At the bottom layer are the local feature maps. The
local feature maps are to represent distinct shapes and locations of local features of individual numerals. To
represent the fundamental composition of individual numerals, local feature maps are organized into groups.
For instance, there are 5 feature groups defined for the numeral 2 in CN, and 4 feature groups in LPN.
For the entire numerals, 47 feature groups are defined in CN and 41 in LPN. Each group provides a single
matching score to be used for the final decision.

A feature map, composed of a shape map and a position map, represents a cluster of features similar in
shape and location. The shape map specifies the representative shape of the feature map, and the position
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Figure 2: Alternative Network Architecture

map defines the tolerance in pMsition based on the weigts assigned to each cell of the feature map. The

network recruits feature maps for each group based on self-organization.
At the middle layer is the maximum selection/correlation network. It simply generates an output from

each feature group as the maximum matching score with the given input sample, or, as the matching score

of a feature map that provides the maximum correlation with the given input sample in a global context, as
a more sophisticated matching scheme. At the top layer are BPNs for the final decision based on the outputs
of individual feature groups of each numeral. A BPN can be defined for ON and LPN either individually or
as a whole.

Fig. 1 illustrates a network architecture with three layers, where the maximum selection network is used
for the middle layer, and single layer BPNs are used for generating outputs of ON and LPN, respectively.
The outputs of ON and LPN are merged at the top for a final decision under the consideration of the rank of
individual numerals. This network architecture emphasizes simplicity so that the network can show a high
degree of generalization.

Fig. 2 illustrate an alternative, but more sophisticated, network architecture. First, it uses maximum
correlation networks, instead of maimum selection networks, at the middle layer. The maximum correlation
network maintains the correlation connections of feature maps among individual groups of a numeral, and
generates an output from each group that provides the maximum correlation with the input. The correlation
among feature maps for numeral 2 in cN is shown in Fig. 2, where each correlation node, ma, connects
the feature maps of different groups to represent the contextual information among feature maps. Each
correlation node makes a sum of the matching scores of its feature ap f te a de matching sores of the
feature maps corresponding to the correlation node which scores maximum are selected for the input to the
next layer. The correlation nodes are also self-organized. In addition, at the top layer, a 2-layer BPN is used
for making a final decision.
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Figure 3: (a) Overall Learning Scheme (b) Initial Feature Map Generation

3 Network Self-Organization

The overall learning scheme is shown in Fig. 3(a). Initial feature maps are self-organized from the local
features selected by the operator. Then, based on the initial feature maps, the weights, WC and WP, of
BPNs are trained by the backpropagation learning to reduce the error. The weight training continues as long
as the performance of the network shows any improvement. When the network performance is saturated,
either we generate new feature maps, or reinforce the existing feature maps based on the rejected and
incorrect samples. This process is iterated until the network performance reaches a desired value. In what
follows, we describe the above procedure in more detail.

3.1 Initial Feature Map Generation

In this stage, initial feature maps are self-organised in each feature group of the numeral from teaching
samples and their features selected by an operator. Fig. 3(b) shows the initial feature map generation. Some
eTamples of teaching feature selection are shown in Fig. 7, and their generated features for numeral 2 are

shown in the first row of Fig. 5.
Initially, there edsts no feratureture group. The number of feature maps in each feature

group are increased by feature comparison. When a teaching sample is given, the first teaching feature, I,
is compared to the existing reference features of the corresponding feature group. Feature comparison is
done by measuring the sim ari(SM ) between the input and the reference features. The Sa is defined
by SM , 1- DM, and DM is a disparity measurement with normalized sizes. If a similar feature dose not

exist in the corresponding feature group, that is, the SM is less than the given threshold (in our experiment,
the threshold is set at 0.8), the input feature is recruited as a new reference feature, R. Thus, a new feature
map is generated by copying R = I and by initializing the corresponding position weight, Wfa, the i, jth
cell of the kth feature map,

wne = I +_ 1 if WuLo = (1)s hon- -"ek. it otherwise

where m is the number of the teaching features for each numeral, and n is the number of updates of
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the corresponding weight. Also, the position weights of the nearby cells, Wk,,, are initialized by Wk, =
G(p, q)W,, where G(p, q) is a slightly decreasing function by the cell position, and has the highest value in
i,jth position. These neighbonng weights are initialized together to tolerate positional errors in CN and to
tolerate scale and rotational errors in LPN.

Then, the next input feature is compared to the existing features of the corresponding feature group. If
there exist similar features, the most similar feature is modified to accommodate this new input feature by
updating the feature map :

= Ri'J + _( - (2)
n

where n is the number of updates for that reference feature. Thus, the local features represented in the feature
maps have blurred shapes as the result of the generalization of accommodated samples. This provides
the local feature maps with some capability of handling local distortions. Also, the position weights of
corresponding and nearby cells are reinforced. These procedures are repeated until there are no more
teaching samples selected by the operator.

3.2 Weight Training

Since the initial feature maps are formed by the local feature information of the given teaching patterns,
the network needs to accommodate global information of teaching patterns by training WC and WP for the
different contribution of each feature group in each numeral.

The weights are trained by the backpropagation learning [5] to reduce network error, Ep, defined by

Ep= EZ pi - Op,) 2. (3)

Here, t, is the desired output value (1 for true, -1 for others) and op, is the actual output value for the ith
output unit of the pth teaching pattern with a sigmoidal activation function. And, the overall network error,
E,,ma, is defined by

Erm. = -M-T E,. (4)

where M is the total number of class, and N is the total number of training patterns. Weights are updated
by

= 8Ep = (1 - 2,)(tp, _ op,)MC, (5)

where 1 is a learning coefficient (0.01 in our experiment), and MC,, (or MPj) is a maximum matching score
of each feature group.

During the experiment, the patterns were repeatedly presented in a constant order. The weights were
updated after each presentation of a single pattern rather than updated by a true gradient procedure (av-
eraging over the whole training set before updating the weights), due to a large redundancy in the data
base [1].

3.3 Self-Organization of Feature Maps

After each iteration of weight updates, the error rate and E, were measured. If the error rate was
improved, weight updates were continued. But, when there is no more improvement in error rate with
iterative weight training, the network may need new shape features from the rejected and incorrect training
samples. For the selection of optimal or near optimal features, a self-organization of local feature sets for
individual characters, as a part of supervised network learning process, is needed. Thus, new shape features
are captured and added to the network, and similar features are accommodated to the existing features of
the network from the training samples.

Fig. 4 shows examples of the feature map generation/modification. Initially, only the first 2, which was
selected by the operator, was registered in the network as a reference sample. Assuming that the second 2 is
given to the network and the network result is unclear (possible for rejection) or incorrect, then new feature
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Figure 6: Unconstrained Handwritten Numerals from Zip Codes (Examples of correctly recognized teat
patterns)

maps can be generated from this sample. Firstly, the output response of each feature group is examined.
To select a position of a new feature in each feature group, the position with the highest matching score
among the currently registered feature maps is selected. And, a new feature is captured from the rejected
or incorrect pattern according to that position information. Then, the shape of the captured feature is
compared to the existing features in the same feature group. If there exists a similar feature, the shape and
positions (weights) are accommodated by averaging. If not, this feature is registered as a new feature in that
feature group by creating a new feature map (shape and positions). Thus, for the second 2, one feature is
blurred to the existing similar feature, and four features are generated and registered in each feature group.
For the third 2, only one feature is generated, and four other features are accommodated to the existing
features. This proe is continued until all the rejected and incorrect patterns are examined.

Fig. 5 shows the generated reference features for numeral 2 in CN with 200 training patterns. Features
in the first row show the generated reference features in each feature group from the operator given teaching
features. G1 indicates the first generation of new features after the 30th iterations of weight updates, and
G2 and G3 show the next generations of new features.

4 Experiment

In this experiment, the proposed network with maximum selection network and single layer BPNs in each CN
and LPN was implemented and tested. Weights, WC and WP, are fully connected with 10 output units, and
each corresponding outputs of the networks are merged by adding output score and rank together. When an
input pattern is given, it is size normalized to 58x58 for CN and log-polar transformed to 23x70 for LPN
(instead of 23x60 to handle boundary portions of the transformed input).

4.1 Data Base

Real handwritten sip code data provided by CEDAR were used for the experiment. These are binary
handwritten digits segmented from sip codes with a resolution of 300 ppi (12 pixels/mm). Some examples
are shown in Fig. 6. It can be seen that the data usually contain distortion, scaling, thicknes variations,
rotation, trnslation, noise, etc. From this data base, the initial 2000 patterns (200 for each numeral) were
used for training, and 2213 patterns2 were used for testing in this experiment.

2 CEDAR reCOmMMnMd tet get

111-216



Figure 7: Examples of Feature Selection in CN and LPN

Table 1: Generated Reference Features in CN and in LPN

CN Initial G1 G2 G3
0 7851196 109614127 109715127 119716137
1 445 778 778 778
2 10881113 1815151922 2018172124 21 19182326
3 10910912 121112912 141214913 1512141014
4 1820181713 2224222016 2525242119 25 25 25 21 19
5 1218191516 1519221717 1620221717 1621231818
6 11141517 14162121 14162121 15172222
7 15111111 18141213 19151313 19181314
8 2021 141517 3133252729 3133252729 33 35 28 29 30
9 1615201111 2020271614 2122281614 2123281614

Total Ave. No.) 590 12.5 790 (16.8) 828 17.6) 86 (18.4)

LPN Initial GI G2 G3

0 15169111210 18 1810121410 19 18 10 13 14 10 19 1810131410
1 54 76 76 76
2 16 21 14 14 24291921 24292022 26322123
3 15181718 21242120 23272222 24272222
4 1513 9 14 20191317 21231317 23231317
5 17121515 26182221 29192624 34202825
6 9 11 19 20 13142124 15 15 23 26 16152431
7 111599 15201213 15211213 15221214
8 18191715 28282625 30302826 31322927
9 161617912 24 2124 13 15 29 25 26 15 17 3125 28 18 17

Total (Ave. No.) 56 (13.8) 766 (18.7) 824 (20.1) 865 (21.1)
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Figure Network Performance : with rejection when the difference of two strongest outputs are within 5%.

Table 2: Various Test Results for 2213 Test Patterns

End of 1 Initial __G___ G2____ I___

w/o rejection 1 95.2 0.0 4.8 196.3 0.0 3.7196.4 0.0 3.6 96.7 0.0 3.3.I
rejection w/ 5% 93.9 3.3 2.8 195.2 2.0 2.8 195.3 2.2 2.6 95.4 2.3 2.3

2.0% error II92.9 5.1 2.0 193.5 4.5 2.0194.8 3.3 2.0 95.0 3.0 2.0
1.0% errorE 87.3 11.7 1.0 90.6 8.4 1.0 92.5 6.5 1.0 93.0 6.0 1.01

4.2 Results

Initial networks were formed with about 20 to 30 training samples of each numeral in each network. Examples
of operator selection of teaching features are shown in Fig. 7. The number of selected features are different
depending on the numeral. 47 features were selected in ON and 41 in LPN. Table 1 shows the number of
generated reference features in each feature group of the numeral with 2000 training patterns. At GI, many
new feature were generated, but at G2 and G3, only small number of new features were generated and added.

The network performance is shown in Fig. 8. Each iteration involves presentation of 2000 training samples.
In Fig. 8(a), DCN (solid line) represents merged results of ON (broken line) and LPN (dotted line). From
the initial networks, after 25 iterations of weight updates, the network performance was almost saturated,
that is, no more improvement in accuracy was obtained. Thus, at GI, new features were generated from
the rejected and incorrect patterns by the network self-organization. By recruiting new necessary features,
the network performance was immediately improved both for training and testing patterns. Fig. 8(b) shows
the rejected and incorrect training patterns as learning progresses. Fig. 8(c) and (d) show the results with
2213 test patterns. We can see the effectiveness of the dual cooperation of networks by the performance
improvement particularly in the testing patterns. Test results show 95A4% of accuracy with 2.3% rejection
and 2.3% error for test patterns, and 99.8% of accuracy with 0.2% rejection for training patterns.

But, for a practical and accurate evaluation of the proposed network, and for a fair comparison with [1],
we have measured the accuracy and rejection rate for 1% and 2% error of the test patterns. Those results
are shown in Table 2. We can see the robustness of the proposed network particularly in 2% and 1% error
measurement. At the end of G3, our system rejected 3.0% for a 2.0% error and 6.0% for a 1.0% error, which
is about 3% better than [1] in recognition rate. Fig. 9 shows incorrectly recognized test patterns for the 1%
error (Fig. 9(a)), for 2% error (Fig. 9(a-b)), and for rejection within 5% (Fig. 9(a-c)). Some of the patterns
were incorrectly recognized mainly due to their large size.

With this experiment, we can conclude that the network performance can be greatly improved 1) by
combining the iterative weight training of BPNs and the automatic recruitment of local feature maps in each
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(a)

(b)

(c)

Figure 9: Incorrectly Recognized Test Patterns: (a) 1% error, (a-b) 2% error, and (a-c) rejection w/ 5%

feature group, and 2) by combining two independent, cooperative networks, CN and LPN. Comparing to
other works [1, 2, 4], our proposed network with a new learning scheme was tested with totally unconstrained
handwritten numerals without any complex rotation and/or thickness normalization steps and without any
noise removal process.

5 Conclusion

In this paper, a new hierarchical network structure based on self-organization of feature maps to recognize
unconstrained handwritten numerals has been discussed, and very promising results were obtained. Our ap-
proach can give robustness to various deformations such as translation, rotation, scaling, and even distortion
and thickness variation. Complete experiments by including the maximum correlation layer and by adding
more training patterns are in progress.
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Abstract: Classification methods often perform significantly below Bayesian limits in com-
plex, high-dimensional classification tasks because of model bias, inadequate training data and
noise/variability in the data. When several classifiers are used for a given task, selecting one
awthed over all others discards potentially valuable information. Strategies aimed at suitably
combining the results of multiple classifiers are expected to perform better than any single
method, and reduce overall bias and noise. An underwater passive sonar data set consisting
of over 1000 samples processed to produce different 25-dimensional and 24-dimensional feature
vectors is used in this study to examine an evidence combination framework. An analysis of the
conditions that the data sets must satisfy, and the conditions under which improvements can be
obtained is provided, and results are presented for hybrid networks using both local and global
classifiers.

1 Introduction

Supervised feed-forward neural networks have been applied to numerous classification problems
in signal processing and pattern recognition [5]. These include the Multi-Layer Perceptron
(MLP) employing sigmoidal "hidden units," as well as kernel-based classifiers such as those
using Radial or Elliptical Basis Functions (EBFs) [2, 6]. Such networks can serve as non-
parametric, adaptive classifiers that learn through examples [5], without requiring a good a
priori mathematical model for the underlying signal characteristics.

Finding the best-suited network and the optimal selection of features for classification is not
generally possible beforehand. Concatenating all types of signal descriptors into a single input
vector is undesirable for several reasons. First, a large input layer may lengthen the training
time and complicate parameter selection. Second, mixing conceptually different features may
decrease the relative importance of the most discriminating features. Therefore, it may be
beneficial to train separate networks on distinct data sets obtained from the same physical
signal by using qualitatively different feature extractors. Similarly, different types of FFNs have
different characteristics. For example, EBFs are more locally tuned than MLPs. Furthermore
each network introduces some bias, and combining different networks can reduce the bias and
make the classifier more robust [7].

In the context of supervised feedforward networks, interpretation of network outputs as
Bayesian a posteriori probabilities [8] provides a sound basis for combining the results from
multiple classifiers to yield more accurate classification [1, 3, 4]. The concept of stacked gen-
eralization, an inductive approach to combining generalizers, has been recently introduced by
Wolpert [9]. A framework for hybrid neural networks in regression estimates was discussed in
[7].
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In this paper, we focus on the statistical aspects of such combining methods. Errors made by
different classifiers are labeled and used in estimating potential improvements. First we provide
a motivating example and analyze the properties of both correctly and incorrectly classified
patterns. Then, we present a framework in which combination results can be studied. Finally,
we show how the theory can be applied to the data set of Section 2.

2 A Motivating Real Life Example

In this section we motivate the combination framework by studying a real life classification
problem, where the objective is to correctly identify different underwater acoustic signals. Since
neither the important features of the data, nor the best classifier to process them is known
beforehand, two classifiers and two features sets are used in the study.

Table 1: Data Description.

Feature Set I Feature Set 2
Class Description Training Testing Training Testing

1 Porpoise whistle 116 284 142 284
2 Ice cracking 116 175 175 175
3 Whale cry 1 116 129 129 129
4 Whale cry 2 148 235 118 235

Total I 496 823 564 823

The first classifier (Cl) is a fully connected MLP with a single hidden layer consisting of 50
units, and the second classifier (C2) is an EBF with 50 kernels. In the first feature set (FS1), each
sample is represented by a 25-dimensional vector comprising of 16 Gabor wavelet coefficients,
8 other temporal descriptors and 1 signal duration indicator [1]. The second feature set (FS2)
contained 24-dimensional vectors each comprising of 10 reflection coefficients of energy segments
obtained through short time windows, 10 reflection coefficients computed over the entire window,
3 temporal descriptors, and 1 signal duration indicator. Table 1 shows the number of classes,
and the number of training and test samples available for each feature set. The test patterns in
each feature set represent the same raw data.

Table 2: Results of Individual Classifiers.

Classifier/ % Correctly Standard 95% Confidence
Feature set Classified Deviation Interval

C1/FS1 92.66 .63 92.21-93.11
C1/FS2 88.60 .73 88.08-89.12
C2/FS1 91.30 .64 90.84-91.76
C2/FS2 82.02 2.22 80.43-83.61

Table 2 provides the classification results for each individual classifier/feature set pair. The
best performance is achieved by C1 using FS1. A naive approach is to select this combination
and ignore the other three. An important fact that must be remembered however is that since
each pattern is assigned to the class whose output unit has the largest activation value, valuable
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information may be discarded during this "max" selection step. A more scrutinizing look reveals
that there are significant fluctuations in the activation values of the winning classes, depending
on the classifier used and on whether the class chosen was in fact the correct one or not. Since
these activation values approximate a posteriori probability distributions [8], they can be used to
combine information in different ways. Two such combiners will be examined in this study. The
first combiner (AVE) will average the output activities of the sources and select the maximum.
The second combiner (MAX) will assign the pattern to the class whose output has the largest
activation among both sets of output vectors. In the following section we provide a framework
in which the combination results can be interpreted and studied.

3 Combining Framework

In this section we formalize the conditions that are necessary for a combiner to improve the
classification rate of different classifiers. Given any data set, the first stage in classification tasks
is to extract the features that will be used as inputs to the classifier. Different feature sets
will capture different aspects of the data. Similarly different networks will emphasize different
properties of the input space. If a combiner is to improve the results, it must utilize all the
pieces of information that are available through the individual classifiers. This section develops
a framework highlighting the conditions under which such improvements can be expected.

Let D be a data set, and let Dt, and Dtst be a partition that represents the training and
test sets respectively. A network f assigns a pattern x E Dtt to class Ci if the ith output unit
f(z)i, has the largest activation value among all output units. Let d(.,-) be a distance metric in
the pattern space. An e-neighborhood N(z; c) of x is the set of all points y such that d(x, y) < E.
A deleted Eneighborhood N*(x; c) of x is N(x; c) - {x}, i.e., the point x is removed.

Definition 1 A data set D, partitioned into n classes C 1,..., C,, , is consistent if Vx E D,
3 a deleted e-neighborhood N*(x; c) of x s.t. Vy E N*(x; c) , x E Ci > y E Ci. Furthermore,
N*(; c) f"l j4 $ and N*(x; e) flDtt $ 0.

A data set is consistent if there are no point-classes, i.e. classes consisting of single isolated
points. It is important to note that consistency does not require classes to be contiguous, just
that two points sufficiently close belong to the same class, and that the training and test sets
represent the data equally well.

Definition 2 Let E[f()i] and E[f(z)i] represent the average activations of the outputs corre-
sponding to the correct class, computed over N(x; c) and N(z; c') respectively. A lata set D is
balanced with respect to a given function f, if E[f(x)i] = E[f(z)i], for any two arbitrary
N(x; c) and N(z; c).

A data set is balanced if the expected activation value of correctly classified outputs is
independent of the samples chosen.

Definition 3 A network f is properly trained if Vx E Dtst that has been assigned to class Ci,
f(a)i is a monotonically non-increasing function of d(x, y) , where y E Ci, y E Dt. Moreover
Vz EDtr, d(,V,y) <_ d(x,z).
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A network is properly trained if the largest activation value of the output for a test pattern
is a non-increasing function of its relative distance of the pattern to the closest training pattern
of the correct class.

Theorem 1 A network properly trained on a balanced, consistent data set will have higher
expected activation values for correctly classified patterns than for incorn ectly classified patterns.

Proof: Let x E Dtt. Further, let x be misclassified in class Ci (target class was j A i). Let

y E D&, be the closest pattern in Ci to x. Since the data set is consistent, there exists a deleted
e-neighborhood N*(y; e) of y such that N*(y; E) C Ci. Since x V Ci, we also have z V N*(y; c).
Therefore d(z, y) d(z, y), Vz E N*(y; E), and, since f is properly trained f(z)i >_ f(x)i,
Vz E N*(y,e) fl Di.t. So, E[f(z)i] >_ f(x)i where E(.] is computed over N(y, C) n Dtt. Now,
for all the erroneously classified patterns x, such a neighborhood exists. Furthermore since
the data set is balanced the expected valued of the activation for correct patterns is constant.
Therefore E[f(z)i] 2! f(a)i, for all erroneously classified patterns x, on any neighborhood
N(z,c) C Dtt. Therefore E[f(z)i] E[f(x)i], where z and x are correctly and incorrectly
classified patterns respectively. 0

Definition 4 Two data sets D1 and D2 are mutually balanced if both are balanced with respect
to f and E[f(x)i] = E[f(z)j], for any two arbitrary N(x;c) C_ D1 and N(z;t') C D 2.

It is important to use mutually balanced data sets with combiners in order to avoid overem-
phasizing one classifier over another. If the output activations of two classifiers differ greatly,
selecting the output with the largest value, or performing an arithmetic average will not nec-

essarily improve the results. The contribution of Theorem 1 is that it predicts the possible
improvements after a simple examination of the classifier outputs. If the average output acti-
vation of correctly classified patterns is higher than the average output activation of incorrectly
classified patterns, then the AVE or MAX combiners are expected to correct errors where at
least one of the classifiers provided the correct response1 .

4 Results

The previous section provided a framework in which combination results can be anticipated.
Furthermore, Theorem 1 provides some insight on when improvements can be expected, namely
when on an average, the activation values for the correctly classified patterns are higher than

the activation values for the incorrectly classified patterns, for both classifier/feature sets that
will be combined.

Since the basis for combining is that correctly classified patterns carry more weight (or more
information) than incorrectly classified patterns, it stands to reason that as long as the correctly

classified patterns are more dependable, combining will improve results. Table 3 provides the
average activation value for the highest outputs (winning classes) of each network and data set
combination for which the correct classification percentages were presented in Table 2. The

'If the values are very similar, hypothesis testing may be conducted to estimate how many patterns can be
expected to be corrected.
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Table 3: Average Output Activation Values.

Correctly Classified Patterns Incorrectly Classified Patterns

Classifier / Data Set Activation Variance Activation Variance
Cl - FS1 .9723 .0121 .7811 .0666
C1 - FS2 .9537 .0260 .5901 .1628
C2 - FS1 .7739 .0720 .4786 .0315
C2 - FS2 .6346 .1432 .3850 .0709

averages are computed over correctly and incorrectly classified patt-rns. For example, the first
row says that when C1 was used on FS1, the average activation N : ie of a correctly classified
pattern was .9723, while the average activation value for an incorrectly classified pattern was
.7811.

Table 4: Combination Results

BEST AVE MAX LIMIT
C1-FS1/C1-FS2 92.66 95.24 93.46 97.21
C2-FS1/C2-FS2 91.30 93.34 91.76 96.96
C1-FS2/C2-FS1 91.30 92.95 92.10 96.84
C1-FS1/C2-FS1 92.66 93.03 93.35 95.02
Cl-FS2/C2-FS2 88.60 89.14 88.60 92.71
C1-FS1/C2-FS2 92.66 93.92 93.68 96.96

With four different ways of processing the data, there are six possible pairs of combina-
tions. Table 4 shows the combination results for each of the six pairs, using the MAX and AVE
combiners. The best result of the two sources (BEST) provides the base to measure the improve-
ments due to combination. The last column provides a theoretical limit on the improvements,
as obtained by a combiner that corrects all patterns that are correctly classified by at least one
classifier. The combinations that provided statistically significant improvements for at least one
of the combiners are given in the first two rows. The combination in the third row provided
marginal improvements that were at the threshold of statistical significance. An analysis of
Table 3 reveals that for the two combinations that provided statistically significant results, the
activation value for the correctly classified patterns in each sources was larger than the activa-
tion value for the incorrectly classified patterns on both sources. For the third combination the
average activation of incorrectly classified patterns in one classifier was statistically comparable
to the average activation of correctly classified patterns in the other classifier (77.39 - 78.11,
statistically). For the remaining three combinations where there weren't any statistically sig-
nificant improvements, the average activation of one classifier on incorrectly classified patterns
was higher than the average activation of the correctly classified patterns on the other classifier.

5 Discussion

A framework predicting combining results was developed and the predictions were tested using
underwater acoustic signals. The results reveal that the the framework was successful in pre-
dicting when combining would provide significant improvements. However, the improvements
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were short of the limits predicted by the theory. This discrepancy is mainly due to the fact that
the two feature sets are not totally independent, and noise and bias are not the only reasons a
pattern is incorrectly classified. Outliers, for example, are incorrectly classified regardless of the
features extracted to represent them. Furthermore, signal classes are not necessarily disjoint.
Thus, a more general framework where independence of classifiers and feature sets is not used,
needs to be developed. Furthermore this framework has to handle not only disjoint class mem-
berships, but also probabilistic classification, where only the likelihood of class membership may
be known.
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An Adaptive Resonance Theory (ART)
Neural Network for Synthetic Aperture Radar Target

Recognition and Classification
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Abstract - An Adaptive Resonance Theory (ART) neural network algorithm is used to aid the human operator in
the recognition and classification of target images from a synthetic aperture radar (SAR). The plasticity-stability
properties of ART allow realtime classification of both familiar and unfamiliar images. Computer simulation
demonstrates that the effectiveness of this approach in a noisy environment is dependent on proper utilization of
model parameters. The goal is an intelligent system which is capable of classifying surface ship combatants while
autonomously adapting in realtime to unexpected changes in the real world.

L Introduction

Neural networks have been touted as a powerful solution for many pattern recognition applications 1I, 161. The
concept of a "trainable" computer holds a great deal of potential for command and control systems that need to
dynamically adjust to continuously changing and unforeseen circumstances. One of the desired objectives for neural
networks is the ability to aid the human decision making process by off-loading some of the information processing
that must be accomplished prior to making a decision.

In combat systems today, there is usually no shortage of information. In fact, there is usually more raw data
than one person can process in a reasonable amount of time without some additional analysis aids. The military is
continually searching for the best decision aids, assuming that they are reliable, so that operators may perform more
effectively, especially in a combat situation. The ability of the computer to do certain tasks, such as spatial and
temporal pattern recognition, at which the human brain is adept, leads us to artificial neural networks which attempt
to assimilate those functions that the operator is too busy to do.

In [3 1, Carpenter and Grossberg apply the adaptive resonance theory (ART) to pattern recognition of binary data.

They have also applied ART 2 to pattern recognition of analog data in [2]. Srinivasa and Jouaneh [8] utilize a
combined invariance net and ART I network to achieve pattern recognition of binary inputs. In this paper, we will
explore a particularly useful application of the ART neural network to combat systems target detection, recognition
and classification. The input data used for this application are synthetic aperture radar images. The SAR provides
unique target signatures that can be converted to binary patterns for classification using ART 1. The goal of this
project is to devise an intelligent system which is capable of classifying surface ship combatants while autonomously
adapting in realtime to unexpected changes the real world scenarios.

The original adaptive resonance theory algorithm developed by Carpenter and Grossberg is a two layer neural
network with interacting layers [31. It was designed for the learning of recognition categories. The significant feature
of the ART network is that it learns or adapts to new inputs while at the same time attempts to retain its previously
learned information in some stable state. This ability to learn while retaining old information is known as the
plasticity-stability dilemma [I]. Essentially, the ART should be able to process and learn unfamiliar events while
remembering familiar events without re-classifying them. The ART used for this paper is basic ART I, which uses
binary data for its inputs. ART 2, which will be discussed later, is a follow on to ART I and allows for analog as
well as binary input data.
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Figure 1.Appicpio ATRT i Architecture [21

The one significant difference between an ART architecture and other learning schemes is that It is designed
to learn quickly and stably in realtime in response to a changing world with an unlimited number of inputs until
it runs out of memory. An ART network can classify information by adding neurons to its recognition layer
dynamically [3]. New learning does not replace previously learned situations and the vigilance parameter can be
adjusted to allow for a realistic number of neurons to be used in the structure of the network.

IL Application of ART in a Synthetic Apeduin Radar Environment

For the purposes of this paper, several assumptions and generalizations are made concerning the characteristics
of the synthetic aperture radar 7u. It is assumed that the radar is capable of providing adequate resolution to
accurately train the network. The radar return is approximated by a silhouette of some arbitrary surface vessel. Five
different types of ships were processed with significantly different silhouettes for classification. To investigate the
effect of varying target angles, these silhouettes were also rotated in perspective views. In all, each ship was
presented from 6 different target angles.

The silhouette of the ship becomes the input to the ART. In actual practice, the return would be processed prior
to analysis using equipment onboard the SAR platform. A 16 by 36 grid is overlaid on the silhouette (see Figure
2(a)). This grid is processed so that a square is represented as a binary one if more than 50% of that square contains
some return of the silhouette. The result is a 16 by 36 grid of ones and zeros which is, effectively, a binary
representation of the radar return (see Figure 2(b)).1i

The grid is assumed to be sized to the target in order to maximize the target usage of the grid from several
different target angles. The grid can be sized based on the range to the target and the target's approximate size based
on the return. The inherent assumption is that the SAR has a fine enough resolution return to accurately represent
the same class of ship from different target angles over a wide range of distances to the target. Each of these target

angles would be classified differently according to the ART; however, they are correlated at the output by some
post-processing mechanism to give th - operator the target classification, distance and approximate target angle.
Since each neuron classifies an individual target angle (six per ship), a simple logical OR of the six applicable
neurons for a specific ship would give immediate classification.

(a) Ship with grid overlay (b) Simulated, processed radar return from target

Figure 2. Grid Overlay for Target Data
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The grid sizes are proportional to the distance to the target. Obviously as the target gets farther away, it becomes
increasingly difficult to achieve accurate granularity on the grids. One solution to this problem is to change the
element size, such as combine four grid elements into one outside of certain ranges and then reclassify based on
this new data. The problem is that outside a certain range, all targets start to look the same and classification may
not be attainable. This is a problem inherent to the nature of the SAR itself 171.

In summary, the ART network will receive the processed radar data in the form of a two dimensional array of
ones and zeros. The grid provides the ART network with a binary array which the network converts to a column
vector for analysis.

There could be additional pre-processing done of the raw SAR data, such as classification of targets by size.
This would be a simple way to eliminate two targets of dissimilar sizes with similar superstructures. For example,
separate ART I networks could be set up for ships between certain lengths so that a single ART 1 would not have
to be particularly large in terms of neurons to cover all ships.

In the processed radar return, there may appear to be a considerable amount of white space around the target.
This white space is to allow for different target angles of the same ship and for the high noise area around the hull
of the ship where sea return is a major factor in signal loss and scattering. Significant pre-processing of the raw
radar data should give a clean grid similar to the one in Figure 2.

IIL ART I Network Design and hnplementation

The ART I network was implemented using MATLAB 4.0 [5]. A flowchart of the basic algorithm for this
problem is illustrated in Figure 3.

..... it v m f'ldl? ...... N.

Tr~oothe do&jit

FMek,-W_ to ..+ -

Figure 3. ART P Implementation Flowchart
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Architecture Implementation

The comparison layer is composed of a hardlumiter with three inputs: the input vector, the results of layer two
weighted by the layer I weight vector, and a bias (or gain) vector. The hardlimiter evaluates the sum of these three
vectors to produce a vector of ones and zeros. The bias vector is initialized to zeros, but switches to a value of -1.5
for the second run through this layer to check the validity of the winning neuron.

The recognition layer is composed of a competition algorithm with two inputs: the results from layer one
weighted by the layer 2 weight vector and a bias vector. This bias vector is used to eliminate neurons that have
been disqualified by the vigilance parameter. If a neuron is disqualified, its element in the bias vector will be set
to -100, thus effectively removing it from further competition. The Instar training algorithm [51 is used to adjust
both weight vectors of the winning neuron.

The vigilance parameter is set by the user, and it reflects the result of a bitwise AND operation between the
input vector and the pattern of the chosen neuron. The elements of the resulting vector are summed and divided
by the sum of the input vector elements. In this way, the vigilance parameter measures the percentage of ones in
the proper places.

Preprocessing

A grid of size 16 x 36 is superimposed on the radar image. The grid squares are then marked "I" if there is

a RADAR return, "0" otherwise. The result is a 16 x 36 matrix of "l"s and "0"s representing a rough image of
the target. The size of this grid is crucial and will be discussed later.

The rows of this matrix are concatenated to form one long vector. This vector is then checked to determine
if it is all zeros (i.e.. no target present). In this event, it is designated as no target, and the algorithm terminates.
Otherwise, the vector is entered into the network to be classified.

Parameters

There are two crucial user defined parameters in the network: the vigilance and the maximum number of
neurons. These two values are interrelated and are most easily determined by a bit of trial and error. Once set, they
both become network constants.

The vigilance parameter determines the coarseness of the classifications [31. In this problem, the vigilance
parameter can range from 0 to 1, with the higher values representing more strict classifications. Typical values seem
to range from .6 to .99 for this problem.

The maximum number of neurons also affects the classification of the inputs. In the world of computer

simulation, the number of neurons can be unlimited, but in the real world factors such as cost and availability will
limit the maximum number [41. By limiting the number of neurons, we are setting a limit on how many different
groups of classifications we are allowing. This number must be within the tolerances determined by the vigilance
parameter.

IV. Results

The key to successful results was the proper choice of the vigilance parameter. To begin with, the vigilance
parameter must be chosen to provide proper discernability in the classifications. This tends to lead to a fairly high
value, in our case from approximately 0.8 to 0.99. These settings are too high in actual practice due to noise in the
radar return which creates new target classifications based on the added noise. One solution is to alter the vigilance
parameter once the network has been satisfactorily "trained". By lowering the value, the network becomes more
tolerant of noise in the input. The effect of varying the vigilance parameter is illustrated in Figure 4. The network
was initially trained at a vigilance of 0.95, and then the images were corrupted by noise and tested at various
settings for the vigilance. It is clear that the optimum value for operation is closer to 0.6, and the performance
deteriorates rapidly around 0.85.
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Figure 4. Testing Vigilance Results Figure 5. Ship Classification Results

A very low value (0. 10) for the vigilance parameter was chosen for a second set of test cases to illustrate the
effect of coarse classification. The images tend to be classified into a few, broad categories. Testing with this value
for this vigilance yields consistent results due to the broad range of the resultant groupings.

Figure 5 points out that the success rate of the classifications is dependent on the ship type. In general pattern
recognition, this means that the percentage of successful classifications of a pattern is dependent on the pattern itself.

Jsing our silhouettes, the amphibious ship fared the worst while the battleship and the carrier seemed to do the best.
This can be attributed to, in part, the fact that the carrier and battleship silhouettes contain more distinguishing
features than the other vessels.

In practice, a network is also limited by the maximum number of neurons available. In implementation, the
number of neurons is proportional to the amount of "memory" needed. In our test runs, if the number of neurons
chosen is too low, the network is unable to classify all of the images. This is because the network does not modify
the weights of an existing neuron if the result is out of tolerance (set by the vigilance parameter).

Thus, in field applications, the maximum number of neurons and the vigilance parameter are crucial and difficult
quantities to determine. In practice, they need to be set by a qualified technician and considered fixed to the user
in the field. Any changes in these values could lead to "instability" in the network.

It should be noted, once the network has stabilized to a given set of neurons, it will precisely classify the
original set of training vectors. This is because the network will not alter the weight vectors if the result is a perfect
match.

IL Conclusions

ART I networks are well suited for targc ication and recognition. The ability to learn and classify targets
proved to work well for this application. The SAR target information was classified into separate categories when
the vigilance parameter was set to a proper value.

The difficulty in developing the system lies primarily in the implementation and the choice of the network
parameters. The vigilance parameter tends to be highly sensitive and difficult to determine other than by trial and
error. In addition, varying levels of noise would require different degrees of classifications and, thus, different
values for the vigilance parameter. A possible solution is to present the network a library of known images at a
high vigilance parameter and then send it out to the field with a lower value for the noisy environment.

A limiting factor in the implementation is the maximum number of neurons available. If the network cannot
place an image within the required tolerance, it will need to utilize another neuron. If no neuron is available, the
network will fail to classify the image rather than corrupting a previous category.

There are two major areas that can be further explored: the redefinition of the vigilance parameter and the
adaptation of the problem to an ART 2 model.
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The vigilance parameter can be modified to take advantage of certain a priori knowledge in the working
environment. Rather than using a single value, the vigilance parameter can consist of a vector of values. This
would allow the operator to utilize different criteria for different sections of the image. Specifically, the operator
can make use of the fact that for a surface target, the top 1/3 of the radar return will consist of the superstructure,
the middle 1/3 would emphasize the hull, and the bottom 1/3 would be dominated by noise from sea return. The
vigilance parameters could be varied to emphasize the general hull outline and superstructure characteristics while
deemphasizing the sea clutter.

To take advantage of the varying signal return strength, this problem is ideally suited to application of an ART
2 network. An ART 2 network is capable of handling continuous analog input as well as binary data [21. The gray-
scale levels inherent in a SAR image presentation could be used to further classify the image, essentially adding a
3 dimensional knowledge to the classification. The different gray-scale levels can be attributed to different relative
ranges, as well as different target material 171. Unfortunately, the price for this capability is the increased
complexity [41. The typical ART 2 network processes a discrete number of values over a certain finite range and
requires a great deal of pre-processing of the data 161 before it is accepted by the network. Furthermore, the analog
data presents additional noise problems that would necessitate a significant amount of signal processing.
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Abstract
Error Correcting Adaptive Resonance Theory (ECART) networks represent differences between

inputs and templates explicitly. This claw of ART networks generalizes the attentional vigilance pa-
rameter of other ART networks into an attentional vigilance vector. The attentional vigilance vector
allows independent control of the vigilance associated with each input element. Raising the vigilance of
an input element corresponds to lowering the acceptable categorical error tolerance associated with that
element. Four sets of rules are required to define the function of an ECART network: (1) a code selec-
tion rule, (2) a resonance or reset rule, (3) template learning rules, and (4) initial conditions. Different
sets of rules can be chosen to make the ECART network functionally equivalent to a number of different
classifiers, including ART 1, ART 2a, Fuzzy ART, and the supervised forms of each of these. The focus
of this paper is on the ability of ECART networks to learn not only the category representatives but
also the variability associated with each category. From a statistical point of view, learning category
prototypes and their variability is similar to estimating means and variances. Learning both categorical
prototypes and their variability provides robust recognition of patterns in noisy environments.

1. Introduction

The basic principles of Adaptive Resonance Theory (ART) were introduced by Grossberg (1976). A
number of ART networks have been introduced and studied since then (Carpenter and Grossberg,
1987a, 1987h; Carpenter, Grossberg, and Rosen, 1991; Carpenter, Grosaberg, and Reynolds, 1991;
Carpenter, Grossberg, Markuzon, Reynolds, and Rosen, 1991). Baxter (1991a, 1991b) introduced
a class of adaptive resonance networks which explicitly compute errors between input vectors and
learned templates. Such networks are referred to as ECART (Error Correction Adaptive Resonance
Theory) networks. ECART networks can operate as unsupervised or supervised pattern recognition
machines. Unsupervised ECART networks represent coding errors - errors between input vectors and
learned feature templates. Supervised ECART networks represent both coding errors and predictive
erirs. In these networks predictive errors encode differences between learned outcomes and actual
outcomes, and, in the absence of coding errors, determine the appropriate number of coding cells to use
to represent the training set. One additional flexibility of ECART networks over other networks that
comes naturally from explicit representation of errors is the generalization of the concept of attentional
vigilance. ECART networks allow the formation of a set of attentional vigilance parameters, referred to
as the aftestional vigilance vector. The attentional vigilance vector allows independent control of the
vigilance associated with each input element. Raising the vigilance of an input element corresponds to
lowering the acceptable categorical error tolerance associated with that element.

In statistical pattern classification problems, categories can be represented by a number of param-
eters. The most commonly-used parameter is the category prototype, e.g. the mean. A number of
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classifiers only use a prototypical representation of categories. Categories can also be represented by
their boundaries. It is often necessary to represent categories by more than one type of representation
in order to capture key informational aspects. Consider the problem of classifying exemplars generated
by two different Gaussian distributions. Only two categories and two parameters for each category
(the mean and variance) are necessary to represent and classify the exemplars generated by the two
distributions. If these two parameters are estimated correctly for each category, the Bayesian optimum
classification performance can be obtained. ART networks represent categories by prototype (as in
ART I and ART 2) or by boundaries (as in Fuzzy ART). In this paper, unsupervised and supervised
ECART networks that represent categories by both prototypes and boundaries are described.

2. ECART network function and architecture

Figure I depicts the flow of signals in an ECART network. The major components of an ECART
network are an input field, a competitive coding field, a coding error field, a predictive error field, and
a novelty detector. ECART networks can be implemented as massively parallel networks for extremely
fast processing.

Four sets of rules are required to define an ECART network: (1) a code selection rule, (2) a resonance
or reset rule, (3) learning rules, and (4) initial conditions (initial template values). Many possible vari-
ations of ECART networks are possible by choosing different sets of rules; two unsupervised variations
are described in the following paragraphs.

Bidirectional ECART

The first variation has feature templates with elements that can increase and decrease in value; this
variation will be referred to as Bidirectional ECART. Let the scaled input pattern be denoted by x, the
elements of the scaled input pattern are denoted by z, (z are scaled such that their values lie on the
closed interval (0, 1]), adaptive feature template j is denoted by wj, and the elements of the adaptive
feature templates are denoted by wji. Feature codes of the feature templates are indexed by j. The
selected code for a given input pattern is denoted by J and is the code with the maximum sj over all
codes j E A, where oJ=- (et + e-)' }

and where ei = xi - wji, et = [ei ]+, and e7 [-e,]+. The notation [ei]+ indicates the rectification
function max(e1 ,O). The value of p is either 1 or 2; an LI norm is obtained with p = 1, whereas an
L2 (Euclidean) norm is obtained with p = 2. A is the set of all previously-learned codes that have not
been reset for the current input pattern.

The novelty detector determines whether an input pattern is novel or familiar. If a pattern is
sufficiently familiar, the network is said to be in the resonant state and the most similar feature template
is adapted to better match the current input pattern. The resonance criterion is given by

r = [et + e- - E, =0 (2)

where the E are the allowable error tolerances. Since zi and wj lie in the closed interval [0,1] the Ei
are related to the elements of the vigilance vector by pi = 1 - E,. A small value of Ei corresponds to
a high vigilance for element i. If all Ei = 0, every unique input pattern will create a unique template.
If r > 0, then the novelty detector resets the selected code (J is removed from A) and the search for a
better code ensues. If no existing templates are sufficiently familiar, then a new template is created.

The discrete-time form of the learning rule is given by

w,,(t + 1) = W-()+ Xe(i) (3)

where Aj is the learning rate associated with code j and is restricted to positive values. In Bidirectional
ECART, the initial values of the elements of wj are set to zero.
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Figure 1: ECART networks consist of an input field, a competitive coding
field, a coding error field, a predictive error field, and a novelty detector. lie
black triangles represent long-term memory weight.
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The value of A1 affects the stability of the feature codes. Bidirectional ECART is equivalent to the
leader algorithm if Aj is initially set to unity and is set to zero after the first update of wj. A more
general rule is to initially set A, to unity, and decrease Aj each time code j is selected by a decay factor.
If the decay factor does not change, this rule results in an exponential decay in the learning rate as a
function of the number of times the code is chosen. Note that the templates in a Bidirectional ECART
represent category prototypes. If Aj is a small constant and learning involves many passes through the
training set, the prototypes will approach the category means.

Unidirectional ECART

The templates of the Bidirectional ECART network can oscillate; therefore, the feature codes may not
be stable for some sets of input patterns unless A, decays sufficiently fast during training. Several ways
of making Aj decay during training were discussed in the previous paragraph. An alternative method of
stabilizing the templates is to restrict the direction in which the templates can change. This variation
of ECART is referred to as Unidirectional ECART. Unidirectional ECART requires two set of weights
which will be denoted by uv and w- with initial values 0 and 1, respectively. The coding errors in
Unidirectional ECART are given by

et = - +  (4)

= [W- ,j] (5)

and the learning rules are given by
,(t + 1) = w,(t) + A.,e"(t) (6)

w,(t+l) = wj,(t)-A e.(t) (7)

The code selection and resonance criteria remain unchanged.
In Unidirectional ECART the templates represent categorical boundaries and can be described

geometrically as hyper-rectangles. If an input vector falls within one of the existing hyper-rectangles, it
belongs to that cluster and no learning takes place. If an input vector does not lie within an existing
hyper-rectangle, it will cause the most similar hyper-rectangle (defined by sj) to expand to include that
vector - provided the resonance criterion is satisfied. If the resonance criterion is not satisfied, a new
cluster is created.

Different code selection and resonance criteria are possible. For example, with the code selection
function

j min(ri, wj) + max(,, wT) (8)
s= -w + E W+t + W ..

and the resonance criterion

m rin(t,, wj~.) + max(zi, w,)> (9r -- zi

the Unidirectional ECART network is functionally equivalent to Fuzzy ART (Carpenter, Grossberg,
and Rosen, 1991).

3. Learning prototypes and error bounds

The Bidirectional and Unidirectional ECART networks can be combined to form a network that repre-
sents category error bounds as well as prototypes. The simplest way of combining the two networks is
simply to let them operate independently in parallel and use the templates of the Bidirectional ECART
network as the prototypes and those of the Unidirectional ECART network as the error bounds. The
problem with this method is that the two networks may not generate the same number of categories;
thus, a one-to-one correspondence between prototypes and error bounds is not guaranteed (and is
unlikely in many cases).
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An preferable method is to use three different types of coding errors and templates with the following
learning rules

w.i,(t + 1) = W.,,(t) + tje,(t) (10)
W +(t+ 1) =w+(t) + 1Je+(t) (1

wii(t + 1) = w,(t) - piej(t) (12)

where

ef = Zj-Wo (13)

et = -u ] (14)

ej" = [w;i-z ] +  (15)

The code selection and resonance criteria are the same as before. If pj A,, this method guarantees
that the prototype templates wji are in one-to-one correspondence with the error bound templates wt .
In this method, the code selection and resonance criteria depend exclusively on the category boundaries
(t).

Alternatively, the category prototypes can be used to select the most appropriate codes and to
generate reset signals. More generally, the code selection and resonance criteria can make use of some
combination of the category prototypes and boundaries in order to select the most appropriate code.
For example, the code selection criterion can be generalized to determine the code with the maximum
si,

si = -01 (et + e7)' - iei' (1)
d i

and, similarly, the resonance criterion can be generalized to the form

r=I [a(et + e7) + #lei I- E]+ = 0 (17)

Here, a and 0 determine how much emphasis is placed on categorical prototypes and boundaries,
respectively, in the code selection and resonance processes.

4. Summary

Several methods of extending ECART networks to learn categorical prototypes and error bounds have
been discussed. The extensions are combinations of Bidirectional and Unidirectional ECART networks.
The category prototypes may have chaotic trajectories but, with appropriate restrictions, they can be
guaranteed to be bounded from above and below by the categorical boundaries. These techniques can
be applied to both unsupervised and supervised ECART networks.
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ABSTRACT

When a set of raw image data is preprocessed properly, the training of an artificial-perceptron
pattern-recognizer may be achieved in a noniterative manner. The noniterative training is not only
very fast (e.g., 2 seconds for training 4 hand-written characters), but may also be very robust
(e.g., the recognization could be rotation-invariant, size-invariant, and location-invariant even
though the perceptron is trained with only unrotated standard patterns.). The high robustness of
this noniteratively trained perceptron is due to the optimum noniterative training scheme and the
Fourier-transform preproctssing scheme we adopted in our design. This paper reports the
theoretical origin and the experimental results of this novel perceptron pattern recognition system.
An unedited video movie of the whole training/recognition process is recorded in real time for
demonstration purpose.

Key words: Pattern Recognition, Non-Conventional Unsupervised Learning

L INTRODUCTION

Preprocessing of raw image data is generally a very important part in pattern recognition schemes
employing artificial perceptrons. Preprocessing must not be too detail nor too coarse in order to
achieve high robustness in recognition while still preserve the differentiation capability oi
recognizing different training patterns. Fourier descriptors have been used in preprocessing the
raw data by many pattern-recognition researchers [1,2]. Once when a proper preprocessing
scheme is selected, the training of the perceptron and the recognition of the untrained patterns can
generally be achieved very efficiently by applying a noniterative training scheme to a one-layered,
hard-limited structure [3,4,5]. The theory and the experiments of this novel compound
perceptron learning system is reported in detail in the following.

I1. FOURIER TRANSFORMS USED IN PREPROCESSING

Global Properties vs. Local Properties

When we look at the two characters shown in Fig. 1, we can recognize them immediate as A and
B. The reason that our brains can immediately recognize these characters is NOT that we have
inspected carefully all the detailed small variations such as the crooked parts in A or the fuzzy
lines in B. But instead, we have picked up the general structures or the coarse variations of the
images which allow us to make the immediate decisions. These general structures are NOT
LOCAL properties of the images. They are GLOBAL properties of the images. That is, if some
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crooked parts of A are changed or some fuzzy lines of B are changed, etc., locally, this makes
quite a difference in the image. But, as a whole, it does not affect our brain decisions at all.
Consequently, in the design of an artificial character recognition scheme which we wish to have a
robustness approaching as close as possible to that of our biological recognition system, two
factors must be taken into account:

I. It must be able to automatically extract global properties of the images.

II. It must be able to filter out the small variations in the images.

Fourier transforms of the image functions with high (spatial) frequency components truncated off
seem to be able to meet both of these conditions. This is so because each Fourier component is
calculated from the whole image function, not from a local part of the image. Therefore it is a
global property, not a local property. Also if we truncate off all high frequency Fourier
components, we are filtering out all small spatial variations in the images.

In addition to satisfy these conditions, if we separate the r-function from the 0-function in the
Fourier analysis as shown below, we may also obtain rotation-invariant robustness in the
recognitions.

Fourier Transforms in a Polar Coordinate

Suppose we have a digitized image in the form of black and white (blank) pixels and the x, y
coordinates of each (black) pixel are known. Then we can find the x, y coordinates of the
centroid of the black pixels. If we use this centroid point as the center, we can draw a polar
coordinate with maximum radius equal to the maximum r of all the pixels (Fig. 2). Each dot in
Fig. 2 represents the center of each black pixeL Counting the number of dots in each ring will
give us a radial vector V, and counting that in each sector will give us an angular vector V,. If
there are J rings and K sectors in the polar coordinate, then these two vectors are, respectively, J-
dimension and K-dimension analog vectors of integer components. These vectors can also be
represented by quantized analog scalar functions f,(r) and g(0) with integer quantization levels
such as the ones shown in Fig. 3. If we normalize each level in f, with respect to the area of each
ring, and normalize r with respect to r,,, and call the new function f(r), then we can apply the
following Hankel and Fourier transformations to f and g respectively to get the spatial
frequency components F, and G. of these two functions. (Hankel transform is equivalent to
Fourier transform of a circularly symmetric function along the radial direction of the polar
coordinate [61.)

F, = 2%J rf (r)J (2mr)dr (1)
0

where Jo is the zeroth order Bessel function of first kind.
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G.= g()e -Ad (2)

where I I means taking the magnitude of the complex number enclosed inside. Notice that the
phase angle in the Fourier transform in (2) is ignored.

The physical meanings of these Fourier components are the following. Fm represents the
variation of the radial structure of the whole image in the "detail range in" (or frequency range
m). Similarly, G. represents the variation of the angular structure of the whole image in the
detail range n. With higher frequency components truncated off, these Fm and G, then constitute
an analog word and this analog word is the input word we use for training the perceptron. Notice
that when the image is rotated, this analog word will not change at all. (The rotation invariance
of F. is obvious because f(r) does not depend on 0. The rotation invariance of G. is due to the
fact that if 0 in (2) is replaced by 0+00 where 0o is any rotation angle, the magnitude of the
complex integration will NOT depend on the initial phase 00.)

Because of the quantized nature of the f and g functions shown in Fig. 3, the actual computation
of the integrals is converted to finite, weighted sums of the quantization data. These finite sums
are called the segmented Fourier transforms which are very easy and very last to handle in
digital computations. These ansforms are very similar to the conventionally used FF.

II. THE NONITERATIVELY TRAINED HARD-LIMITED PERCEPTRON

The perceptron we use for training and recognition is very similar to the ones we reported
previously [3, 4, 5]. We use also the optimal one-step learning scheme we reported in [4] such
that the training vectors are located with equal noise distances to any dichotomization plane in the
N-space. But instead of applying this optimum scheme to a supervised learning scheme, we apply
it to an unsupervised learning scheme to elimnate the illegality problems we occasinally
encountered in a supervised learning system. The general theory of this one-step learning scheme
is briefly reviewed here.

If the input-output mapping vectors to be learned are (Um-4Vm, m--1 to M) where Um is an N-
dim analog vector and Vm is a P-bit bir ary vector, then the goal of learning is to find the
connection matrix aj in the following simmultaneous nonlinear algebraic equations.

N
vM, = Sgn(EaIu,), i=1 to P, m-1 to M (3)

where uni, vni are components of Um and Vm. For a supervised learning problem, Um, Vm are
given. If we multiply both sides of (3) by vni which is = either 1 or -1, (3) is then changed to

N
M~avu >0, i=l to P, m=l to M (4)
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(the property that vmiSgn(X)=Sga viX) is used in the above derivation.) Since j is the only

running index in (4), (4) can be re-written in the form of the inner product between two vectors:

Ai*Ymi > 0 m=l to M, i fixed. (5)

where Ai is an N-dim vector representing the i-th row of ag matrix; and Ymi = vniUm = the m-th
input vector dichotomized according to the i-th output bit in the m-th mapping pair. Whenever
(Um-+Vm) mapping is given, Yui are given, and Ai can be solved from the M simultaneous
inequalities shown in (5). The solution may or may not exist. The if-only-if condition that
solution exists in (5) is, by Farkas Lemma, that

all ( Ymi, i fixed, m- to M) are positively linearly independent (or PLI). (6)

PLI means that no positive real constants {pm>0 , m-1 to M), except all O's, satisfy the
following linear relation among all Ymi'S

M
p.Y = fixed.

=n-I(7

For a supervised learning problem, {Ymi) are fixed when {Um-*Vm } mapping is given. (6) may
be violated and the solution of a-- may not exist at all. This mapping is called an illegal mapping
for the supervised learning in the one-layered perceptron (OLP). That means, no matter what
learning rule we use to train OLP, we cannot realize the given mapping at all if (6) is violated in a
supervised learning scheme. On the other hand, if each training Um represents a different
pattern to be recognized, then we can use the unsupervised approach to assign each Vm in such
a way that all the M Um-+Vm mapping pairs become legal. Therefore solutions of (5) definitely
exists. The algorithm for solving (5) is then trivial and the solution can be obtained by one
matrix-operation step. This unsupervised one-step learning scheme is what we adopted in our
present design.

IV. EXPERIMENTAL RESULTS

We use a mouse in Microsoft Visual Basic (loaded to a 486 PC) to write any free-hand letters
such as the ones shown in Fig. 4. A program written in Visual Basic then digitizes the image and
stores the xy positions of each quantized pixel in a data file. Recalling the data file and apply it to
an event-driven, interacting program we designed according to the above discussion then allows
us to preprocess the data as well as to train the neural network or to test the image. We use a
one-layered, hard-limited perceptron with 32 channels of analog input. The output is a 2-bit
binary vector. We used the regularly hand-written letters such as the four letters shown in Fig. 4-
1 for training. Then we can test any free-hand writings such as the ones shown in Fig. 4-2. With
more than 80% successful rate, these free-hand writings can be recognized correctly in the test.
Notice that the test patterns include script letters and rotated letters which are not included in the
training set.

V. CONCLUSION
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Applying a special Fourier-transform preprocess scheme to an unsupervised learning in a one-
layered, hard-limited perceptron allows us to obtain high robustness when the perceptron is
switched to the recognition mode. The training of the perceptron is very fast (4 patterns in 2
seconds,) because the training is noniterative and one-step. The recognition of the perceptron is
very robust because we apply an optimum training scheme to the preproccesed global properties
of the image. An unedited video movie is recorded for a real-time demonstration of the training
and the recognition experiments.
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ABSTRACT

A modular recurrent connectionist architecture is proposed to classify binary and continuous
patterns. This system consists of three networks: one feed-forward Back-Propagation (BP)
network and two Self-Organization Map (SOM) networks. The feed-forward (basic) network
is trained until a saturation error level occurs. Simultaneously, the first SOM (input control)
network and the last SOM (output control) are defining the mapping features for the given
input/output patterns. The resultant features are used by a Gaussian potential function to
adjust the weights of the basic network and to classify the given patterns.
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Summary

A connectionist system can be evaluated in terms of its capability to represent the knowledge
(patterns) in terms of input-output mapping function. An accurate representation of this
mapping depends on many issues including the system architecture, the type of the
connections, the number of neurons in the hidden units, the type of activation functions, the
learning algorithm, and the input set representation. These issues are important to find the
optimal parameters of the network to represent the given knowledge. In this research, the
connectionist system architecture and the dynamic weights are the main issues to be explored
and examined.

Although many psychologist and biologists [1] believe that the brain has a modular
architecture, only a few researchers have applied the idea of modularity in the connectionists.
There are several advantages of the modular architecture over a single-network architecture
[2,3] including a higher learning speed, an easier interpreted, debugged, and extended pattern
representations, a reduced hardware implementation, and a better generalization.

The generalization is a measure of how well the network performs on the actual patterns
once the training is complete. Making the weights dynamic is the biggest parameter in
improving the generalization. Several researches have been developed towards making the
weights dynamic. These include Grossberg's shunting model [4] and Nowlan and Hinton 's
model for soft weights sharing [5]. In addition to these researchers, some studies combined
the concept of dynamic weights with modular architecture, including Pollack's cascaded
back-propagation model [6] and Jacobs's mixed expert network [2].

In our research, we are developing novel
modular architectures based on the
dynamic of the connections. Previously, a o -
modular feed-forward architecture [7,81
based-on a back-propagation (basic)
network and a self-organization mapping
(control) network was proposed and
examined (Figure-i). The basic network
uses the Back-propagation learning O
algorithm [9] and has only one-hidden
layer (i.e. s=3) with (k) hidden-units. This
network updates the weights w#(t) during
the learning phase by the Back-propagation
rule.

(Figure-I) A Modular Feed-Forward Architecture
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At the same time, the control network (Self-Organization Map [10]) finds a mapping from
the input pattern space x E 9r onto a regular two-dimensional array (n*k). With every node i
in this array, a parametric reference vector mi E 9V is associated. An input pattern may be
compared with all the m, in the smallest of the Euclidean distance I x-m I to represent the
best-matching node which is signified by c as:

x-m~ =minV-m1

Note that every input pattern x, is mapped onto the node c relative to the parameter mi.

The feed-forward modular architecture [71 uses the best-matching node in the two-
dimensional array (i.e., c) to update the weights of the outputs of the basic network by Aw.
which is given by:

A w13=x *x1 * Ix. -inc

It also updates the weights in the hidden layer of the basic network by Aw which is given
by:

A wi,=X *xi *exp (Ixj-mi 1)

Where X is a normalization factor.

In this paper, a modification has been !,

provided to the above architecture to give
the flexibility to find also the mappirg
features in the desired outputs, as shown
in Figure-2. The input control network
finds a mapping from the input pattern
space x G %n onto a regular two-
dimensional array (n*k).

(figure-2) A Modular Recurrent Architecture

As shown in Figure 2, another Self-Organization Map (SOM) network (the output control) is
added to find a mapping from the desired output pattern space y E W onto an array (q*d),
where d is the number of the desired outputs. While the input control network finds the best-
matching nodes in the input patterns, the output control network tries to find the best-
matching nodes in the output patterns which can be represented as:

V-m, =minj-m I J
d
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The Learning phase of this architecture has two steps. In the first step, the basic network
updates the weights until the error reaches a saturation level (0.0001 of error versus the
epoch). The input and the output control networks finds the best matching nodes for both of
the input patterns and the desired outputs. In the second step, the control networks updates
the weights of the outputs of the basic network using a Gaussian potential function by Aw,
which is given by :

a wlj=X *yj *exp (I.y-mbI/202 )

Where X is an output normalization factor and a is the standard deviation for the desired
outputs.

At the same time , it updates the weights in the hidden layer of the basic network by Aw,
which is given by:

A wij =q *xi *exp ( xj -mc112 2 2 )

Where 7 is an input normalization factor and 0 is the standard deviation for the given input
patterns.

This modular recurrent architecture and its learning algorithm test three examples: (1)
Exclusive-OR Problem, (2) IRIS plant data, and (3) 3-partition nonlinear functions (e.g.,
logarithmic, exponential, multiply). Table-I shows a comparison between three architectures:
the modular feed-forward architecture, the modular recurrent architecture, and Jacobs's
mixed networks model.

Problem/Network Type No. of Epoch RMS. Output Error %
XOR-Problem
Mixed Expert Networks(Jacobs) 1267 8%
Modular Feed-Forward Arch. 843 3.5%
Modular Recurrent Arch. 904 2.3%

Mixed Expert Networks(Jacobs) 4389 14.1%
Modular Feed-Forward Arch. 2493 12.6%
Modular Recurrent Arch. 1783 9.8%

3-Partition Function
Mixed Expert Networks (Jacobs) 659 2.1%
Modular Feed-Forward Arch. 672 3.2%
Modular Recurrent Arch. 865 1.9%

(Table-l) Simulation Results
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Conclusion

In this research, we have designed a connectionist system by combining the dynamic weights
with the modular recurrent architecture to classify binary and continuous patterns. This
system includes the dynamic weights as a multiplicative Gaussian function connections which
allows it to determine the mapping from the given patterns to the output patterns and switch
between different input spaces. Currently, we are still testing more non-linear dependent
patterns in different signal processing application. At the same time, more mathematical
analysis are being studied to prove some theories.
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Abstract
The use of multilayer perceptron (MLP) neural network (NN) as human chromosome classifier was

studied. The MLP NN classifier was optimized in the sense of learning rate, momentum constant and
training cycle, to the chromosome data. The MLP classifier learning curves were examined by measuring
the probability of correct test set classification for an increasing number of training examples. Only 10-20
examples were required to the MLP NN classifier to reach it ultimate performance regarding the number
of features used. To compare the results to relevant theory, we have calculated the entropic error (loss).
The empirical dependence of the entropic error on the number of examples is highly comparable to the
1/t function that is a universal learning curve.

1. Introduction

Human chromosomes are responsible for about 50% of early fetal losses, 5% of late fetal losses and
20% of birth defects [16]. No wonder that karyotyping, the procedure of chromosome analysis, is a
corner stone of prenatal diagnosis. The Canadian Workload Measurement System [3] allocates 465
minutes for karyotyping amniocytes, the most common diagnostic activity in cytogenetics. Most of the
time is dedicated to microscopy, a tedious, eye straining task requiring meticulous attention to details.
Obviously it needs highly qualified, therefore, well-paid personal. As today, the analysis of chromosomes
is the limiting factor in the wide application of cytogenetics as a diagnostic tool. The commercially
available computerized systems for chromosome sorting are of great help but still inadequate. The
systems are definitely inferior to the human performer. First and most important, these are expensive, non
automatic devices that need human assistance throughout the process.

Neural networks make it possible to overcome most of these limitations. This is mainly because they
permit application of expert knowledge and experience through network training. The neural network
classifier has the advantage of being fast (highly parallel), easily trainable and capable of creating
arbitrary partitions of the feature space. Multilayer perceptron neural networks have been used in several
studies of biological object classification. In a research to evaluate the growth of tumors in mice, an MLP
neural network trained by the backpropagation learning algorithm [14] was able to distinguish among
seven stages in tumor growth [4]. In another investigation [15], the MLP trained to classify cervical cell
images, as either normal or abnormal. The classifier correctly classified 96% of the cell images in the test
set. In a similar study, an MLP NN used to classify cells for cancer diagnosis with probability of correct
classification of about 96% [12]. An attempt to train an MLP NN to define and detect DNA-binding sites
was done [13], with 80% probability of correct detection. The only known effort to classify human

# This work was supported in part by the Paul Ivanier Center for Robotics and Production Management, Ben-Gurion
University, Beer-Sheva, Israel.
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chromosome images using NN, besides the work of our group [5]-[10], is described in [2]. This reference
is an abstract only. The classification was made using the Fourier coefficients of the medial axis and an
MLP NN and yielded 92.5% probability of correct classification for the test set.

An effort was made through the last two years to utilize neural networks as a human chromosome
classifier [5]-[10]. This effort has been mainly concentrated on the feature extraction and selection issues.
This research, on the other hand, has focused on the optimization of an MLP NN as a human
chromosome classifier of 5 chromosome types. In addition, the learning curves of the MLP classifier
were empirically investigated and compared to the theory.

2. The MLP classifier

In this research, a two-layer feedforward neural network trained by the backpropagation (bp) learning
algorithm [ 14] was chosen for the classification. The bp algorithm is an error driven parameter estimation
algorithm where the objective is to minimize the output squared error function by adjusting
interconnection weights and node thresholds. Learning is controlled by the values selected for the
learning rate and the momentum constant. No rle for selecting the optimal values of these parameters
exists and usually they are chosen empirically according to the training data. The number of hidden
layers and the number of hidden units in each hidden layer affects the shape of the decision regions of the
classifier, therefore affects the classification performance and complexity. In this study, two layer
perceptron was considered. The network was initialize using random weights in the [-I,1] range. The
input vector was 64-dimensional and the output vector was 5 dimensional with one component set to "I "
(actually 0.9) for the correct classification and "0" (actually 0.1) elsewhere [9]. The number of hidden
units of the network was set according to the Principal Component Analysis (PCA), applied to the feature
vectors. The number was set to be the number of the largest eigenvalues, the sum of which accounts for
more than a pre-specified percentage of the sum of all the eigenvalues [9]. In all the simulations, this
number was set according to a pre-specified percentage of 90%.

3. Learning curves

Learning curves show how fast the behavior of a machine improves as the number of training
examples increases. There are several approaches to this problem, e.g., the statistical-mechanical
approach, the information-theoretic approach and the statistical approach. All of these ar,,roaches suggest
that the average error decreases universally in the order of l/t, where t is the -n of training
examples. A universal property, that irrespective of the machine architecture, the avei entropic loss
decreases asymptotically as d/t, where d is the number of modifiable parameters of the classifier, has
been proved [1]. The average entropic loss is the average of the logarithm of the probability of correct
classification for the next new pattern after a classifier has been trained by t training examples. Moreover,
when the classifier error tends to zero (or the probability of correct classification tends to 1) the average
entropic loss and the generalization error are almost identical [1].

In this study, we measured the probability of correct test set classification while the number of
training examples increased. The maximum number of examples was set by the minimum number of
training vectors over all classes (chromosome types). The experiment was repeated with a different
number of features selected by the "knock-out" algorithm. The "knock-out" algorithm is a feature
selection method, where the best features among the extracted features are selected using the
effectiveness (scattering) criterion of "minimum variance" [ 17].

In addition, the entrepic error (loss) e*(t) [1],

1) e* (t) = -log(Ptest)
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was calculated and compared to the theoretical curve (Pt.st is the probability of correct test set

classification).

4. Results

4.1 The MLP NN optimization

A description of the methodology and the features we have used appears elsewhere [51-[9]. Three
parameters of the classifier, namely the training cycle (in epochs units), the momentum constant (a) and
the learning rate (g) were checked in order to find the best network. All the simulations were repeated (at
least) 3 times, with the same network parameters but with different sets of randomly chosen training
vectors, and the results were averaged. The probability of correct training and test sets classification is
plotted, in Figure 1, against the training cycle (epochs). Training is made in batch mode, which mean that
the network weights are changed only after each presentation of all the vectors to the network (epoch).
We can see that the ultimate learning is obtained for the first 500-1000 epochs (and with Sum Square
Error (SSE) of less than 4). However, training cycle in all the simulations was kept to be 4000 epochs.

100 tining

90- test80
70

a-

30-

20-

10-

0 500 1000 1500 2000 2500 3000 3500 4000
EPOCHS

Figure 1. The probability of correct test classification.

The sensitivity of the classification procedure to the momentum constant (a) and to the learning rate
(IL) is shown in figure 2 and Figure 3, respectively. Best generalization was obtained when the
momentum constant and the learning rate were equal to 0.97 and 0.026, respectively. Therefore, all the
simulations were held with these 3 values of parameters: training cycle of 4000 epochs, a=0.97 and g
-0.026.

Using these parameters, the MLP classifier was almost perfectly (99.3-99.6%) trained to classify
chromosomes of 5 types and yielded over 98% of pro'bability of correct test classification [7], [9].
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Figure 2. The correct test set probability vs. the momentum constant.
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Figure 3. The correct test set probability vs. the learning rate and for the optimal momentum constant
yielded at Figure 2.

4.2 Learning curves

The probability of correct test set classification was measured when the number of training examples
increased. The maximum number of examples was 84 that is the smallest number of training vectors in
one of the chromosome classes. First, the MLP network was trained using only one example for each
chromosome type and the probability of correct test set classification was calculated. Then, another
example for each chromosome type was added to the training set and the new probability of correct test
set classification was calculated. The procedure continued until all available examples (84) were used.
The experiment was repeated 3 times for a different number of selected features, namely 10, 20 and 60
features. In each case, the features were the "best" features we can select according to the "knock-out"
algorithm [17]. The results are shown in Figure 4. Only 10-20 examples are required to the MLP NN
classifier to reach it ultimate performance regarding the number of features used. The entropic error (loss)
has been calculatcd in order to compare the results to the theory outlined before. The dependence of the
entropic error on the number of examples is shown, for the best 60 features, in Figure 5. The results are
very close approximated by the it function which is a universal learning curve [1].
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5. Dicuson

The multilayer perceptron (MLP) neural network (NN) was used to classify human chromosomes. The
NN classifier was optimized to dre chromosome data in the sense of training cycle, learning rate and

momentum constant. On the basis of this optimization, the MLP NN classifier was almost perfectly
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(99.3-99.6%) trained to classify chromosomes of 5 types and yielded over 98% of probability of correct
test classification [7].

The MLP classifier learning curves were investigated by the calculation of the probability of correct
test set classification where the number of training examples was increased. Only 10-20 examples were
required to the MLP NN classifier to reach it ultimate performance regarding the number of features
used. To compare the results to a relevant theory, we have calculated the entropic error (loss). The
dependence of the entropic error on the number of examples is highly comparable to the l/t function
which is a universal learning curve [1].
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Abstract
A neuro-muscular signal, during muscle contraction, is composed of multiple train of ran-

domly distributed (Poisson process) action potentials innervated by a number of motor units
from spinal cord. In order to study the motor control strategy and diagnosis of various neuro-
muscular diseases, many investigators have used techniques of pattern recognition to decompose
the muscle signal into its constituent action potential trains. In this work, a Hopfield network
model is used, for its real-time chip fabrication possibility, to solve this inverse problem of neuro-
muscular system by decomposing muscle signal. A muscle signal is simulated which is composed
of five different patterns of action potential trains. The shapes of the simulated action poten-
tials are derived from typical real muscle signals. Signal templates, one from each class of action
potentials, are converted into its bipolar bitmap patterns and are used to compute the network
weights and biases, Each detected action potential in the signal is then converted to its equiv-
alent bitmap pattern and then presented to the Hopfield network for iterative stabilization to
its closest attractor in the network state space. The system is performing very good recognition
with 94% detection rate even when the entire signal was corrupted with 20% noise for a normal
clinical measurement environment. The result is very promising for real-time implementation.
Applying this method to surface muscle signals, there is a good potential to develop multiple
spike train-based biological control algorithms for prosthesis.

1 Introduction

A neuro-muscular signal, also called myoelectric (ME) or electromyographic (EMG) signal, arises
from the depolarization of muscle fibers following the discharge of the innervating motor neuron.
The depolarization wave, called an action potential (AP), propagates along the muscle fibers. In
normal skeletal muscle, the fibers never contract as individuals. Instead, a small groups of them
contract in concert. Such a group of muscle fibers is supplied by the terminal branches of the nerve
fiber or axon whose cell body is in the anterior horn of the spinal grey matter. This nerve cell
body, plus the long axon, plus its terminal branches and all the muscle fibers together constitute a
motor unit (MU). The action potential of a MU is called a motor unit action potential (MUAP).

In a sustained muscle contraction, the motor units must be repeatedly activated. The result-
ing sequence of MUAPs is called a motor unit action potential train (MUAPT). The waveform
of the MUAPs within a MUAPT will remain constant provided that the geometric relationship
between the electrode and the active muscle fibers, the properties of the recording electrode, and
the biochemical properties of the muscle tissue all remain constant.

11-254



MU#1 ,t/ -- MUAP

_ Li. L. NOISE

PF 1
N 3A F11llIlIIl1 4

C L2 EMG0

U UM U N . _- ---

EMG

Figure 1: A Schematic of a Neuromuscular System

The muscle fibers belonging to the same motor unit are distributed randomly within the muscle

rather than being clustered together, and can be spread throughout a territory occupying as much

as 30% of the muscles cross sectional area. As a result, neighboring muscle fibers generally belong

to different motor units, and in any small region there can be fibers from as many as 50 motor

units. Therefore. a single M\UAPT is observed when the fibers of only one motor unit in the vicinity

of the electrode are active. Such a situation occurs only during a very weak muscle contraction.

.s the force output of a muscle increases, motor unit having fibers in the vicinity of the electrode

become activated, and several MUAPTs will be detected simultaneously.

One of the the research goals in this field is that how to decompose or inverse process the muscle

signal into its constituent MlUAPTs in order to study the motor control strategy and to improve

the diagnostic accuracy of the clinical EMG examination. Many investigators have used modem

techniques of pattern recognition to decompose the muscle signal into its constituent MUAPTs. In

this work. a Hopfield network model is used, for its real-time chip fabrication possibility, to solve

this inverse problem of neuromuscular system by decomposing muscle signal and proposed an idea

for developing decomposed multiple impulse train-based prosthesis or robot controller.

2 Neuromuscular System Model

A schematic of a neuromuscular system model is shown in the Figure 1. The Dirac delta impulses

6i(t) are fired by the alpha-motoneurones which travel down the axons and then stimulate the

associated muscle fibers. Let us assume that there are L. muscle fibers connected with nth motor

unit and .11, be the total number of firings in a contraction time T,, fired by the nth motor unit.
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The minimum level of system configuration is a muscle fiber connected to a nerve branch. The
system input is an impulse and the output of this system is an impulse response which is called
single fiber action potential (SFAP). Thus the input train of impulses can be represented as:

M,1b"(t) = b(t -tn , 1

where
In

t" = i for m,j =1, 2,3 ...... Mn (2)
j=1

In the above expressions, t is the continuous time variable, tn represents the time locations of the
impulses zi. Therefore, the equation for the impulse response train of a single muscle fiber (lt h ) is
given by:

Mn

Unl(t) = E hl,.(t- tmn) (3)

Where h is the impulse response of muscle fibre. A impulse response train, also called MUAPT,
from all the muscle fibers belonging to the nth motor unit is then obtained by the spatial summation
over all the muscle fibers, Ln, innervated by the nth motor unit as:

Ln Mn
Un(t)- = F,1 h, ,.(t -tin,) (4)

1=1 m=1

Again the EMG signal as they are detected by the electrode is the spatial summation of MUAPTs
from all N motor units resulting a multi-train EMG signal and can be represented as:

N N LaM,.
emg(t) = u.,(t) = ,. h,(t - t..) (5)

n=1 n=1 1=1 m=1

The signal given by the above expression is the physiological EMG signal and is not observable.
When the signal is detected, an electrical measurement noise w(t) is introduced from various sources.
The detected signal will also be affected by the spatio-temporal convolution by the nerve-muscle
fibers belonging to a number of MU. Thus the resulting observable EMG signal can be expressed
as:

N
EMG(t) - s,(t) * Un(t) + w(t) (6)

na=1

where sn(t) is the point spreading function in space and time sparse in discrete index n.

In a continuously force varying contraction the parameters Mn and N are directly force de-
pendent. Therefore, the final EMG signal will be a function of both time t and muscle force F.
This EMG signal can be detected by intramuscular or by surface electrodes. In the clinical EMG
laboratory, the conventional bipolar and monopolar needle electrodes are usually used.

3 Brief History of EMG Decomposition Problem

The problem of decomposition of any multi-train signal is an important issue for the pattern
recognition and signal processing society. It is important because by decomposing such a signal,
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during muscular contraction, the clinical electromygraphers are able to observe the recruitment
pattern of each motor unit that has been recruited. In the following, a brief history of EMG
decomposition is presented.

Bergmans [1] has described an on-line computer program that can identify individual MUAPs
automatically. The program stores the first potential it detects, may be either a valid MUAP or
a superimposition, and compares it with the next six potentials. If it matches one of them, it is
assumed to be a valid MUAP; if it doesn't, it is assumed to be a superimposition. Up to five unique
MUAPs are collected per recording site, and histograms of their amplitude, durations, numbers
of phases (fluctuations that cross the baseline) are compiled. The program compares MUAPs
automatically on the basis of maximum sample-to-sample difference after alignment by threshold
crossing points.

Prochazka et at. (2] have described a computer method for clinical firing pattern analysis. The
EMG is recorded during a low level contraction using a bipolar wire electrode and is analyzed
interactively off-line. The operator plays back the EMG at slow speed and selects up to four
distinct MUAPs as templates. The program then attempts to identify the subsequent potentials
by template matching, using a least-square-error criterion, and is able to resolve superimpositions
involving two MUAPs automatically.

LeFever, Mambrito and De Luca [3, 4] have developed a method for studying motor-unit firing
behavior during maximal contractions by decomposing the EMG signal recorded by a selective mul-
tipolar needle electrode. The method is primarily intended for physiological investigations rather
than for clinical use, and is designed to perfectly identify every firing up to eight simultaneously
active MUAPs. The method uses three data channels, obtained between different lead-off pairs
of the multipolar electrode, to increase MUAP distinguishability. It identifies the MUAPs using
a template matching procedure that takes into account both waveshape and relative firing likeli-
hood given the past firing history, and it can resolve superimpositions involving two MUAPs. It
can track slow changes in MUAP waveshape, firing rate, and firing-rate variability. Only records
derived from attempted isometric contractions have been decomposed. In order to achieve desired
high level of identification performance, extensive interaction by a trained operator is needed to
create the templates, identify potentials about which the program is uncertain, and double-check
the program's identifications. The method has been able to reveal some interesting new phenomena
related to motor-unit behavior but is far too laborious for routine clinical use, requiring as much
as one hour of computation time per second of data.

Moschytz, De Figueiredo, and colleagues [5, 6] have presented an advanced method for de-
composing single-channel EMG recorded with standard concentric EMG needle electrodes. This
method can extract up to seven sets of simultaneously active MUAP waveforms and firing patterns
from partial IPs of moderate complexity. The analysis consist of three steps. The first is the
learning phase in which the number of different active MUAPs and their waveforms are determined
on the basis of shape-related features, independent of firing times. Next is a decomposition phase
which reanalyzes the signal in an attempt to detect all the firings of each identified MUAP. The
program attempts to resolve superimpositions using a sophisticated algorithm that is able to opti-
mally scale and align up to three of the MUAP templates to find the best match to each observed
superimposition potential.

McGill, Dorfman and Cummins [7, 8, 9] have described a different method of EMG analysis,
which they refer to as Automatic Decomposition EMG (ADEMG), which is specifically oriented
toward clinical application. ADEMG operates upon single-channel EMG signal of moderate com-
plexity - corresponding to contractile forces of up to 30% MVC - recorded using standard EMG
electrodes, and decomposes them into their constituent MUAPs. The analysis is performed in
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Fgure 2: Block Diagram of The Proposed inverse Neuromuscular System for Diagnosis and Control
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4 Signal Decomposition Using Hopfield Network

A block diagram of the proposed Hopfield network chip-based inverse neuro-muscular decomposition
system is shown in Figure 2. A muscle signal is simulated which is composed of five different patterns

of action potential trains. The shapes of the simulated action potentials are derived from typical
real muscle signals. Signal templates, one from each class of action potentials. are converted into its
bipolar bitmap patterns and are used to compute the network weights and biases. This multi-train
signal is then corrupted with 20% noise, as compared to the average action potential amplitude,
for a normal clinical measurement environment. A moving window-based spike detector is designed

for the detection of the presence of action potentials as the window moves along the entire EMG

data. The spikes are identified whenever they crossed a predetermined threshold. Once there is

a crossing of the threshold ealue, the detector backs-up of two data points and picks-up a total
of 12 consecutive data points to represent the captured action potential. Each detected action
potential in the signal is then converted to its equivalent bitmap pattern. This bitmap pattern

is then presented to the Hopfield network for iterative stabilization to its closest attractor in the
network state space which outputs the recognized signal pattern.

A Hopfield model is used for pattern storage (101. The captured action potential of 12 data
points is converted in to a 2-D bitmap (20X20) using bipolar binary notation. The matrix element
is valued a "1" if there is a presence of data value within the space resolution as defined by the
bitmap matrix. Otherwise the matrix elements are valued as "-1". The bitmap converson is the
first step before the pattern is to be presented to the Hopfield network. Five different prototype
templates are thus converted to their bitmap patterns and are used to compute the weights of a

Hoplield auto-associative network.

The noisy EMG signal is then presented to the spike detection system. Once the signal detector

detects a signal. the signal is converted to its bitmap pattern and are presented to the Hopfield

network for classification. After the network receives the corrupted pattern it goes through iterative

H1-258



6

5

A II

4I ,

.a l .. . A l , I I I I , i _ I , I _ L , i . . , _

0

200 400 600 800 1000 1200 1400 1600 1800 2000

EMO Data Number

Figure 3: The Corrupted EMG Signal and Its Decomposed MUAPTs

state transition until it stabilizes into a closest attractor. After stabilization, the network stops
iteration process and outputs the classification results. The decomposition system graphically plots
the corrupted multi-train EMG signal and also plots the classified action potentials into decomposed
channels as shown in Figure 3.

5 Results and Conclusions

The EMG signal decomposition is very important for clinical neurophysiologists for diagnosis of
various neuro-muscular abnormalities. The firing patterns of individual motor unit can also be
used for the study of motor control properties. The decomposition of neuro-muscular signal using
a Hopfield network model is a success experiment and can be easily implemented for real-time
application using Hopfield neuro-chip. Recognition and decomposition of EMG patterns may also
serve an urgent need in deriving biological control algorithms which can be applied to control
prosthesis.

From the simulated signal, with 20% added noise, the network has decomposed 30 spikes cor-
rectly, into their respective motor channel, out of a total 32 spikes in the corrupted signal. Which
gives a success rate of nearly 94%. The success rates with 10% and 40% noise are also found to be

100%, and 50% respectively. In this experiment, the prototype templates could also be adaptively
updated each time a new action potential is detected. This allows the stored template to adapt

the gradual changes during the MUAP recruitment. However, in this experiment the templates,

that are stored initially, are not updated. It should also be noted here that the use of bitmap con-
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version technique eliminates the alignment problem that occurs in time domain template matching
technique.
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Abstract

The Radiation Signature (RS) paradigm takes aim at practical applications of the

knowledge provided by molecular studies of radiation-matter interactions in DNA. The

central proposition is the idea that the distribution of molecular lesions (i.e., a molecular

lesion spectrum, MLS) generated in DNA by exposure to a particular radiation is a

characteristic of that causal radiation (i.e., is a RS). We have found that adaptive neural

networks provide an efficient way to validate that proposition1 ,2 . Feature recognition

techniques become necessary when one deals with data bases that are less than optimal,

when one quires the minimum number of lesions adequate for signature, or when one

wishes to pursue the more tenuous and presumptive connection of a radiation and its

clinical outcome. The focus of this work is on the modeling and interpretation of RS's

using neural network processing. The specific goals of RS research in the domain of

feature extraction and modeling are: 1) to use trained neural networks to extract

signatures and markers from molecular lesion sets of various sizes, and to identify these

DNA lesions which serve as markers of specific radiation, 2) to investigate which

methods, including various neural networks and various architectures, can suggest the

molecular lesion sets that are most appropriate for particular purposes, and 3) to use

adaptive neural networks for interpretation of results. Although efforts to identify

products of radiation that are specific to radiation type and to link these with biological

responses are almost a century old, the RS concept has provided the first quantitative

confirmation of such causal relations.

1) K. Rupnik, and S. P. McGlynn "Molecular Lesion Spectra as Radiation Signatures"

Spectroscopy Letters, 26 5 873 (1993).

2) S. P. McGlynn, K. Rupnik, M. N. Varma and L. Klasinc, "Radiation Signatures and

Radiation Markers", Radiation Protection Dosimetry (in press, 1994).
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Abstract :
The 3D vector version of the back-propagation algorithm (called "3DV-BP") is a nat-
ural extension of the complex-valued version of the back-propagation algorithm (called
"Complex-BP"). The Complex-BP can be applied to multi-layered neural networks whose
weights, threshold values, input and output signals are all complex numbers, and the 3DV-
BP can be applied to multi-layered neural networks whose threshold values, input and
output signals are all 3D real valued vectors, and whose weights are all 3D orthogonal
matrices. It has already been reported that an inherent property of the Complex-BP is
its ability to learn "2D motion". This paper shows in computational experiments that
the 3DV-BP has the ability to learn "3D motion", which corresponds to the ability of the
Complex-BP to learn "2D motion".

1 Introduction
One of the most popular neural network models is the multi-layered network and the re-
lated back-propagation training algorithm, called here, "Real-BP" [7]. Back-propagation
networks have many successful applications.

The "Complex-BP" is a complex valued version of the back-propagation algorithm,
which can be applied to multi-layered neural networks whose weights, threshold values,
input and output signals are all complex numbers [1, 3]. This algorithm enables the
network to learn complex valued patterns naturally. It has already been reported that an
inherent property of the Complex-BP is its ability to learn "2D motion" [1, 31. And also,
the Complex-BP has been applied to the interpretation of optical flow (motion vector field
calculated from images) and estimation of motion which are important tasks in computer
vision [5, 6].

The "3DV-1P" is a three-dimensional vector version of the back-propagation algo-
rithm which can be applied to multi-layered neural networks whose threshold values,
input and output signals are all 3D real valued vectors, and whose weights are all 3D or-
thogonal matrices [2]. This algorithm is a natural extention of the Complex-BP algorithm.
This paper shows in computational experiments that the 3DV-BP has the ability to learn
"3D motion", which corresponds to the ability of the Complex-BP to learn "2D motion".

Hereafter, we shall refer to a real valued (usual) neural network used by the Real-BP
as a "Real-BP network", a complex valued neural network used by the Complex-BP as
a "Complex-BP network", and a three-dimensional vector valued neural network used by
the 3DV-BP as a "3DV-BP network".

This paper is organized as follows: Section 2 describes the 3DV-BP algorithm, and
Section 3 deals with the empirical analyses of the ability of the 3DV-BP network model
to learn 3D motion . The paper will end with our conclusions.

2 The "3DV-BP" Algorithm
This section briefly describes the 3DV-BP algorithm [2]. It can be applied to multi-layered
neural networks in which threshold values, input and output signals are all 3D real valued
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vectors, and whose weights are all 3D orthogonal matrices, and the output function F of
a neuron can be defined as

rf(al) [a,
F(A) - f(a2) , A= a2 (1)

f(a3) a3

where f(u) = 1/(1 + exp[-u]), that is, each component of an output F(A) of a neuron
means the sigmoid function of each component a,, of the net input A to the neuron,
respectively (m = 1,2,3). The learning rule has been obtained by using a steepest descent
method.

3 Ability to Learn 3D Motion
We wili now present some illustrative examples to show that an adaptive network of 3D
valued neurons can be used to learn 3D motion such as rotation, similar transformation,
and translation. Due to space limitations, we will restrict the presentation of our results
to similar transformations, although similar work has been carried out on rotations, and
parallel displacement [4].

We used a 1-6-1 three-layered network, which transformed a point (xI, x2, x3 ) into an-
other point (x', x2, x') in 3-dimensional space. Although the 3DV-BP network generates
a value X = '[xi x2 x3] within the range 0 < x1 , x2 , x3 < 1, for the sake of convenience,
we present it in the figures given below as having a transformed value within the range
-1 < X,X 2,X3 <1.

We also conducted experiments with a 3-15-3 network with real valued weights and
thresholds, to compare the 3DV-BP with the Rea]-BP The first component of a 3-vector
was input into the first input neuron, the second component was input into the second
input neuron, and the third component was input into the third input neuron. The output
from the first output neuron was interpreted as the first component of a 3-vector, and the
output from the second output neuron was interpreted as the second component, and the
output from the third output neuron was interpreted as the third component.

The learning constant c used in these experiments was 0.5. The initial components
of the weights and the thresholds were chosen to be random real numbers between - 0.3
and 0.3. We determined that learning finished when

E IIT() - O')1I2 - 0.05 (2)
P k=1

held, where Iamll 2_ 4 ± 4 + X3, Z - t[x I X2 '3]; T(P), O(p) E R 3 denote the desired
output value, the actual output value of the neuron k for the pattern p, i.e. the left side
of (2) means the error between the desired and actual output patterns (R denotes the
set of real numbers); N denotes the number of neurons in the output layer. We regarded
presenting a set of learning patterns to the neural network as one learning cycle. In this
connection, time complexity per learning cycle of the 1-6-1 three-layered network for the
3DV-BP was nearly equal to that of the 3-15-3 three-layered network for the standard BP,
as seen in Table 1. Furthermore, the space complexity (i.e. the number of parameters)
was almost half that of the standard BP.

The experiments described in this section, consisted of two parts - a training step,
followed by a test step.
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3.1 Learning of a Simple 3D Motion
Figs. 1 and 2 show the result of an experiment on a simple similar transformation.

The training step consisted of learning a set of (3D orthogonal matrix valued) weights
and (3D vector valued) thresholds, such that the input set of 11 points (with equal inter-
vals) lying along the straight line

y 1 (0.0 < t 1.0) (3)

gave as output, half-scaled straight line points (Fig. 1). The output training points also
lay along the same straight line (equation (3)), but the range was 0.0 < t < 0.5. To avoid
complexity, we omitted the points and showed only the lines joining them in the figures.

In a second (test) step, the 48 input points (with equal intervals) lying on three squares
would hopefully be mapped to an output set of points lying on three half-scaled squares.
The actual output test points for the 3DV-BP did, indeed, almost lie on the squares (but,
with an error) (Fig. 2).

To compare how a real valued network would perform, the 3-15-3 (real valued) network
mentioned above was trained using the same pairs of training points lying along equation
(3). The same 48 test points lying on the three squares were then input with this real
network. All points were "mapped" onto straight lines, as shown in Fig. 2.

3.2 Learning of a More Complex 3D Motion

This subsection shows that the 3DV-BP can make more complicated transformation.
Fig. 3 shows how the training points mapped onto each other. Those 11 points (with

equal intervals) lying along the straight line indicated by "Input Pattern 1', mapped onto
points along the same line, but with a scale reduction factor of 2. Those 11 points (with
equal intervals) lying along the straight line indicated by "Input Pattern 2" mapped onto
points along the same line, but with a scale reduction factor of 10. All the training points
lie along the straight line

S(-1.0 < t < 1.0), (4)Z 1

where "Input Pattern 1" for 0.0 < t < 1.0, "Output Pattern 1" for 0.0 < t < 0.5, "Input
Pattern 2" for -1.0 < t < 0.0, and "Output Pattern 2" for -0.1 < t < 0.0.

In the test step, by presenting the 60 points lying on the three circles x2 + z2 = 1,
y2 + z 2 = I and xT+ y2 = 1, the actual output points took the patterns as shown in Fig.
4.

It appears that this 3DV-BP network has learned to generalize the reduction factor
a as a function of the position in three-dimensional space, i.e. a point I[x y z] is
transformed into another point at[x y z], where a( t [x y z]) - 0.5 for x, y, z > 0, and
a('[x y zJ) 0.1forx, y,z<0.

4 Conclusions
We investigated by computational experiments the characteristics of the 3DV-BP algo-
rithm which is a natural extension of the Complex-BP algorithm. It was learned that
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the 3DV-BP had the ability to learn "3D motion" such as similar transformation as its
inherent property, which corresponded to the ability of the Complex-BP to learn "2D
motion". We expect that applications for the 3DV-BP algorithm will be found in such
areas as 3D image processing.
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Netor Time complexity = Space complexity

Network x d + + and - Sum Weights Thresholds Sum

I3D)V-BP 1-6-1 11 255 1141 13961 36 21 I~
Standard BP 3-15-3 264 141 405 90 18 108

Table I The Computational Complexity of the 3DV-BP and the Stan-
dard BP. Time complexity means the sum of the four operations per-
formed per learning cycle. Space complexity means the sum of the pa-
rameters (weights and thresholds).
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Asymptotically stable automaton-like behavior
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Abstract
Simulation studies confirm the previously observed ability of recurrent neural networks to I finite

automat in a stable nmmer while processing arbitily long input sequences. Frst order recurrent networks with
two different architectures have been trained to emulate given automata and untrained networks with randomly
assigned weights can often spontaneously emulate automata. This behavior a tied to dhe existence of regions of the
network state space which correspond to the states of the automata id are napped into each other by the inputs to
the network. Networks initialized at arbitrary points in the state space and supplied with random input sequences
eter these regions in a small number of time steps and then remain in them indefinitely. This automaton structure
cam be thought of as a genealization of the limit cycle attractor for systems with varying inputs.

Bac oend
Researchers applying recurrent neural networks to the problem of learning regular grammars have

consistently found that they accomplish this task by configuring themselves to approximately emulate the finite
automata associated with these grammars (Cleeremans, Servan-Schreiber, & McClelland, 1989; Giles, Miller,
Clen, Chen, Sun, & Lee, 1992; Omlin, Giles, & Miller, 1992 and others). The points in the network state space
visited while processing strings of characters tend to duster, with the clusters corresponding to the staes of the
automata. Since there are eors in the output of a recurnt neural network at each time step, it has been generally
assumed that these emws should accumulate with time, producing a progressive degradation in performance. Such
degradation has been observed when networks have been tested on strings much longer that those on which they
were trained. Th observed clusters grow, become less well separated and eventually overlap and lose their
identity. An exception to this was observed by Manolios & Fanelli (1993). Some recurrent networks trained on
relatively short strings maitne their performiance and retained well defined clusters that did not grow even
when processing strings up to 1,000 characters in length. Zeng, Goodman, & Smyth (1993)seem to have observed
simila behavior in one of their networks. Manolios & Fanelli (1993) concluded that the finite automaton like
behavior of the network had been somehow encoded in its atactor structure (when considered as a dynamical
system) so that it could be retained indefinitely, without degradation. This paper reports on further investigations of
this phenomenon and its nature as the generaization of a limit cycle attractor. A simulation study such as this is
empirical and thus cannot be definitive or all encompassing. However, it can expose some of the features of the
phenomenon and thus provide a basis for toretcal analyses.

Introduction
The study has investigated discrew-time, first order, recurent neural networks with two architectures, the

simple recurrent network of Ehna (1990) ad an architecture with two rectrrent layers, feeding back to each other
(Manolios & Fanelli, 1993). The inputs to the networks were restricted to be members of finite sets ( e.g.
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r mtokhns of die caracters in a character se), but could otherwise vary arbitrarily with time. System with no
inputs or constant ones normally have well defined equilibrium points, limit cycles or chaotic attractors. Hirsch

(1989) has briefly discussed systems with variable inpM, suggesting that in some cam such a system can act like

*a rahe nrdiable finite state automaton." Each different input can be thought of as defining a different mapping

of the system slate from one time step to the next, thus defining a different dynamics for the symem. Repetition of

each input thus results in an approach to a distinct set of auctors. Also, ay finite sequence of inputs also

specifies a dynamics, but with a larger effective time step. Its own attractor will be approached after enough

repetitions. There is thus an infinite number of sets of atracton associated with a network and its inputs. In this

study, a few of these aftractors have been observed and points on them found to be closely associated with stable

custers of network states corresponding to automaton mates.

Methods used
Automaton-like behavior can be identified in the following way. As a network proceses a sequence of inputs.

clusters of network states corresponding to automaton states can remain stable indefinitely, provided that the points

in these dusters ie in regions with the following property: In one time step, a point in such a region is mapped by

any member of the input set into a point that lies within the sane or another such region. A subtractive algorithm

for identifying stable regions, based on this property, has been developed. Fst, the clusters of states observed

when a network processes long random strings are used as a guide for choosing initial regions which include them.

The remainder of the state space is denoted the exduded region. Then a fixed rectangular grid is imposed on the

state space. Each included point on a grid intersection is mapped by each member of the input set to a resulting

point. If any of the resulting points lie in the excluded region, the grid point is reassigned to the excluded region.

This continues until no more grid points can be excluded. The boundaries of the resulting regions are uncertain

because of the finite grid size. The algorithm deals conservatively with this uncertainty by excluding a grid point

unless all of its mapped points are entirely surrounded by included grid points. Finally, points whose mappings lie
in the stable regions but which are not themselves close to any mapped points are considered not to be part of the

asymptotic regions and are removed. The remaining points indicate the stable regions. The results of the algorithm

may depend on the initial choice of the regions, so the algorithm can be repeated with different choices to check

In this paper, sample results for three emural networks am shown. In each case, the network has a single input

unit, set to zero or one, so that over time the inputs are bit strings. Tie number of units representing the state of the
networks was held to two, so that the state spaces were two dimensionl and could be easily displayed. The first

network had m Elman architecture, with two hidden units representing the state. The second had the 2-layer archi-
tecture with two state units, one designated for output. These networks were trained with versions of the RTRL

algorithm (Williams & Zipser, 1989) on simple bit string grammars. The third was another 2-layer network,

randemly inidalized and untrained. Each network was studied in the same way. All the networks were tested with a

randomly selected state at the start of the processing of each string. Frst the network was tested with 3 random

strings of1000 (Ys and l's and the last 100 states in each case were observed. The clustering of these states served

as a guide for the algorithm for finding stable regions. Second, this algorithm was applied. Third, the networks.

were tested with 9 strings of 100 0's then 9 strings o 100 l's and then 9 strings of 50 01 pairs. These tests located

the attractms for single characters and two character sequences, which appeared well in advance of 100 time steps.
Fourth, convergence of the networks was tested with 100 strings of 10 random characters, which turned out to be

long enough to reach the asymptotic automaton region. With random initial states, this test indicated whether the

asymptotic automaton was reached globally or from some basin of attraction.
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Elmuan Architecture
The network was trained as in Fanelli (1993) on a simple bit string grammar which was found easy to learn

for this architecture. The grammatical strings are just those that end in the sequence "01". The training set consisted

of all strings less than or equal to 4 characters in length, including the null string. Forty nets were initialized

randomly and trained for 10,000 epochs each with a learning parameter of 0.01 and a momentum term of 0. The

initial states for the nets were chosen randomly during the initialization, then held fixed during training. The

network with the smallest root-mean-square (nns) error ( 0.016 ) was further trained to a total of 350,000 epochs.

Its final rms error was 0.0011. This network was then studied as described above.
Figure 1 shows the stable regions found for this network, which conespond to the three states of the minimal

automaton for the grammar. The rectangular shape of the regions is purely a consequence of the coarseness of the
grid used in this case. The attractors for single characters and 2 character sequences are also shown and lie within

the stable regions. The long random string tests described above yielded clusters of states that all lay within the
stable regions also. These are not shown. In the convergence test, the network states reached stable regions within

10 time steps from all 100 initial states, indicating global convergence.

Two-Layer Architecture, Tomita 6 grammar

The network was trained on the sixth grammar of Tomita (1982). The training set used initially consisted of

all strings less than or equal to 4 characters in length, including the null string. The initial states for the nets were

cmsen as described above for the Elman nets. To begin, 182 nets were initialized randomly and trained for 1000
epochs each, with a learning parameter of 0.1 and a momentum term of 0.5. Of these nets, 5 had root-mean-square

erors less than 0.1. The best, with an is error of 0.042 was chosen for further training. It was trained for another

1000 epochs on the same training set, reaching an rms error of 0.027. It was then tested on each of 3 single strings
consisting of 1000 random 0's and l's (different than the strings described above). Its largest rms error was 0.031.
The network was trained for another 3000 epochs on the string producing this error, reaching a final rms wro of

0.010.
Figure 2 shows the stable regions and 1 and 2 character atturactors for this network. There are four stable

regions corresponding to an automaton that is reducible to the three state minimal automaton for Tomita 6. The

attractors are all limit cycles with two 3 state cycles for single characters and three 2 state cycles for two character

sequences, all expected from the grammar itself. The stable regions are larger than in the previous case, with the
lower two breaking up into sub-regions. As above, the last 100 states of long strings all lay well within the regions

shown. Global convergence to the stable regions within 10 time steps was observed for this network also.

Two-Layer Architecture, untrained

Networks were randomly initialized in the same manner as the other nets, but were not trained. The weight
values were uniformly distributed between -2.0 and +2.0. The same studies were performed as on the other nets.

Figure 3 shows results for one such network. They are similar to those already presented, even though the

networks were not trained. Once again, later states of long random strings clustered within the stable regions and

global convergence within 10 time steps was observed.

Disussion
The above results indicate that stable automaton-like behavior is often a feature of recurrent neural networks

running for large numbers of time steps. Untrained nets can display it spontaneously and nets can be trained to

approximate particular automata with errors remaining within fixed tolerances. It is likely that this behavior is a

II1-270



feaur of other systems also, such as second order neural networks and other kinds of discrete-tint dynamical sys-

tems. It may be considered as a natural generalization of the limit cycle to systems with discrete time-varying

The atomata observed qape to have a finite number of states at the accuracy scale of this study. However,
the suib-reglcfs observed for the second network and other observations suggest that as the grid size (or other scale

meaue) becomes finer, breakup into still smalle regions may be observed. This raises the possibilty that in the

limit these regions approna a possibly unbounded number of distinct points. Definitive resolution of this question
goes beyond simulation studies and requires a theoretical analysis.
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Figure 1. Stable regions and three attractors for an Elman network trained on a simple
bit string grammar. Data point symbols are scaled to approximately indicate the grid size
used in applying the stable region finding algorithm. The single character attractors are
both equilibrium points while the two character attractor is a two state limit cycle.The
dotted line traces the cycle and the repeated character sequences associated with the attrac-
tors are indicated with arrows. The region at the lower right corresponds to the start state
and that at the lower left to the single final state.
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Figure 2. Stable regions and simple attatr for a 2-1ayer network trained on the Tomita
6 bit string grammar. Data point symbols are scaled to approximately indicate the grid sz
used in applying the stable region finding algorithm. The two single character attractors are
three state limit cycles while the three two character attractors are two state Eimit cycles. The
dotted lines trace the cycles and the repeated character sequence associated with them are
indicated with arrows. The "0" cycle is traversed counterclockwise and the "I" cycle clock-
wise. The automaton is reducible, with the two upper states reducing to the start state which
is also the single final state.
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Figure 3. Stable regions and simple attractors for a 2-layer network randomly initialized,
but untrained. Data point symbols are scaled to approximately indicate the grid size used in
applying the stable region finding algorithm. The two single character attractors are equi-
librium points while the two character attractor is a two state limit cycle. The dotted lines
trace the cycles and the repeated character sequences associated with them are indicated
with arrows.
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HAVNET: A NOVEL NEURAL NETWORK ARCHITECTURE
FOR TWO-DIMENSIONAL PATTERN RECOGNITION
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ADRSRACT

A novel artificial neural network architecture is introduced. The network employs the Hausdorff distance as a
metric of similarity between two-dimensional patterns. The Hausdorff distance exhibits many properties that are
desirable in a pattern recognition context, and the network inherits these advantageous traits. The architecture,
leaning rule, and recall processing for the network are presented. It is shown that the network internally employs
a version of the Voronoi surface to facilitate processing. Prelimina results from applying the network to pattern
recognition tasks are encouraging.

INTRODUCTION

This paper introduces a new neural network architecture specifically designed for two-dimensional pattern
recognition. Because the network utilizes the Hausdorff distance as a metric of similarity between patterns, and
because it employs a learned version of the Voronoi surface to perform the comparison, it has been dubbed the
HAusdorff-Voronoi NETwork or HAVNET. The choice of the Hausdorff distance as the metric of similarity
between input patterns and learned patterns is what makes HAVNET different from most other neural network
paradigms-

Some current neural networks treat the input as a vector and the trained weights as another vector, and the measure
of similarity becomes the difference between these two vectors [e.g. 11. The node with an internal weight vector
that most closely matches the presented vector generates the highest output response. Unfortunately, transforming
a two-dimensional input pattern into a multidimensional vector can produce behavior that is counter-intuitive. Input
patterns that appear very similar (to the human eye) to learned patterns for a particular node can generate very poor
responses from that node.

Other networks tut two-dimensional input patterns as a matrix, and the measure of comparison between the input
matrix and the stored (learned) matrix is computed as a correlation between the two patterns [e.g. 2). These
networks essentially perform template matching. Although these networks perform well when input patterns are
identical to learned patterns, slight distortions in the input patterns can drastically reduce the output from the trained
node, again producing results that do not agree well with human interpretations of pattern similarity.

One measure of similarity between two-dimensional binary patterns that has been shown to agree closely with human
performance is the Hausdorff distance [3]. The Hausdorff distance measures the extent to which each point of an
input set lies near some point of a model set. Given two finite point sets A=(a,,...,aj and B=(b,,...,b), the
Hausdorff distance is defined as:

H(AB) = max{h(A,B) ,h(B,A)} (1)

Where the function h(A,B) computes the directed Hausdorff distance from A to B as follows:

h(AB) max min -bl (2)

Where I a-b I is typically the Euclidean distance between points a and b. The directed Hausdorff distance
identifies that point in A that is furthest from any point in B and measures the distance from that point to its nearest
neighbor in B. If h(A,B) =d, all points in A are within distance d of some point in B. The (undirected) Hausdorff
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distance, thie, is the maximum of the two directed distances between two point sets A and B so that if the Hausdorff
distance is d, then all points of set A are within distance d of some point in set B and vice versa.

The Haudorff distance exhibits many desirable properties for pattern recognition. First, it is known to be a metric

over the set of all closed, bounded sets [4]. Also, it is everywhere non-negative and it obeys the properties of
identity, symmetry, and triangle inequality. In the context of pattern recognition this means that a shape is identical
only to itself, that the order of compariso of two shapes does not matter, and that if two shapes are highly
dissimilar they cannot both be similar to some third shape. This final property (triangle inequality) is particularly
important for reliable pattern classification. It was because of these advantageous properties that the Hausdorff
distance was chosm as the simnilarity metric that is the basis of HAVNET. The architecture, learning rule, and
recognition process used in HAVNET are described in detail in the following sections.

NEURAL NETWORK ARCHITECTURE

An overview of the architecture of HAVNET is shown in Figure 1. The neural network behaves as a binary pattern
classifier. It takes as inputs two-dimensional binary patterns, it employs feed-forward processing, and it produces

analog output patterns. One output is generated by each node, with the analog value indicating the level of match
between the input pattern and the class represented by that
node. The neural network consists of three layers, the ---------- -

pkatic layer, the Voronoi Layer, and the Hausdorff layer.
The plastic layer contains neurons with the weights that are
trained during the learning process, the Voronoi layer
serves to measure the distance between individual points in

the input and learned patterns, and the Hausdorff layer usesinformation from the Vormo layer to compte the overall t ,

level of similarity between the input pattern and the learned V,2
pattern. A detailed diagram of the architecture for a single ......
node is shown in Figure 2. The node is shown in a , "

configuration for one-dimensional inputs for reasons of \ [>-
clarity. In the actual network, the input pattern, plastic
layer, and Voronoi layer are all two-dimensional. - ----

Learning is employed in HAVNET to adapt the individual

nodes to recognize certain classes, and it is conducted by Figre 1. Neural Network
presenting examples of each class to the network during a Architecture Overview
training phase. Learning in the particular implemetatio
of the network described here is done off-line and in a
supervised manner, but it could alternatively employ on-line learning and self-organization. The specific details of
how learning and recognition are carried out are presented in the following sections.

NEURAL NETWORK LEARNING

Off-line supervised learning is implemented in the version of HAVNET described here. The network is trained to
recognize objects off-line, and the network is informed a priori of the class to which each training pattern belongs.
Once the network is put into the recognition (on-line) mode, training ceases and recognition response is repeatable
and predictable.

The weight matrices that undergo changes during the learning process reside in the plastic layer of the network (the
reader may wish to refer to Figures I and 2 throughout this discussion). A binary input pattern A0 that is presented
to the network during the learning phase is represented as follows:
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a = (1, 0) x=1. X, y=l . Y (3)

Whre X, Y she dimensions of the input pa , ern

U~~n" orPM a

I W.. b VrnlLt

Lam*U~~WM rf Layer1 -lstoLae

I
I

igure 2. Neuural Network Detale Node Architecture

Prior to learing, each weight matrix W' of the newr is initialized as follows:

Wn(x,,),(y a) = 0 n1l...N (4)

'7" Oman o Ws

Whee N - 2he total number of nodes in Nhe newotk

The quantity 6 is defined as the span of the Voronoi layer, and its meaning will be elaborated upon later. At this
point it is necessary only to state that it is a positive integer value that is much less than the dimensions of the input
pattern. The weight w.' is defined as the averaging weight for a node, and it is trained during each training pass
regardless of the input pattern. The wo weights serve as an indicator of the extent to which each node has received
training.

When node n is trained on input pattern m, the change in each of the weights is computed as follows:
A w', (y|.& ) = a" (X+ 8 ) s

( jr4) y a (I -w',a (, (6)

A won = a(1-w) (7)

Where: 0 r a : 1 is the learning rate
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Once the weight change is computed, the weights are updated as follows:

i ( ., ) _ ., .0~ t ) , . + A ..n ( 0 )( o
, (t+8) wx+6), (y+&)

0+ 0 +Ae) (9)

Where: t - training iterations

During the lerming phase, esch training pattern is presented to the network in sequence, and the appropriate node
is trained using the equations above. The learning rate determines the magnitude of the effect that each training
exemplar has on the trained weights. The saturation-like behavior of the learning rule (see Equation 4) guarantees
that the learning process will reliably converge for any finite set of training patterns.

NEURAL NETWORK RECOGNITION

In the recognition mode, the HAVNET attempts to classify an arbitrary input pattern into one of the classes
represented by the trained network nodes. During recognition, the neural network computes a modified version of
the directed Hausdorff distance between an input pattern and a stored pattern at a given node. To clarify the
explanation of this computation, the concept of a truncated
Voronoi surface is introduced. A Voronoi surface is
constructed for a two-dimensional set of points A by first 0o
locating the members of A in the x-y plane, and then a
plotting in the third (z) dimension the distance from any Is
point in the x-y plane to the nearest point that is a member It
of A [5]. When this distance is not allowed to exceed some 12

value 6, then the surface is defined as a truncated Voronoi ,0

surface. The plot of the truncated Voronoi curface is
sometimes referred to as an egg-carton plot because, if the
members of A form a rectangular grid, the resulting plot
resembles an egg cartoo [3]. Figure 3 shows a set of 10 2__ _ _

randomly located points, and Figure 4 shows the tru0cated 2 , , , t1 II 20

Voronoi surface for that set, with the maximum distance at
8-3. Note that cone shaped depressions are formed in the Figure 3. Random Point Set
surface at the locations of the original points.

The Voronoi surface can be used to conveniently compute the directed Hausdorff distance between two point sets.
In order to perform the computation between a point set B and the previously defined point set A, the members of
B are simply located in the x-y plane, and the z-value above each point represents the distance from that point in
B to its nearest neighbor in A. The maximum of these
values is the directed Hausdorff distance h(BA). For
neural network purposes it is desirable to compute the
inverse of this distance, so that shorter distances result in
higher outputs. It is also desirable to threshold this
distance at some maximum, so that any distance above that
maximum will generate the minimum network output (zero
in this case). For these reasons it is desirable for the
neural network to model the Inverse of the truncated
Voronoi surface. The truncation distance 8 is the span of
the Voronoi layer of the neural network that was previously
referred to.

An example will serve to demonstrate the neural network ______ 4.______________Sufac
Figure 4. Truncated Voronoi Surface
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pressing before it is specified in detail. Assume a
network with a single node that is designed for 20 x 20
inu patterns. Assume further that this node is trained in
the manner explained earlier, with a learning rate of
a=1.O, to recognize the pattern of points previouslypresented in Figure 3. After training, the response of the

node is measured to input patterns that consist of a single
point in one position in the input matrix. That response is
then plotted as a function of the position of that point in the
input field. Such a plot is shown in Figure 5. This plot
demonstrates that, in a single training pass, the network has
learned to reproduce the exact inverse of the original
truncated Voronoi surface of Figure 4. The network, then, Figure 5. Network Node Response
is prepared to compute the inwene directed Hausdouff
distance between any input pattern and the learned pattern,
simply by projecting the points of the input pattern onto this learned surface. Although there are additional
complications in practice, this is the essence of how HAVNET conducts pattern recognition. The exact details of
the recognition process are given below.

The response of a node n to an input pattern A' is determined by first computing the output of the plastic layer:

b,.W,- . w.,., (10)

Where: x = I...X input x dimension y = I... Y input y dimension
ij=-&..a Voronoi layer span n = I...N node number
n= plastic layer weight for node n P = plastic layer output for node n

Given the outputs from the plastic layer, the outputs for the Voronoi layer c' are computed as follows:

c max-{max{v,, b;.j4} (11)

The Voronoi weights v,, are the same for all nodes and are computed as follows:

Once the outputs from the Voronoi layer are determined, the responses of the Hausdorff (or output) layer neurons

are computed:

d .___ E E (13)
w* y=lX-l

Where: w." = averaging weight for node n nete = output for node n

The normalizing quantity V' is determined as follows:

* max{p."3p,) (14)
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And the function is the following binary threshold function:

f x>0 (17)
ett)n-

The final outputs ne indicate, for each node, the similarity of the input pattern to the patterns that have been
learned by that node.

CONCLUSIONS

HAVNET represents a novel neural network that is specifically designed for pattern recognition. The network is
well developed and well behaved mathematically, and it is the first known neural network paradigm to take
advantage of the Hausdorff distance as a metric of similarity between two-dimensional patterns. In doing so, the
network inherits the desirable properties of the Hausdorff distance, and therefore duplicates human performance
more accurately than many previous neural network architectures. Furthermore, the network architecture is flexible
enough to incorporate self-organization, unsupervised learning, and nearest neighbor competitive or cooperative
learning in the plastic layer as required by specific applications. The evaluation of HAVNET on several pattern
recognition tasks is presently in progress. Initial results on character recognition, and the learning and recognition
of o Mje from edge images, ae encouraging.
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ABSTRACT

CORTECONS (COntent-Retentive, TEmporally-CONnected neural networks) are a new class
of neural network. CORTECONS use a novel energy function, a "free energy" taken from
statistical mechanics models of Ising spin glasses, to facilitate a richer range of temporal
behaviors than currently are available. This "free energy" includes a spatial configuration
entropy term in addition to the basic interaction energy that is commonly used. By making
the interaction energy dependent on nearest-neighbor interactions only, and by using the
spatial configuration entropy, minimizing the network's "free energy" drives the network
towards certain types of patterns rather than to specific, stored patterns. The specific
patterns to which the network moves can thus be influenced by a number of factors that allow
the influence of previous system states. These include current input, regular and temporally-
gated lateral interconnections, unit activation from previous inputs, and other factors. With
different implementation strategies, CORTECONS form a class of neural networks that
provide a basis for a rich range of temporal pattern association capabilities.

1. DECOUPLING THE DRIVING FORCES: A NEW APPROACH IN NEURAL
SYSTEMS DESIGN

One of the greatest challenges in neural network design is to create a class of neural networks
with richer temporal processing and association properties than are currently existent. The
temporal properties of a network are related to two major factors. One is the extent to which
either the individual neurons and/or the interconnections can maintain some temporal
continuity, or have memory of previous states. The other is the nature of the dynamics which
govern network processes. When a network's dynamics are associated with the minimization
of an energy function, as in the case of the Hopfield neural network, we can think of the
energy minimization as a "driving force" governing the network processes. We can expand
our concept of a "driving force" to include the structurally-dependent process of transferring
weighted signals between neurons. Such a structurally-embedded "driving force" is the rule
in feedforward networks. Current driving forces are state specific. That is, they drive the
network towards one of a set of known, encoded states.

This paper introduces the novel approach of decoupling the driving forces in a neural network
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into two forces; one which is state-specific, and another which is non-state-specific. The
state-specific driving force is encoded, as usual, within the connection weights of the network.
The non-state-specific driving force is a free energy minimization process which drives the
network towards states with certain configuration characteristics, rather than to specific
instantiations of such states. The interaction between the two forces produces a class of
network which not only has good pattern response capabilities, but which can also exhibit a
wide range of temporal properties which have not hitherto been found in any neural network.
Most significantly, this architecture promises a route to more cortical-like behavior of the
artificial neuron assemblage. This leads to the name for the prototype of this new class of
neural network, the CORTECON: A COntent-Retentive, TEmporally-CONnected network.

The use of a free energy function as a driving force instead of the usual energy function is
novel in neural network design. The free energy function contains an entropy term, which
combines additively with the energy term to create the free energy. The "free energy"
concept has been well established in thermodynamics and statistical thermodynamics. Within
the thermodynamics framework, a system approaches equilibrium by minimizing its free
energy, rather than just minimizing the simple energy function. The key to minimizing the
free energy of the system is to treat the system as an ensemble of bistate units, to which the
principles of statistical thermodynamics can be applied. The next section describes the
structure and dynamics of a basic CORTECON. The following section gives some particulars
of the special type of free energy which is used by the CORTECON. A final section presents
some results to date.

2. CORTECONS: NEURAL NETWORKS DRIVEN BY FREE ENERGY
MINIMIZATION

CORTECONs are a class of novel neural networks that have as a common element two
features: processing units or "neurons" whose activations are dependent on previous states,
and the use of "free energy" as a driving function. The basic CORTECON structure is a two-
layer neural network consisting of an input layer and a computational layer, as illustrated in
Figure 1. The input layer functions in the usual manner of accepting inputs and propagating
them via weighted sums to the computational layer. The computational layer is composed of
processing units which receive inputs and Gaussian noise and which also experience
activation decay. The state of each processing unit is governed by a function of both its
activation (due to the previously mentioned factors) and the overall drive to minimize the free
energy. The process of minimizing the free energy can alter a unit"s state. To do this, the
absolute value of the unit's activation must be less than a predetermined threshold. Units
above threshold value are "fixed" on or off, and stay that way until changes in input or
activation decay cause the activation to become smaller than the (positive or negative)
threshold value. Once a unit's activation is smaller than threshold, it becomes labile, and the
free energy minimization process can change that unit's state.

The free energy minimization process is conducted in a manner similar to training a
Boltzmann machine. Units in the computational layer are selected at random. If a unit has
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activation smaller than threshold, it's state is changed, and the free energy for the
computational (output) layer is redetermined. If the change results in a lower total free
energy, the change is kept. Otherwise, the unit is returned to its previous state. This means
that even if a unit is receiving positive activation, and would typically be in an "on" state,
the free energy minimization process can turn it off, and vice versa.

Use of free energy minimization for this network is analogous to using a Lyapunov function.
The free energy is not a time-dependent function, nor is it a potential energy function in the
sense used for most neural network Lyapunov functions. However, it is used in analogy to
the free energy minimization process observed in many natural systems. Use of a free energy
function of the type described here implies that the network exists at or near an equilibrium
state, and that inputs to individual processing units in the network are treated as perturbations
on the overall network state. When a perturbing input is received by the network, the
network adapts its overall spatial configuration so that it accomodates both to the inputs to
each processing unit and to the overall free energy minimization.

3. HELMHOLTZ FREE ENERGY
Conputational Layer WITH SPATIAL CONFIGURATION

ENTROPY
DThe "computational layer" of this new class

of neural network can be modeled as large
l-D or 2-D "grids" of bistate processing
units. (A I -D grid has been used for

-- -- prototyping the CORTECON.) This grid
Input Layer can be treated as an ensemble of bistate

units, and Ising statistical mechanics model
Figure 1: System Architecture for the can be applied. The basic formalism for
CORTECON Engine. the Helmholtz Free Energy (named after H.

von Helmholtz, who did much of the
pioneering work in this area) is

A = E- TS, (1)

where A is the Helmholtz Free Energy, E is the energy, T is the temperature, and S is the
entropy. We can express (1) in reduced form, by dividing through by temperature,
Boltzmann's constant (k), and the total number of units in the system (N). (Both the latter
terms are involved in the expression for entropy.) This yields

A = Z - S/(Nk), (2)

where A and E are the reduced Helmholtz free energy and the reduced energy, respectively.

The equilibrium state of a system (pressure and volume fixed) is defined as the minimum in
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the Helmholtz free energy. Two processes contribute to this free energy minimization;
minimizing the total energy of the system (defined in terms of the energies of individual units
and their interactions), and maximizing the entropy of the system. The entropy of a system
describes the distribution of its components into the different possible states. Usually the
states which are considered for entropy are the energy states of individual units.. An
alternative is to consider as different "states" the variety of local spatial configurations of
processing units in different states. This can be used to construct an entropy function which
drives the system towards an spatial configuration characterized by a distribution of certain
types of local patterns. These micropatterns are composed of nearest-neighbors and next-
nearest-neighbors, which provide respectively three and six distinct types of configurations, as
is shown in Figure 2, for configurations composed of units in one of two states, A or B.
A "configuration" in terms of the cluster variation theory, on which this work is based, can be
either a "pairwise" configuration, e.g. the pair A-B or the pair B-A (both would be counted as
the same type of configuration), or as a "triple," e.g., A-B-A. The configurations which
appear differently when viewed right-to-left vs. left-to-right are treated as different
instantiations of the same configuration, but are weighted doubly with the redundancy
parameters 3i and yi, as is shown in Figure 2.

The specific Helmholtz free energy equation which is used as a driving function for this class
of neural network is given as [jMaren et al., 1992: Kikuchi & Brush, 1967]

A =4ANkT =213 ( -z1 + z 3 + Z4 -z 6)

3 6

- 2'f3,Lf(y,) + 2r ¥iLf(z,)
i = i=1 (3)

6

+ p43 (l- zyvi) 4 44(z 3 + z 5 -z 2 -z 4)

where
E is the interaction energy between processing units,
P3 is the Boltzmann's constant,
y3 and 7, are the cluster variables, as illustrated in Figure 2,
3i and y, are cluster variable coefficients that account for redundancy in the way a

given cluster variable can be measured, and
p and I are Lagrange coefficients.

The term Lf(x) is given as

Lf(x) = xln(x) - x. (4)
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The first term on the RHS of Eq. (3) is the interaction energy, which is negative when
neighboring units are in the same state. The next two terms are the entropy, and express the
distribution of the ensemble into different types of local spatial configurations. The variables
used to describe these relationships are the nearest-neighbor configurations variables, yi, and

the "triples," 7, both shown in Fig. 2. The
remaining two terms are Lagrangian

multiplier terms.
Configuration Fraction C9,

A x1  1 4. RESULTS OF NETWORK

B x2  1 OPERATIONS

Configuration Fraction f31  Early studies with the CORTECON
(Maren et al., 1992; Maren, 1993)

Ayi 1 confirmed that the free energy

A - B y2  2 minimization process, as carried out via
the stepwise process of "flipping" unit

B - B Y3  1 states and testing the new free energy,
* produced results which met theoretical

Configuration Fraction _ _ predictions for the free energy of the

A A computational layer. Recent work has

\ zi focused on identifying the pattern

A association abilities of the network, and on
introducing design features which give the

A B network unique and interesting temporal
\ I z2  2 capabilities. These design features
A include additive noise in the computational

A A layer units, exponential activation decay of

k / Z3 I patterns once input stimulus is removed,

B and use of interneurons to strengthen the
activation of units in response to a present

B B pattern, or to enhance temporal association
z4  1 with a succeeding pattern.

A
Our pattern association studies have

B A confirmed that once the input-to-
\ /z 2 computational layer connection weights
B _have been briefly trained using a variation

B B of Hebbian learning, it is possible to gain
\ z6 1 recognizable recall of "prototype" output
B patterns associated with a given input

pattern. Prototype output patterns were
identified for each of the randomly

Figure 2: The Fraction Variables rom Cluster established, stored input patterns used in
Variation Theory. training and testing the network. They
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were obtained by randomly presenting the different input patterns at least 50 times after
network training. The resultant output patterns for each distinct input were stored and
averaged. For testing, the inputs were again presented a similar number of times, and the
normalized Hamming distance between the resultant output pattern and the corresponding
prototype was found. Hamming distances between each of the prototypes (in pairwise
manner) was also found. We found that the Hamming distance between the prototypes was
typically 3-4 times as large as the Hamming distance between a resultant pattern and its
associated prototype. This gives confidence that the unit clustering caused by action of the
free energy driving force does not too greatly distort the heteroassociative capabilities of this
network.

The combination of free energy (which causes clustering of like units) with learned and
sparse lateral connections or interneurons, becomes valuable in maintaining output pattern
stability during the activation decay which follows when the input pattern is removed. When
an input pattern is presented, clusters of like units will develop in the output layer as a result
of the free energy minimization. The "core" units of such clusters typically have high
activation values, and so are impervious to the random "flipping" of units with less activation.
When the input pattern is removed and activation decay begins, the interactions between like
nearest neighbors in the clusters help to "persist" the cluster for a longer time than would be
so if the free energy minimization process were not present. Further, the interneurons
established between the strongest units (whether "on" or "off") are designed to persist the
state of the receiving units. This helps them maintain their original state. Interneurons have
also been designed to facilitate association and stabilization of temporally-paired patterns.
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Optical methods of measuring in-plane deformations and displacements on the
surface of specimen and workpieces are used in many branches of
metalworking industry, development, investigation, and science. They are, for
example, the method of visioplasticity, interferometric and moire techniques
etc. All this methods are based on the optical analysis of resulted grid structures
and measure of their interested points or lines. Especially, the method of
visioplasticity is often applied in the analysis of large plastic deformations in
metal cutting and forming processes and for quality control. An typical example
for a visioplastic application (metal cutting analysis) is proposed in Fig.1
below.

The image analysis of deformed grids may help for development and
investigation of pairs of workpiece and cutting material, optimized
technological conditions and new tool material which may allow cutting
without coolants and lubricants or with less use of coolants and lubricants.
However, for a comprehensive and economical industrial inset of this methods
it's necessary to automatize the recognization of grid points and the analysis of
deformations. For the processing of given points exists some programs and
software systems like the system VISIO, developed by the Society for
Production Engineering and Development (GFE) Chemnitz, but the analysis of
large or extrem deformed grid structures continues to be only practicable
manually (using microcsopes,digitizers etc.). The described paper will propose
a solution for recognize points in large deformed and injured lattices using
digital image processing in combination with neural networks.

For the recognition of small or medium deformed lattice structures exists a
collection of useful and exactly algorithms. These are, for example, binary
image processing, different filters, splines and Fourier Transform. However, if
the deformation of the surface is large or extrem, the results of this "classical"
algorithms are unexactly or false, because most methods requires a similar form
of grid crosses. In addition to this, in consequence of then large deformation the
grids are often injured. During the last three years, we have investigated the
demeanour of traditional, usual algorithms for lattice analysis like
skeletonization of binary images and Fourier Transform in visioplastic
experiments (Fig. 1) with a deformation of some hundred percent. Usually the
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results of this methods are false, and not one of this algorithms has produced
evaluable results.

Fig.l: Typical example for a large deformed lattice in visioplastic
investigations

(metal cutting analysis).

In this cause, it's necessary to find a way to search and range the objects
automatically, including the learning of new search patterns (auto-adaption). A
hopeful way is the usage of procedures of biocomputing, like fuzzy logic and
neuronal networks. Particularly some models of neuronal networks appears
qualified for problems of pattern recognition, and tentatively experiences
confirm the eligibility of this models for the cross analysis in deformed lattices.

In first investigations was choosed the backpropagation model with a sigmoid
activation function. This model is applied often in the optical recognition of
patterns and characters (OCR). A backpropagation network usually contains
three or more neuron layers. The output of each neuron of one layer is
connected to an input of each neuron of the next layer; all of this connections
are weighted. A source pattern is entering to the inputs of the neurons of the
first layer. The network propagates the input pattern layer by layer. Finally, on
the outputs of the neurons of the output layer appears the target pattern. A
backpropagation network needs an "supervisor" during the learning phase, i.e.
the target pattern must be known. Thereupon, for each pair of patterns the
network adjust the weights, until the difference between the target pattern and
the output pattern is minimal.
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manually. It was performed learning cycles, until the average error per pair of
pattern was less than 0.1. Usually a backpropagation network needs no more than
some hundred cycles.

During the "recall" phase, the part of the image evaluable by the network is
moving pixel by pixel, until the complete image is scanned. For each of this sub-
images the backpropagation network gives an output value in range between 0
and 1. This value kan be interpret as a "level of comparability" between the
learned patterns and the real part of the lattice. All output values will be stored
into a file on a harddisk and form a matrix.

This matrix is equal to the filtered image and contains the probabilities of the
existence of an object for each picture element. Like an image, thereupon the
matrix can be processed using traditional image processing methods. For
example, if the location of the crosses is wanted, then the local maxima greater
than a threshold (ca. 0,5..0,7) are interpretable as probably crosses. For this
problem also exists some algorithms in the classical image analysis.

Fig.2: The matrix of output values, Fig.3: Local maxima of the output
shown as image. values in the original

image.
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An effective simulation of neuronal networks needs a very powerful hardware
and a large memory. Usually, for networks in the describted size (some 1000 up
to 10.000 connections) are using special hardware features (emulators).
However, in this investigations special hardware was not in use. In this cause,
some essential restrictions was requisitely. It's desirable to connect each picture
element (pixel) in the sub-image evaluable per step to an input neuron. The
largest networks creatable into the main memory of an MS-DOS PC contents
ca. 13x13 input neurons. However, the recgnition of a complete cross in the
applied lattices needs a size of the sub-image by ca. 25x25 pixels. Therefore,
ever 2x2 adjacent pixels must be summarize, and the network receives only the
average value of this four pixels. In this cause, particulary the quality of small
lines in the image is debased.

Nevertheless, the most results of the investigated networks are remarkable. In
the parts of small lattice deformations the backpropagation network has all
cross points recognized unmistaken and unambiguous, with a deviation of the
cross localisation of one pixel maximum. In the large deformed parts (Fig. 3/4)
was detected 90% minimum of all the cross points, nevertheless the grids have
wide areas injured. This results are better and more exactly than the results of
most traditional image analysing methods.
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AUTOMATIC TARGET RECOGNITION FROM
RADAR RANGE PROFILES USING FUZZY ARTMAP
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Abstract

We investigate the use of the Fuzzy ARTMAP neural network for automatic cldassification
of targets based on their radar range profiles. Tests on synthetic data indicate that arbitrarily
high accuracy way be achieved by increasing sufficiently the number of aspects used during
training. Creation of "artificial training sets" by interpolation of input data is examined as a
potential means of decreasing the number of training aspects required to achieve a given level
of accuracy, and is shown to be of limited effectiveness. The problem of rejecting patterns
not present in the training set is also examined.

1 Radar range profiles

A "range profile" of an object is a sort of "one-dimensional picture" of the object, generated from
its radar reflectionfl, 2, 3]. Imagine, for example, a sharp pulse of electromagnetic energy being
directed at an aircraft which is flying directly towards the place where the transmitter of the pulse
is located. A receiver, located at approximately the same spot as the transmitter, will not pick
up the same sharp pulse which was originally sent out. Radiation reflected from the nose of the
aircraft, having less far to travel, will arrive back at the receiver first, followed by reflections off
of parts of the interior of the aircraft and the wings, followed finally by reflections from the tail.
If the strength of the reflections is recorded in "bins" corresponding to time of arrival-i.e., the
initial reflection from the nose, and anything following within a time At, is summed and recorded
in bin 1, everything arriving between At and 2At goes in bin 2, etc.-the resulting histogram of
reflected energy forms a pattern which is termed a "radar range profile" or "downrange profile."
The bins are referred to as "range bins," since reflections which arrive at the receiver within a time
At must have come from parts of the target whose respective distances from the receiver differ by
no more than cAt/2.

Clearly, different aircraft (or other targets) will yield different profiles; so it is natural to
consider using these profiles to identify the target. Just as clearly, the profile of a given target
will change as a function of the relative orientation of the target with respect to the line from
the transmitter/receiver to the target. (The overall amplitude of the profile will also change
as the distance to the target changes, but this can always be compensated for by applying a
normalization procedure to all profiles.) In this regard, range profiles are no different from the
usual two-dimensional images of objects formed by optical lenses; e.g., the appearance of the
computer monitor before which I am sitting changes somewhat if move my head to the left or
right a couple of inches, and changes drastically if I view it from above or the side.

The distinguishing feature of range profiles is that even small changes in viewing angle tend
to result in large changes in "appearance." Since the object being "viewed" is extended in the
direct' ns transverse to the direction of the radar beam, and since the radar is coherent, reflections
which fall into the same bin will exhibit interference. This coherent interference is analogous to
the speckle observed when viewing an object under laser light, but is of much greater magnitude,
due to the differences in the wavelengths of the radiation and the apertures involved. As a result,
small changes in viewing direction can produce large changes in the constructive or destructive
nature of the interference in the bins, and hence in the shape of the profile. Simulated range
profiles of the same target viewed from directions only one degree apart are shown in Fig. 1.
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Figure 1: Synthetic range profiles of the first target in Fig. 2, at aspects of 0 (left) and 1 (right)
degrees, after normalization.

2 Fuzzy ARTMAP

Since a given torget will generally yield very different profiles when viewed from directions differing
even slightly, a range-profile classifier must be able to group together input patterns with widely
varying characteristics and assign them to a common classification category. At the same time, the
large number of different patterns per category requires that the information needed to accomplish
the task of classification be recorded in as efficient as a manner as possible. These requirements
suggest the application of the Fuzzy ARTMAP neural network[4] to this problem.

The core of Fuzzy ARTMAP is a Fuzzy ART network[5] which performs unsupervised classi-
fication of analog vectors with components between 0 and 1. Similar input vectors are associated
with the same recognition node, "similarity" being determined by an LI-like norm. During train-
ing, these recognition nodes' become associated with nodes representing the categories into which
the vectors are to be classified (e.g., type of aircraft). If a vector is presented which matches a
recognition node which has, through previous training, become associated with a particular cate-
gory, the vector is considered to have been classified in that category. During the training phase
an iUCorrext category choice by the network causes the network to repeatedly reassign the input
vector to different recognition nodes or, if necessary, create an entirely new recognition node. In
this way the network learns to make correct predictions for the vectors on which it is trained,
while creating only the minimum number of recognition nodes necessary for the task. Storage
requirements are thus minimized, and generalization ability is maximized.

3 Data simulation and classification

We consider only two-dimensional targets, so the relation between the direction of the radar beam
and the orientation of the target is given by a single aspect angle, which will be taken to be zero
when the aircraft is heading directly towards the source of the beam. To generate simulated range
profiles, the return signal will be calculated as being produced by 100 point scatterers located
randomly within the target, and the far-field approximation will be used. Where not otherwise
specified, simulations will be done using the nine "aircraft" shown in Fig. 2. The length of each
target is about 10 meters, and the wavelength of the radar is two centimeters. Thirty range bins
are used, each covering 2/3 of a meter, so the entire range profile covers 20 meters with returns
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Figure 2: Scattering centers for set of nine targets (three wing positions, three wing lengths).

from the targets filling 15 to 20 of the bins. The profiles are normalized by dividing the value of
each bin of the 'raw" profile by the sum of all the bins.

The baseline vigilance parameter, which governs the fineness with which the initial unsuper-
vised classification (association with recognition nodes) is made, is kept at its minimum value of
zero, 4 as this seems to give the lowest error rate when the network is asked to classify targets of a
type which it has been trained to recognize. (See, however, Sec. 7 below.) The voting procedure
is also used, in which a set of Fuzzy ARTMAP networks, each of which has been trained with a
different random permutation of the training data, vote on the classification of a test input. Una-
nimity is required for the "voters" to be considered to have made a choice. Comparatively little
improvement was found in having an "electorate" of more than two members (again, however, see
Sec. 7), and this is the number used unless otherwise stated .

4 As for the few other adjustable parameters of Fuzzy ARTMAP, the choice parameter is set at .0001, and fast
learning is used. Complement coding in employed in the Fussy ART& module.
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aspect (degrees) -5 to 5 40 to 50 85 to 95
a. % abst./all 4.66 28.1 43.5

2a. %(abst. + err.)/all 7.74 35.3 54.7
3a. % err./pred. 3.23 10.1 19.8
4a. av. # nodes 39 106 163.5

aspect (degrees -.5 to .5 4 to 5 44.5 to 45.5 49 to 50 189.5 to 90.5 94 to 95
lb. % abst./all 10.1 8.63 22.5 24.6 35.6 21.8
2b. %(abst. + err.)/all 15.7 11.4 28.8 32.5 45.7 42.6
3b. % err./pred. 6.18 3.04 8.07 10.5 15.7 26.5
4b. av. # nodes 16 20 26.5 27 33.5 37.5

Table 1: Training and testing at various aspects. la,b: Percentage of abstentions (out of all
tests). 2a,b: percentage of abstentions-plus-errors (out of all tests). 3a,b: percentage of errors
(out of predictions made). 4a,b: average number of F2" recognition nodes (averaged over both
voters). Training and testing was on views of the nine targets shown in Fig. 2. Training views
were uniformly spaced a tenth of a degree apart. Testing views were randomly chosen within the
specified ranges of aspects.

# of targets 3=1 wp x 3 wl 6=2 wp x 3 wl
aspect (degrees) -5 to5 o 50 85 to 95 -5 to5 40 to 50 85 to 95

1. % abst./all 3.79 25.0 6.39 8.68 29.7 26.6
2. %(abst. + err.)/al 5.28 35.6 9.58 12.0 41.2 37.2
3. % err./pred. 1.56 14.2 3.41 3.61 16.3 14.4
4. av. # nodes 8 13.5 10 1 21 64 66.5

Table 2: Fewer targets. Same as first four rows of Table 1, but using subsets of the targets in
Fig. 2. Results in the first three columns are from networks trained and tested on three targets
with one wing position and three wing lengths (the first column of Fig. 2); results in the last three
columns are from networks trained and tested on six targets with two wing positions and three
wing lengths (the first two columns of Fig 2).

4 Variation of aspect and number of targets

Results for the targets of Fig. 2 are given in Table 1. Only the polled results of the two voting
networks are given; disagreement was counted as an abstention. The networks were trained on
views of each target evenly spaced a tenth of a degree apart. The views with which the networks
were tested were randomly chosen. The first four rows of Table 1 show results from networks
trained and tested on aspects differing by up to ten degrees. The spread of ten degrees was chosen
because this is more or less the accuracy with which the aspect of an aircraft can be estimated at
a distance. The last four rows of Table 1 show results for one-degree regions, and illustrate that
increasing the angle over which the networks are trained does not in general degrade performance
(provided, of course, that number of training views per degree is maintained.) Note also that the
number of recognition nodes goes up more slowly than the number of training views, indicating
that Fuzzy ARTMAP is economically "reusing" them.

An important question is the scaling of the error rates and network size with the number
targets on which the networks are trained. Comparing the first four lines of Table 1, for networks
trained on all of the targets of Fig. 2, with the results presented in Table 2 for networks trained
on subsets of those targets, we see that the error rates may be either larger of smaller as the
number of targets increases; the most important factor in determining the error rate seems to be
the particular viewing aspect. The number of recognition nodes increases with increasing number
of targets, and apparently at a greater-than-proportional rate.

Tests were also done on different sets of targets, groups of sixteen (four wing positions, four
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#of targets 16 25 16 251
aspect (degrees) -.5 to .5 -5 to

1. % abst./all 21.1 26.1 16.4 20.2
2. %(abst. + err.)/all 27.1 35.9 21.6 25.5
3. % err./pred. 7.56 13.3 6.29 6.64
4. av. # nodes 41.5 WT.5 147 322.5

Table 3: More targets. Same as first four rows of Table 1, but trained and tested on larger sets of
more-similar targets.

wing lengths) and twenty-five (five wing positions, five wing lengths). The maximum and minimum
values of the wing lengths and wing positions were the same as for the nine targets in Fig. 2, so
the targets in these larger sets were not only more numerous but geometrically more similar to
one another. Results using these target sets, with training views spaced a tenth of a degree apart,
are given in Table 3.

5 Separability and variation of training view spacing

Not surprisingly, increasing the number of training views per degree decreases the error rates for
a given set of targets. One would like to know: how fat does it decrease? And does it go to zero,
or approach some greater-than-zero limit? For example, the latter would be the case if, in the
space of poessible range profiles (in this case, a 30-dimensional space), the patterns corresponding
to different targets formed partly-overlapping clusters. In the regions of overlap it would be
impossible to distinguish targets by their range profiles. In principle, this problem should occur;
there is no a priori reason why two distinct targets, at certain respective viewing angles and for
certain bin sizes and wavelengths of illumination, could not have arbitrarily similar range profiles.
In practice, for the set of 9 targets in Fig. 2, increasing the number of training-views-per-degree
rapidly decreases the error rate (out of predictions made) to zero, and the abstention rate to
less than half a percent. (See Fig. 3). Such a "brute force" approach to higher accuracy is not
a practical one. (Approaches for increasing accuracy with a fixed number of training views are
briefly mentioned in Sec. 8). However, it does suggest that at least there may be no obstacle in
principle to reaching high accuracies.

6 Interpolation of input data

One approach to keeping down the number of training views is to create "extra" training data by
interpolation. That is, we take two profiles of the same target at nearby aspects, and, assume that
profiles taken from in-between aspects will vary smoothly from one of the measured' profiles to the
other as the aspect is changed, calculate profiles for the in-between aspects. The measured profiles
and the interpolates are then used together as the training set, as if a larger set of measurements
with more closely-spaced views had been taken.

This procedure is probably better suited to tasks other the one at hand, given that the essential
characteristic of the problem is the non-smooth variation of the profiles as the aspect is changed.
Upon investigation, the approach is found to have some utility when the measured profiles are
spaced relatively coarsely (and no more than four or five interpolates are used between pairs of
adjacent measured profiles), but to be less effective as the separation of the measured profiles is
decreased. (See Fig. 4.) In particular, it does not seem to be a promising avenue for achieving
high accuracy.

$Of course, all of the "data" in the present paper is synthetic; we have in mind here a practical implementation
where the range profiles are obtained by actual measurement.
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Figure 3: Closer training views. Percentages of abstentions (empty boxes) and abstentions-plus-
errors (filled boxes) out of all tests, and percentage of errors out of predictions made (circles), for
the nine targets of Fig. 2, as a funtion of numbers of uniformly-spaced training views per degree
(abscissa). Testing and training views were at aspects between -.5 and .5 degrees.
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Figure 4: Interpolation. Same as Fig. 3, but using extra interpolated training profiles. Abscisa
awe numbers of interpolates between each pair of adjacent measured profiles. Left: two measured
profiles at -. 5 and .5 degrees, rep. Right: eleven measured profiles evenly spaced from -. 5 to .5
degrees.
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Figure 5: Unknown-target rejection versus known-target error. From bottom to top along each
curve, the data points correspond respectively to baseline vigilance values of 0, .925, .95, and .975.
All ordinates are percentages of unknown targets which are rejected. Abscissas are percentages of
abstentions-plus-errors out of all tests (filled boxes), and percentage of errors out of predictions
made (circles), for the nine targets of Fig. 2. Training and testing views are at aspects between
-.5 and .5 degrees; training views uniformly spaced a tenth of a degree apart; two voters on the
left, four voters on the right "Known" targets are the six targets in the top two rows of Fig. 2,
"unknown" targets are the three in the last row. Vigilance was the same during training and
testing. (The number of test patterns for unknown target rejection was 500 for each value of
baseline vigilance, half the number used or testing in all other runs in this paper.)

7 Rejection of unknown targets

In all of the tests presented so far, the set of training targets has been identical to the set of
test targets. So, the task facing the neural network has been to assign a test profile to a target
category, given that the profile is definitely known to correspond to one of a fixed set of categories.
An equally important task is rejection of profiles corresponding to unknown targets, i.e., targets
for which the network has not been trained. In the basic form in which we have been operating
it up to this point, Fuzzy ARTMAP has had only one mechanism with which to reject unknown
categories: it can abstain because, although each voter has made a choice of classification, their
choices have not been unanimous. A simple way of providing another mechanism for rejection is to
raise the baseline vigilance.' As mentioned above, nonzero baseline vigilance seems to somewhat
worsen performance on the known-target recognition task; however, it improves performance on
the unknown-target rejection task, a not-unexpected tradeoff. In Fig. 5 the rate of abstentions on
unknown targets (ideally 100%) is plotted against both the error rates (out of predictions made)
and the combined error-plus-abstention rate on known targets (both ideally 0%).

(Interestingly, the rate of abstention by individual voters is less than 1% for all but the highest
level of baseline vigilance (.975) in Fig. 5, and the increase in the ability to reject unknown
targets seems due to the increased number of F' nodes which nonzero baseline vigilance causes
to be created. At baseline vigilance=.975, abstention by single voters has become significant,
accounting for about three-fourths of the total abstentions on unknown targets.)

IDuring the testing phase the learning rate is set to zero and no new F2* nodes are added, so the network will
axtain on test inputs which do not satisfy the vigilance criterion for any of the allocated F'" nodes.
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8 Outlook

The initial investigations which have been reported above show the promise of Fuzzy ARTMAP
for the range profile recognition task. Several modifications of the basic setup employed here
suggest themselves as ways of achieving the higher levels of performance required for a production
system. Greater accuracy in the recognition of familiar targets could be accomplished by basing
classification on a succession of profiles[2), rather than a single "snapshot." (An extension of Fuzzy
ARTMAP suited to such an approach already exists, ART-EMAP[6)). As for increasing the rate of
unknown-target rejection, greater effectiveness might be achieved by utilizing the outputs of many
"specialist" networks, all of which are trained on the same training set, but each of which is trained
to give only a binary "present" or "absent" response to one specific target. These approaches are
under study.
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RECOGNIZING AND DIAGNOSING PSYCHIATRIC DISORDERS
USING THE CLINICAL MATRIX
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ABSTRACT

The Clinical Matrix [1] can be used to diagnose many psychiatric

disorders. Data collected by clinical physicians can be

summarized in such a way that neural networks can be implemented

to produce an educated summary as to the proper Clinical

Psychiatric Disorder (CPD's). By using neural networks to help

make diagnoses based on the numerous symptoms that are inherent

to CPD's, there is the possibility for quicker and conceivably

more accurate identification of the psychiatric disorder. To

consider Neural Networks based on the use of the Clinical Matrix

as a tool for the medical community could only enhance the

clinical diagnostic procedure.

KEY WORDS

Clinical Matrix, Neural Networks, diagnosis, learning, recalling,

robustness, back-propagation, hidden layers, transfer function.

I. INTRODUCTION

By using the Clinical Matrix to help correlate the large amount

of collected data, it is feasible to use much more data within a

short period to analyze a given problem. The Clinical Matrix can

be applied to neural networks in order to combine the experience

of several physicians. This report introduces the use of the

Clinical Matrix as it applies to the diagnosis of symptoms

relating to various psychiatric disorders. Back-Propagation was
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chosen for the Clinical Matrix due to its adaptability, learning,

and recall characteristics. Learning is the ability of the

network to modify the connecting weights in response to stimulus

presented at the input. This could also be considered to be the

teaching or training of the network. Recalling the network will

process the stimulus presented to the network's input and

calculate a response at the output.

II. DESCRIPTION OF BACKPROPAGATION NETWORK

Neural networks are well suited for the Clinical Matrix

application. Neural networks have the ability to learn, and they

can be used to interpret data and calculate a proper response to

give a desired output. Also, the Clinical Matrix allows the

network to provide the desired output even when the iiput is

imprecise (ie. different physicians place different weights on

various symptoms). Since neural networks work better with

greater amounts of data, the Clinical Matrix lends itself to

using large amounts of clinical data gathered from many

physicians. Networks rely on hidden layers and output layers

with a specified learning rule and a transfer function that

adjusts the output data to what is required (Figure 1) The way

in which a network is trained depends upon the type of transfer

function and learning rule used with the network. The transfer

function is used in conjunction with the PE's (processing

elements) and determines the way in which data is propagated from

input to output. The various learning rules determine the way in

which data is summed and how error is handled to adjust the
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connection weights. The weights are recalculated to bring the

actual output to within an acceptable accuracy of the desired

output. Processing elements are used to connect the input and

output functions. A processing element can be considered as a

form of data input and data output. Each PE has associated with

it a path connecting itself to a previous layer and to the next

layer in the network (Figure 1) The transfer function we used

in the Clinical Matrix is the Sigmoidal function. The Sigmoidal

transfer function is a continuous mapping of input data into a

value between zero and one: i.e.

(1] where

T is the result of transfer function. The function a

is given by d

a = E ! (2]
j=1

where d is the total number of diseases under consideration

WI denotes the elements of the clinical matrix in Table

1;

i is the row index label of symptoms (1 to 33);

j is the column index label of psychotic disorders (1

to 7);

and Y. is initially a set of random numbers between 0

and 1.

Figure 1 is a graphical presentation showing the input PE's

(signs and symptoms), the hidden layer PE's, and the output PE's

(psychiatric disorders) along with the associated path which
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connects the three layer's. The figure demonstrates a 33xMx7

matrix, where M can equal 6 thru 15. For the purpose of this

study, 6 to 15 processing elements in the hidden layer produced

equivalent results within the same amount of time.

III. PSYCHIATRIC DISORDERS USED FOR STUDY

The symptoms for several psychiatric disorders concerning

schizophrenia can be included in a clinical matrix. These

symptoms are shown in Table 1. This table was derived from

Noyes' Modern Clinical Psychiatry. (6] The 33 psychiatric

symptoms were given according to the severity of the symptom for

each psychotic disorder. The input data presented to the

network is shown in Table 2. In formulating his concept of

Psychotic Disorders, Kraepelin classified his cases into

different varieties, depending on the predominant symptomatology.

Although classification according to reaction type continues to

be made, it must be recognized that numerous patients show at one

time or another psychopathology characteristic of the individual

groups. From the Clinical Matrix, it is obvious that while some

psychological disorders exhibit the same symptoms, they vary in

the degrees of severity. What makes the use of neural networks

so beneficial in this study is that the data can vary slightly

between physicians, for instance, and due to the attributes of

the Neural Network the same diagnosis will be obtained. Shown in

Table 3 is the test data that was input into the network for

training and the response that was diagnosed. Although the data

included some variation of symptoms that are common to other
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disorders, and differing weights the network was able to

determine the proper response for all pyschotic disorders. This

test data demonstrates the robustness of the networks capability

to produce a reliable output within an allowable tolerance, in

this case 10 percent.

IV. CONCLUSION

Applying the Clinical Matrix to interpret the data obtained

during normal clinical interviews could enhance the diagnosis of

the subjective interpretation of data. The knowledge of a larger

number of physicians should be included in any diagnosis.

Various psychiatric disorder interview techniques, such as the

Psychiatric Epidemiology Research Instrument (PERI) and the

Structured Clinical Interview for DSM-III-R: Psychotic Disorders

(SCID-PD) (5], would likely benefit from using the Clinical

Matrix technique. The PERI and the SCID-PD included a survey of

homeless men which were screened and diagnosed for psychotic

disorders. The interviewer who screened the homeless were mainly

graduate students in psychology and social work. The large

amounts of data produced in this study is best handled by the

clinical matrix. The advantages of this methodology include the

speed of interpreted data, the low cost of Personal Computers and

also the user friendliness of a properly designed computer

program.
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PSYCHIATRIC SYMPTOMS CONCERMNG PSYCHOTIC DISORDERS

CATATONIC CATATONIC
STUPOR EXCITEMENT SIMPLE HEBEPHRENIC PARANOID
SCuIzo- ScHIZo- SCHIzo- SCHIZO- SCNIZO- INVOLUTIONAL MANIC
PNmmA PmENA ENREIA PHRENIA PN I NELANCNOL DE12ESSIVE

GRIEF 0.3
SADNESS 0.1 0.2
ANXIETY 0.5 0.3
SHANE 0.4 0.3
WILT 0.6 0.2
HELPLESSNESS 0.3 0.2 0.8 0.4
SELF-ESTEEM 0.3 0.8 0.3 0.3 0.2
INHISITION 0.4 0.7 0.6 0.5 0.7 0.4

OF PERSONAL I TY
INSOMNIA 0.3
SUSPICIOUS 0.7 0.4
DOUBT 0.4 0.6 0.2
INTEREST 0.2 0.3 0.3 0.4
EATING HABITS 0.6 0.1 0.9 0.4
LOOSES WEIGHT 0.6 0.4
RAGE 0.7 0.7
AFFECTIVE 0.? 0.4 0.7
REGRESSION

HEALTH SWINGS 0.4 0.7
SLEEPS POORLY 0.7 0.5 0.6
FATIGUE 0.2
ATTENTION 0.1 0.3 0.1 0.1
NALLUCINATIONS 0.2
EMOTION 0.2 0.6

ISORDER 0.2
MOODY 0.5
INDIFFERENCE 0.3 0.2 0.4 0.4
EMOTION SWINGS 0.2 0.2 0.3
RESPONSISILITY 0.2
SILLINESS 0.5 0.S
SPEECH 0.4 0.4
INCOHERENT 0.6 0.6
STUPOR

AUTISTIC 0.4 0.4 0.7
LIFE

PERSONNEL 0.1 0.1 0.7
HYGIENE SWINGS

REACTION TO 0.2
PAINFUL
STIIULI

TABLE 1

PSYCHIATRIC DZSORDE[RS AS PER TA13Lt I
OUTPUT PROCESSING CLAEENTS (PC 2)

HIDL LAyER PC's
C? TO j NEURONS)

INPUT PROCESSING ELIEMENTS CPIECs)
SW0NS AND SYMPTOMS ItS PER TANLC I

C33 NEURONS )FIGURE i
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TRAINING DATA

TRAIING SET INPUT FILE DESIRED OUTPUT PILE PSYCHOTIC DiSORD

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.4 0.2 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.1
0.0 0.0 0.0 0.0 0.3 0.2 0.0 0.0 0.0 0.6 Catatenic Stulr
04 0.1 0.2 1.0 0.0 0.0 0.0 0.0 0.0 0.0 Schizophreni

0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.4 0.0 0.0
0.0 0.0 0.1 0.6 0.0 0.0 0.0 0.7 0.0 0.0
0.2 0.0 0.0 0.0 0.0 0.2 0.2 0.5 0.4 0.0 cattonfl Sttp
0.4 0.1 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 Schizophrenia

0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.? 0.0 0.0
0.00.3 0.0 0.0 0.0 0.0 0.0 0.00.00.0
0.0 0.2 0.2 0.5 0.2 0.0 0.0 0.0 0.0 0.0 SIlpt
0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 Schizophrnia

0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.6 0.0 0.0
0.0 0.0 0.9 0.0 0.7 0.7 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.3 0.00.5 0.40.6 Nebsphrenic
0.7 0.0 0.0 0.0 0.0 0.0 1.0 0.0 b.0 0.0 Schizophrenla

0.0 0.0 0.0 0.0 0.0 0.2 0.3 0.5 0.0 0.?
0.6 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3
0.0 0.6 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 Paranoid
0.00.00.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 Schizophrenie

0.3 0.1 0.5 0.4 0.6 0.8 0.3 0.7 0.3 0.4
0.2 0.4 0.4 0.4 0.0 0.4 0.4 0.5 0.0 0.1
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Involutlonal

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 me(iawhofa

0.0 0.2 0.3 0.3 0.2 0.4 0.2 0.4 0.0 0.0
0.0 0.0 0.0 0.0 0.? 0.7 0.7 0.6 0.2 0.1
0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 lleic
0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 Oepressve

TALE I

TEST VERIFICATION DATA

TEST INPUT DATA ACTUAL OUTPUT FILE PSYCHOTIC DISORDER

0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.3 0.1 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.3
0.0 0.0 0.0 0.0 0.3 0.2 0.0 0.0 0.2 0.6 Catatonlc Stupor

0.4 0.2 0.2 .93 .04 .02 .02 .03 .00 .01 Schzoqphreni

0.0 0.0 0.2 0.0 0.0 0.0 0.2 0.5 0.0 0.0
0.0 0.3 0.3 0.6 0.0 0.0 0.0 0.6 0.0 0.0
0.2 0.0 0.0 0.0 0.0 0.2 0.2 0.5 0.4 0.0 tatoiCStupor

0.4 0.1 0.0 .01 .94 .02 .02 .01 .03 .00 Schizophrenia

0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.5 0.00.0
0.0 0.3 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0
0.0 0.2 0.2 0.5 0.2 0.0 0.1 0.0 0.0 0.0 Stpte

0.00.00.0 .02 .01 .92 .00 .02 .02 .06 Schizophrenla

0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.6 0.0 0.0
0.0 0.0 0.9 0.0 0.6 0.8 0.0 0.0 0.0 0.0
0.0 0.0 0.2 0.0 0.0 0.3 0.0 0.5 0.5 0.6 IRebhrenic

0.70.00.0 .02 .02 .00 .97 .00 .01 .02 Schizophren l

0.0 0.0 0.0 0.0 0.0 0.3 0.3 0.6 0.0 0.4
0.6 0.3 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.3
0.0 0.6 0.0 0.0 0.4 0.0 0.0 0.0 0.00.0 ParenoId

0.0 0.0 0.0 .02 .01 .03 .00 .90 .02 .03 schizophren ia

0.30.1 0.5 0.4 0.60.80.3 0.70.30.4
0.2 0.4 0.4 0.4 0.0 0.4 0.4 0.5 0.0 0.1
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 involutfonal

0.00.00.0 .00 .01 .04 .01 .02 .93 .02 lancholIa

0.0 0.0 0.5 0.3 0.20.4 0.20.4 0.00.0
0.0 0.0 0.0 0.0 0.4 0.4 0.7 0.6 0.2 0.1
0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.3 0.0 0.0 

manic

0.0 0.6 0.0 .00 .02 .01 .01 .01 .03 .91 Depressive

TABLE 3
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Abstract

Principal components analysis has been a valuable tool for statistics, signal processing, and Al applications.
The process involves the finding of the eigenvectors of the lumped covariance matrix of a statistical sample.
We discuss here the undertaking of computing the principal components with an iterative method based on
neural nets. The method consists of training a feed forward neural net structure. The goal which the training
attempts to attain relates to Fisher's measure for linear discriminants and so the principal components are at-
tractors for the convergence of the training method.

1. Introduction

In pattern recognition methods, objects are usually represented as vectors of attribute values. Each attri-
bute is usually a feature which is deemed pertinent to the recognition task. The set of such features which is
to be considered is determined a priori and with trial and error methods since it is not always known which
features exactly are necessary or sufficient. Thus the vector representations of objects may be long and the
corresponding vector space (in terms of which the object space is expressed) may be of high dimensionality.
Thus it is necessary to determine alternative representations for the object space, that is, in terms of a different
vector space or a different coordinate system of as low dimensionality as possible. The idea is roughly to find
a subspace of the original vector space of the least dimensionality in which the various projected vectors are
still distinguishable in the proper object classes. This is the idea behind the Karhunen-Loeve transformation,
or the principal components analysis. It has been useful in projecting vector spaces of high dimensionality into
other spaces of lower dimensionality while at the same time retaining as much of the discriminant information
content of the original space.

The process to compute the principal components involves costly matrix operations and a number of
efforts have been undertaken to compute them by alternative methods. Such an alternative method based on a
rather simple neural network structure is discussed here. It is instructive to provide an outline of the approach
here before getting into details.

Fisher's method [2,3,5] is based on the optimization of a certain measure which reflects certain restric-
tions on the overall statistics of the samples in the projection space (the new vector space which is seeked).
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The solution to the optimization problem is exactly the eigenvectors of the lumped covariance matrix of the
samples. The idea pursued here is to train a feed-forward neural net with a training objective that is similar to
Fisher's measure. If this objective is attained then the solution eigenvectors should be reflected in the trained
net structure after the training process has converged.

2. The network based method

Let's assume that we have a feed-forward net in which we feed input vectors Xi and receive correspond-
ing output vectors T5 . The Ti's are functions of the Xi's and of the weights associated with the net. The
weights in particular are parameters which determine the net's transfer function. As these weights change the
Y 's move around, that is, they represent points which move within the output space. Suppose now that the
X 's are partitioned in object classes and suppose that we would like to identify the network weights which
will attain the following goal. In a topological sense, we would like outputs which correspond to inputs of
same class to be close to each other (in terms of Eucledian distance), while outputs of different class to be as
far apart as possible. Thus, we do not require that outputs approximate any specific target values nor any
specific distribution. Outputs are free and can attain any values as long as they attain this aggregate clustering
constraint. A similar criterion has been used before for various purposes, like in the Coulomb energy net and
in hybrid nets [1,7,9] It turns out that this criterion is significant in many ways. Now, let's assume that we
can device a measure G(W), with the net's weights W as parameters, and which reflects the above described
goal. That is, we assume that G(W) is a measure of the "goodness" of the topological distribution of the Yi's
(with respect to the above goal). Then we can come up with a training algorithm for identifying the weights
W using G (W) as the energy function.

There are a few options regarding an appropriate measure G(W). We can device a distance measure
D (Yi, Yj) (positive of course!) on pairs of output vectors and then use:

G 1i if class(X)=class(Xj)
ojD-1 if class (Xi) *class () (1)

If %j is positive then the corresponding term D (T5 ,Yj) contributes positively to G otherwise it contributes
negatively. So G is minimized if the positive terms become very small (output Yi vectors of same class mov-
ing close together), while at the same time negative terms become large (output T, vectors of different class
moving apart). The obvious way to the optimization of G would be a gradient descent thus the weight param-

eters should change according to the delta rule: AW =-OEiw
Let's now tur to a short review of Fisher's linear discriminant method. A statistical sample of classified

vectors of some vector space is given. The method seeks to identify a direction (or a line) within the vector
space. The goal is that the projections of the given sample set on this direction cluster in as best discriminated
class sets as possible. Depending on the choice of this direction the projections of the various class subsets of
the sample may overlap or may fall in well separated regions. Often, there may not exist a direction such that
the projections of the various classes are well separated and more or less partial overlaps are inevitable. The
goal of Fisher's method is to find the best discriminant direction. The problem is formulated as an optimiza-
tion problem where the measure to be optimized is:

Sum of squared distances of the mean projections of
all classes from the projection of the overall mean (2)

Variance of all sample projections
The directions which optimize this measure in a certain order are the eigenvectors which correspond to the
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eigenvalues of the lumped covariance matrix of the sample. What is interesting is that this measure is compa-
tible with the one described in the transforming neural net above. If in that net we set the neuron activation
functions to be linear, then the output of each neuron is the projection of the neuron's input vector in the direc-
tion of the neuron's weight vector. If we apply the training method described above on a single linear neuron.
then Fisher's solution should be an attractor of the convergence of the (iterative) training process.

(10,10 (110)

(00,8) (01,1)

Figure 1. Experimentation on a simple X-OR set.

We used the X-OR problem as one of the standard benchmarks. Inputs 00 and 11 are supposed to pro-
duce a target of 0 and inputs 01 and 10 are supposed to produce a target of 1. The activation function of the
neuron was set to f=W'X. The process was converging to one of the vectors oriented at (1,1) and (1,-l) as
shown in figure 1. Both of them are equally good. The reason is simple: the best the net could do was to
map the input vectors of a single class to a single output vector and keep the outputs for the vectors of the
other class apart from that one. The end result depended on the initial setting of the neuron's weight vector.
Then we used 2 linear neurons in a single layer. Since the two neurons operate in parallel without exchanging
any information, each one recreates the earlier behavior of a single neuron independently from each other. The
resulting weight vectors would end up in the directions (1,1) and (1,-I) independently of each other and often
both weight vectors ended up in the same direction (depending on initial values). So we introduced a lateral
virtual interaction from one neuron to the second. The interaction was one way from the first to the second.
Thus, the first neuron operated freely in trying to optimize G(W) whereas the second under a restriction. The
second neuron had to optimize the G (W) function augmented with the correlation of the two weight vectors; so
we used G +W, W2, thus attempting to reduce also the correlation between the weight vectors. As a result we
consistently got the above principal components independently of initial weight values.
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To conclude, we should provide some remarks regarding the choice of the distance measure D (T8 , Yj).

Them are a few possibilities for its choice such as:

D(YYj)= I Y-j,1 2  (3)

D (Yi,,j) = Iy,_yj 12 (4)

4- y, - ',j 12

G =(5)
~I1:y - yj 12
ii

a Ily,-yj12 +(6,+ --a 1,, T
G=~Y8 -jI I , yj 1y.2  

(6)

However, the best choice of all of the above was to use D (Y, Yj)= We found most of the rest to

present some technical difficulties, and it turned out that they were not actually capturing or representing the
goal which the output distribution is supposed to attain. For example, the choice of I ', - y, 1 2 will work well
until same class output vectors come sufficiently close. Then their contribution becomes very small relatively
to the contribution of the rest terms of dissimilar pairs. So the process tends to sacrifice the "shrinking" of
each class in favor of bringing classes apart from each other. So if the change in weights could bring classes
further apart at the cost of somewhat spreading a certain class then it would. The choice of (4) was best since
it seems to balance these tradeoffs better. We also used the later form with a limiter function (sigmoid)
applied on the pairwise distance and obtained faster convergence rates but the ultimate results appeared rather
insensitive.

3. Conclusion

We intented here to point out the apparent relation between the principal components analysis and a
neural network training method. The significance of this relation lies in the potential to compute the principal
components by means of a connectionist method. There are various alternatives associated with this approach
and we provided our insight with respect to certain choices as this insight emerges from our preliminary exper-
imentation.
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Pattern Identification by Trajectory Analysis
in Autocorrelation Hyperspace

Christopher W. Tyler and Richard Miller
Smith-Kettlewell Eye Research Institute, San Francisco

Introduction

The human pattern recognition system has the property that it is able to identify salient
features of arbitrary patterns in a parallel manner and to do so in the presence of
masking noise. The question of which features are regarded as salient may depend on
the definition of salience; e.g., features having greater contrast, greater overall area or a
greater frequency of similar examples than the less salient features. To match such
properties of human pattern recognition, we developed an algorithm based on the
pattern's autocorrelation function (ACF).

The second order ACF is represented by a 2D array defining the self-similarity of the
pattern at all (xy) displacements; each entry in the array reflects the similarity between
the pattern and a translation of it. The third order ACF is represented by a 4D array,
each of whose entries reflects the similarity among the pattern and two translations of
it. Thus, successive orders of the ACF form a hyperspace of contingent self-similarities.

By seeking high valued entries of the Nth order ACF, one can uncover N-point features
that are strongly represented in the overall pattern. However, because of the size of the
array involved, (viz., (m.n)N'l entries for an m x n pattern array), direct extraction of
high valued entries is intractable for all but the lowest orders for patterns of useful size.

Our solution to the Nth order problem was to develop a procedure for tracking the
trajectory through the Nth order ACF by means of a sequence of N-1 constrained
maximizations for each intermediate ACF. In this way, each order was reduced to a
single point in the projection to the pattern array. This solution has the advantage that
computation grows linearly with N as opposed growing with the array size to the
power of N. It has the disadvantage that it may well not find globally maximal
subpatterns. However, this disadvantage is more than offset by the algorithm's ability
to find subpatterns corresponding to perceptually interesting features.

Methods.

To obtain the most salient feature in the image, the algorithm constructs a 2D projection
of the of the higher order ACF at non-zero shifts by tracking the trajectory of a maximal
non-zero ACF value through the orders. Of course, this procedure is not unique. The
particular constraints applied to the definition of the maximum found at each order
determine the properties of the algorithm. The shift at each order defines the position of
its representation in the 2D trajectory projected onto the pattern array, as depicted for a
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(a)

(b~)

Fig. 1. Depiction of autocorrelation trajectory analysis:
(a).-Meshplot of luminance prof a test image consisting of 4 bars of the same

orientation;
(b). Meshplots of the 2nd, 3rd and 4th order ACF surfaces. The central point for

zero shift in the 2nd order ACF has been set to zero, so the highest point is one pixel
away. The 3rd order ACF at this point is then computed, setting the highest pointfrom
the 2nd order (and its reflection) to zero. The trajectory then progresses to the next
highest point, which forms the basis for the 4th order ACF at the fixed shifts for 2nd
and 3rd order.
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specific base image in Fig. 1. To limit L. solutions to localized images, only correlated
points adjacent to the solution at the pkvious order were included (as contrasted with
the unconstrained trajectory of Fig. 1). The optimum correlation at each order could be
adjacent to the positions from any of the previous orders, not just the immediately
preceding order. The trajectory therefore forms a "tree" of adjacent shift positions
defining the most salient compact feature in the image. The algorithm is nevertheless
sensitive to repeated examples of the same images at random placements because the
correlations are integrated over the entire image space in the ACF.

There is one free parameter, which is the smallest number of matching conjunctions to
allow before terminating. This may be set at a level designed to terminate the trajectory
before the point where it is likely to be substantially distorted by noise contamination.
The terminating conjunction number therefore is dependent on both the level of noise
in the image and the probability criterion at which noise contamination is to be
excluded.

Results.

The images consisted of a small number (5-10) identical target subunits (e.g., an
alphabet letter) and an equal number of distractors (e.g., letters different from each
other and from the target). The algorithm always was able to find the largest and/or
most common pattern subunit when subunits were scattered randomly through the
image without overlap. Allowing overlap between the subunits dramatically impaired
humans' ability to distinguish the subunits, but the algorithm still was able to perform
well up to high levels of masking by overlap when the terminal conjunction parameter
was varied to compensate for the noise introduced by the overlap of the features. The
statistical probabilities controlling the terminal conjunctions parameter need to be
determined in order to optimize performance at a particular level of masking noise,
however.

Examples of the typical performance of the algorithm are shown in Figs. 1-3. Repeated
examples of a letter R were scattered at random in Fig. 1A. (The pattern of 6 Rs is
repeated over two cycles in each direction because the algorithm treated the pattern as
an edgeless torus. Thus, the pattern should be viewed as a through window with the
dimension of one repetition cycle.) Despite the overlaid letters and their random
placement, the algorithm can extract the target pattern element without error.

In Fig. 2, a random target pattern of 4 Ss is overlaid by a mask of 6 other letters
(B,C,D,E,G & H) placed at random. Human observers can identify the S as the most
dominant pattern element with little trouble. The algorithm extracts the features of the
S but also detects a tail introduced by the configuration of the masking letters. Such
defects differ with each random placement of the targets and masks.

Fig. 3 shows a similar example with 4 Ls in the same set of maskers, but one in which
the masker configuration makes it harder for human observers to extract the dominant
pattern element without prior knowledge. The algorithm extracts the whole letter but
picks up additional elements from the masking.
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(a) (b)

R R R
R R

Fig. 2. ACF trajectory analysis without maskers: (a). Six examples of the letter R were
scattered at random. The pattern is repeated over two cycles in each direction and
should be viewed as a through window with the dimension of one repetition cycle, (b).
The ACF trajectory for (a).

(a) (b) (c)

Iq

Fig. 3. ACF trajectory analysis with maskin patterns: (a). A random target pattern of 4
Ss in the two-cycle repeat format of Fig. 2; (b).'The pattern in (a) is overlaid by a mask of
6 other letters (B,C,DE,G & H) placed at random. (c). The ACF trajectory for (b).

(a) (b) (c)

L

LLLL

Fig. 4. ACF trajectory analysis with a strong masking configuration (a). A random
target pattern of 4 Ls in the two-cycle repeat format of-Fig. 2; (b). The pattern in (a) is
overlaid by a mask of 6 other letters (B,C,D,EG & H) placed at random; (c). The ACF
trajectory for (b).
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Discussion.

The results illustrate that the ACF trajectory approach is superior to the 2nd order ACF
itself because the trajectory is sensitive to the phase relations in the pattern, whereas the
ACF is phase insensitive.

The ACF trajectory can be constrained in various ways other than that of adjacency to
any previous position in the trajectory. If it is known that the target patterns are one-
dimensional "snakes", for example, it could be constrained to include only points
adjacent to solution for the immediately preceding ACF order, with a corresponding
increase in search speed. If non-localized patterns were sought, the adjacency
constraint could be weakened or abolished, with a consequent increase in search time.

The approach to pattern analysis through ACF trajectories is a viable model for human
pattern recognition because it could be implemented with local parallel processes in a
neuronal network. Because it has global cooperative properties in the way common
elements reinforce each other at a distance, the ACF trajectory provides interesting
insights into the potential mechanism by which humans might process such patterns.

Conclusion.

The analysis of autocorrelation trajectories provides an efficient means for identification
of salient features in arbitrary patterns and a intriguing model for parallel pattern
analysis by the human brain.

Supported by NIMH grant #MH49044.
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Abstract
This is the next step of work reported in [Lendaris, Zwick & Mathia, 1993]. The objective has been to develop a
constructive method that uses certain a priori information about a problem domain to design the starting structure
of an artificial neural network (ANN). The method explored is based on a general systems theory methodology
(here called GSM) that calculates a kind of structural information of the problem domain via analyzing 1/0 pairs
from that domain. A modularized ANN structure is developed based on the GSM information provided. The
notion of performance subset (PS) of an ANN structure is described, and extensive experiments on 3-input, 1-
output Boolean mappings indicate that the resulting modularzed-ANN design is 'conservative' in the sense that
the PS of the modularizedANN contains at least ali the mappings included in the GSM category used to design the
ANN. Partial experiments on 5-input, ]-output Boolean functions indicate further success. The extended
experimental results also suggest the possibility of using a measure of the learning curve of specified ANNs on a
series of (in this case Boolean) functions to serve as a proxy measure for the complexity of those functions. This
proxy measure seems to correlate well with a measure known as Boolean Length. Determining a function's
Boolean Length is a non-trivial undertaking; perhaps it will turn out that training an ANN on the function and
measuring its learning experience will be a useful measure offunction complexity, and easier to determine than
the function's Boolean Length.

I Background

In the General Systems Theory literature, there is a method we refer to as the general system method (GSM)
[Lendaris, Zwick & Mathia, 19931 which provides 'structural knowledge' about a problem via a particular kind of
(information-theoretic) analysis of data from that problem domain. A question arises as to whether that GSM
structural knowledge can be used as a priori information about the problem to assist in designing an artificial
neural network (ANN) to be applied to that problem. In the above reference, we presented the idea of using the
GSM structural knowledge to design modularized ANNs to learn the mappings implicit in such data (in our case,
I/O pairs of a Boolean mapping), and the results of some preliminary experiments. Certain predictions were made,
and verified, about the potential benefits of designing an ANN in this way.

The results reported here are based on an extensive set of experiments based on a four-variable (nominal-data)
structure. In GSM notation, this is designated an ABCD structure. In our case, due to the input/output nature of
our problem context, we impose the notion of causality, and consider this a 3-input, 1-output system, as shown
schematically in Figure la. The data are all binary, thus this system is mathematically expressed as a Boolean

function. The set of 223 = 256 possible Boolean functions (mappings) for such a system has been widely studied,
and much is known about them. In the context of elementary cellular automata (ECA) for example, the 256
mappings are grouped into 88 equivalence classes [151. This latter knowledge was used to select functions with
known structural properties for the present ANN exploration.

The focus here is on relations of two different structural types: 1) non-decomposable, and 2) decomposable into
two relations with one shared variable. In GSM notation, type 1) is expressed as an ABCD structure, and type 2)
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as an ABD:ACD structure. We define D to represent the output variable of our causal system, and the ABD:ACD
notation represents the case of A being the shared variable. Permutations of the input variables A,B,C generate a
number of different but topologically equivalent mappings. In GSM, the ABCD structure corresponds to a relation
of maximum complexity - there is no reduction available (within this framework). The ABD:ACD structure, on
the other hand, represents the case where there is a (partial) decoupling of variables possible: that is, ABCD may
be decomposed into two sub-structures ABD and ACD which are not further decomposable. These two sub-
structures are said to share variable A.

Consider now !he task of designing an ANN to perform a 3-input, I-output binary mapping. If nothing were
known a priori about the specific mapping to be learned, then a typical candidate ANN structure to put into the box
of Figure la would be a feed-forward type, with perhaps a single hidden layer, and fully interconnected [for
present purposes, we call this a 'non-decomposed structure']. On the other hand, if a priori knowledge were
available that the mapping to be learned was of the ABD:ACD type, then an ANN structire that would take into
account such a priori information is shown in Figure lb. In this case, we decompose the hidden layer into two
sub-structures (the shaded boxes) which are not further decomposable. The number of inputs to each sub-structure
is smaller than for the ANN of Figure Ia. [We call this a decomposed structure, or alternatively, a modularized
structure.] For a 3-input system, with only 256 total possible mappings, this may seem trivial, but even moving up
to just a 5-input system, the ANN related implications start becoming significant. For the 5-input case, the total
number of possible maps is Order(billion)! Even for seemingly small numbers of inputs, it is physically not
tractable to build ANNs whose performance subspace PS (defined below) covers the entire set of possible
mappings, so, any constraints discovered in the data that can be translated into correlated constraints on the ANN
structure would be most welcome.

2 Notation

We start with a characterization of the ANN as a "black box" that performs a mapping of its inputs to its outputs.
Once the inputs and outputs are defined, conceptually, there exists a set of all possible mappings (SAPM) from

the input domain to the output range [e.g., for an n-binary-input, 1-binary-output context, there are 22' possible
mappings]. For each ANN structure (inside the box) with a given setting of its weight values, the ANN will
perform exactly one of these possible mappings. Doing the mental experiment of scanning all possible weight-
value combinations in the given ANN, and collecting all the individual mappings performed by the ANN, we call
the resulting collection of mappings the ANN's performance subset (PS) [8][6]. (For the binary case, if the
number of inputs to the ANN exceeds approximately 30, it would be physically impossible to build an ANN whose

PS contains all 223 mappings, hence the name subset.)

D D
---------------- SAPM

a) b) )

B CA B C

a) b) d) e) t)

Figure 1. a) Non-decomposed and b) decomposed Figure 2. Set of all possible mappings (SAPM)
3-input, 1-output system. The shaded boxes are and Performance Subset (PS) [shaded areas].
implemented as separate ANNs. The dot represents the desired mapping (DM).
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In Figure 2a, we symbolize the set of all possible maps (SAPM) as the region defined by the outermost oundary,
and symbolize the PS of some given ANN structure as the region defined by the inner boundary (shaded area). In
Figure 2b, we add a point DM to represent the mapping corresponding to a problem we wish solved (nesired
Mapping). By our definition of PS as the collection of all those mappings it is possible for the given ANN
structure to perform (over the set of all its weight values), it is not possible for the given ANN structure to perform
the mapping DM shown in Figure 2b. Thus, no matter what weight-adjusting algorithm one attempts to use, it
would be impossible for that ANN structure to ever learn the mapping at DM. So what is the ANN designer to do?
Several strategies suggest themselves for what might be done either before training and/or during training: I)
"move" the point DM until it is inside the given region PS (Figure 2c) , 2) "move" the region marked PS until it
contains the desired mapping DM (Figure 2d), and/or 3) increase the size of PS until it contains the point DM
(Figure 2e). Strategy I may be accomplished by the designer selecting a different representation schema for the
inputs and/or outputs, and de facto, is accomplished any time a designer selects a representation of the problem
such that the ANN structure the designer is working with successfully learns the desired mapping. Strategy 2 is
accomplished by selecting a different ANN structure. The authors are aware of two references describing
approaches (that appear to) use this strategy on line 151[111 (while this possible strategy was discussed even in the
1960's, a theoretical basis for such an approach is still in its infancy). Strategy 3 is exemplified by the variety of
methods that "grow" the starting ANN structure during training. To date, most training strategies assume that DM
is already contained within the PS of !he starting ANN structure (Figure 2f), and the job of the training algorithm
is to converge upon DM - indeed, typical convergence theorems state that a solution wil be found provided it ex-
ists, and using the present vocabulary, this says provided DM is contained in PS.

The present paper is concerned with the possibility of using a priori information about the problem domain to
constructively prestructure an ANN with assurance that its PS contains the desired mapping (Figure 2f), and in
addition, with assurance that the size of its PS is relatively small. The reason for the latter desire is that if a given
ANN structure learns the training data, then the smaller its PS, the better its chance for good generalization
performance 1811]. This latter property is the objective pursued by those methods that do weight 'pruning'
[14][121: they start with an ANN structure whose PS is large enough to assure inclusion of their DM, and then
shrink the size of the PS in a principled way, making it smaller and smaller just to the stage befere it no tonger
contains their DM.

3 Experiments

A set of experiments was performed on the 256 possible 3-input, 1-output Boolean fiunctions, using the partitioning
into 88 equivalence classes mentioned in Section 1. A consistent exemplar of each of the classes was selected,
yielding a set of 88 functions, and then 1760 experiments were run on these 88 functions 1101. Feedforward ANNs
with back-propagation-of-error training were used. All experiments with each structure type used the same
starting state, and the same training parameters. The key variable in the experiments were the different mappings
to be learned. The training process was stopped at specified increments of training iterations, and the performance
of the ANN was evaluated, via counting the number of bits of the output mapping that were correctly learned. The
initial experiments reported in 191 focused on just those functions of the ABD:ACD decomposable type, all of
which are of GSM structural type 4, and an equivalent number of non-decomposable functions (type ABCD),
which are of GSM structural type 6. The examples from structural type 6 were selected intuitively to correspond in
some plausible way to each of the ABD:ACD functions of type 4. Those preliminary results paved the way to the
more extensive experiments described in this paper. These experiments included examples from all six structural
types.

First, experiments were run to determine the size hidden layer needed in the non-decomposed ANN structure to
learn the examples taken from the ABCD class. We settled on a fully-connected, feed-forward structure with one
hidden layer of 4 elements, and this led to a decomposed ANN structure (via removing selected connections) with
each sub-structure in the hidden layer comprising 2 elements. The conjecture was that while the non-decomposed
(more general) ANN would be able to learn all the mappings (i.e., both the ABCD types and the ABD:ACD types),
the modularized ANN would not be able to learn the ABCD mappings. Further, it was conjectured that since the
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structure of the modularized ANN in some sense mirrored the known structure of the ABD:ACD mappings, the
modularized ANN would be able to learn the ABD:ACD mappings 'more easily' than the more general ANN
structure would, and (more importantly) it was conjectured that if the two structures were each trained on partial
data from an ABD:ACD mapping, then the decomposed ANN would have better generalization performance than
the more general ANN structure would (since its performance subset (PS) would be smaller).

Let us use the vocabulary introduced in Section 2 to discuss the 6 groupings of functions used in this study. As
noted earlier, GSM structural type 6 refers to the most complex case, and thus these functions are expected to
require the most general ANN structure, i.e., a fully connected one. The ABD:ACD functions used above are from
type 4, and we have noted that the modularized ANN structure of Figure lb works for these functions. The fully
connected ANN structure selected has a performance subset (PS) that covers the entire set of 256 possible 3-input,
I-output Boolean mappings (as noted earlier, had the number of inputs been larger than approximately 30, this
would not be physically possible). The modularized ANN structure used, however, has a smaller PS. The way the
modularization was done in this case was to divide up the elements in the hidden layer equally to the two parti-
tions. This can be considered in the same way as we discussed weight pruning earlier to infer that the PS of the
modularized ANN is a reduced version of the more general ANN's PS (in this case, trivially so, since the larger PS
includes the entire set of possible maps). A question of basic interest in the present research is how does the PS of
the modularized ANN relate to the set of mappings associated with the various GSM structural types? We know
that the PS of the modularized structure does not contain some of the mappings of type 6 (when we trained on
those mappings that intuitively were among the "hardest" of these, the modularized ANN did not learn them). We
also know that the PS of the modularized structure contains all of the mappings of type 4 (the ABD:ACD type), as
it learned all of these. Since each structural type subsumes the lower types, we expect the PS of the modularized
ANN structure designed according to structure type 4 requirements to include the mappings corresponding to the
lower types. The experiments bore this out.

In addition, however, the full set of experiments show that the PS of the modularized ANN structure is in fact
larger than just the mappings of GSM structural type 4 (and the subsumed structure types 3, 2 & 1). The modular-
ized ANN was able to learn all the mappings of type 5, and further, some of the mappings of type 6. These results
indicate that if we select a modularized ANN structure based on the GSM structural type inferred via GSM analysis
of 1/0 pairs of data from the problem domain, then the design is "conservative" in the sense that its PS is at least
big enough to contain the mappings of the inferred GSM structural type. The fact that the PS is larger than just
the mappings contained in the inferred GSM set can be explained as follows: the mappings being explored are
Boolean, i.e., all variables are binary. While the inputs to the ANN are binary, and the output neurode learns to
give binary outputs, the hidden neurode values are not constrained (in our experiments) to binary values.
Accordingly, it is clear that the PS of the ANN prestucturing selected will be larger than the set of mappings of the
inferred GSM set. For the 3-input case the size of the ANN's PS reached up into structural type 6 (not all of it
though). For a number of inputs n, larger than the 3 used here, the number of GSM structural types will be
significantly larger than the 6 associated with the n=3 case. Our analysis so far gives us hints suggesting the
following speculation: the PS of the ANN designed via the GSM structural information (i.e. the selected structure
in the GSM lattice) will contain functions within the "neighborhood" of the GSM structure identified. The term
neighborhood here is intended to mean within approximately 2 levels further up from the one selected in the GSM
lattice of structures. In the 4 variable case (3 inputs, 1 output), since the GSM lattice of structures is so small, the
"neighborhood" reached into the top level of the lattice. However, for larger values of n, the GSM lattice will have
significantly more levels, so the "neighborhood" could be a rather small fraction of the total range. Accordingly,
the relative size of the prestructured ANN's PS will be a small fraction of the size of the collection of mappings up
to the top of the lattice, and thus the difference between a general ANN's PS and that of a prestructured ANN will
be greater, and thus the prestructuring will pay even better dividends than those already discussed for the n=3 case.
We believe that the principle has been demonstrated, but there remains yet a significant amount of work to analyze
even the 5-input case.

We pause here to mention that all the 3-input, I-output experiments were carried out with a full training set, where
the research objective was to observe the learning process. In these cases, the question of generalization was not at
issue. But, when we do move on to consider the generalization question, the kind of knowledge available about the
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functions we are exploring is very useful. Since there is a definite (known) structure for the functions being
learned, we are in a position to constructively design a subset of the possible input patterns for training the ANN
that theoretically contains enough information to infer the entire mapping. After the ANN trains on this subset, to
the extent that its structure really is tailored to the structure of the desired mapping, then we should expect the
ANN to generalize well. The better the structural match, the closer to 100% generalization. To carry out a
preliminary experiment related to generalization, a set of four 5-input, I-output functions, decomposable in a way
indicated in Figure 3, were crafted. This selection was made because the 3-input case used for the rest of the
experiments was judged too limiting for carrying out the desired generalization experiment. By construction of
these functions, we were able to select a training set comprising only 50% of the possible input patterns (i.e., just
half the mapping) which we knew theoretically contained sufficient information from which to infer the total
mapping. This set was used to train both a general (fully connected) 5-input ANN and a modularized 5-input
ANN (cf. Figure 3). For the decomposed functions, both structures learned the training set perfectly. However,
there was a big difference in the generalization tests: 1) the modularized ANN gave perfect responses for the I/O
pairs not seen during training, and 2) the general ANN averaged only 55% correct responses (nearly random) on
these test inputs. Also, four non-decomposable functions were selected, and both ANN structures trained on them,
again using 50% of the possible input patterns. The general ANN learned the training set, while the modularized
ANN did poorly. The modularized ANN did poorly at generalizing, and so did the general ANN. While these
experiments used but a small fraction of the possible mappings in the 5-input, 1-output context, the experimental
procedure of constructing a focused experiment and having this give results which support the hypothesis carries
reasonable convincing power - especially since it was constructed such that if the experiment gave negative results
(counter-example), it would have significantly undermined the basic premise of the approach.

F

r--------- -------- i

Ft

AR C DE

Figure 3. Modularized ANN, implementing a 5-input, 1-output ABCF:CDEF system. Used for generalization test.

4 Proxy Measures for Complexity?

To recapitulate, the assumption is that we start with a set of 1/O data for the problem domain, specifically here,
binary 1/0 data. Next, we submit this data to what we are calling GSM structural analysis, and this analysis
assigns a structural type to the data (ranging from type 6 to type I for the 4-variable case). This structure number
is a kind of complexity measure (6 being the most complex), relating to the decomposability of the Boolean
function inferred to underlie the given data. This yields a rather coarse coding of the possible 256 functions being
considered, and as might be expected, within each category, there will be a gradation of the degree of complexity,
if we had a finer way to measure it. Nevertheless, the premise here is that even this rather coarse measure can be
put to good use in modularizing ANNs - where 'good' here relates to improved learning speed, and more
impo 'antly, improved generalization performance.

The 88 functions studied in these experiments were sorted according to the 'learning difficulty' experienced by the
1) fully-interconnected ANN and 2) the modularized ANN. In addition, the same functions were sorted according
to four different measures in the literature dealing with Boolean functions, namely, the already discussed GSM
structural type (range 1-6) (31, and in addition the Lambda-count (range 0-4) [41, Fluency (range 1-9) (theory
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developed in 1151, original idea by Ashby [131), and Boolean Length (range 1-10) - this is the minimum number
of Boolean operations necessary to represent the binary string (related to Kolmogorov complexity) 1151. Values of
these four complexity measures for the 88 Boolean functions selected for our experiments appear in 1251. In com-
paring these sorted lists, except at the two ends (where all but Lambda basically concurred), it turned out that there
,,as little, if any, correlation between the orderings given by the 4 published measures of complexity. However,

there was a good correlation in the orderings provided by the Boolean Length measure and the 'learning difficulty'
assigned to each of the ANN structures investigated. The suggestion based on these observations is that certain
measures of the learning curve of specified ANN structures might be used as a proxy measure for the complexity of
certain classes of functions [101. The learning curve may be characterized by (at least) two of its attributes: the
transient portion and the steady state level. Here the steady state level can be characterized by the number of bits
learned (max. of 8 for the 3-input, I-output case), the transient by the number of training cycles required by the
ANN structure to accomplish the learning. Other qualities of the transient suggest themselves via visual analysis,
but have not yet been reduced to quantitative expressions.

While the investigation here was based upon Boolean functions that have well documented properties in the
literature, there might be a basis for developing this approach to other classes of functions. Thus we have a turn of
events. Instead of lamenting the difficulty an ANN has in learning a given task, we might be able to use the
learning experience of specified ANN structures as proxy measures for the complexity of certain classes of
functions
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Abstract

The tradoff between output earor minimization and generalization is discussed, and a new
lerning algorithm is developed to improve geerlization and robust classification capability for
Mull-layer Prcqep Unlike other methods which reduce network comleocity by putting
restrictions on synaptic weights, this algoritlm increses complOxiY of the underying problem
by imposing apPropriate additional requirements on the hidden-layer neurons, ie. low output
sesitivity to the input values or equivaletly saturation of hidden-layer activations. Te
additional gradient-descent tem turns out to be Hebbian, and this new algorithm incorporates
both the aizr back-propagation and Hebbian learning rules. The algcrithhm also utilizes full
power of existing hardwares to find solution with maximum generalization capability. Copt
simlation demonstrates much faster learning convergence as well as improved robustness for
classification and hetero-association problems.

1. Introduction

Although multi-layer Perceptron is capable of solving complicated pattern classification and
functional apprximation problems, good generalization is achievable only with proper combination
of the training data size, the underlying problem complexity, and the network complexity. (Hush
and Home 1993) For given number of training data and problem complexity smaller networks
are not capable of rewresentin the problem accurately. On the other hand larger networks with
too many synaptic weights suffer from poor genralizatio To improve the generaliza
capability in this case, one may put restrictions on the synaptic weights and reduce the network
compleity. Synaptic weight punming (LeCun et aL 1990), local connections and weight sharing
(Fukushima 1988, 1993; Waibel et ao 1989; LeCun et ao 1990), weight decay (Hanson and Pratt
199), weight eimiatio (Wegend et aE 1990), and soft weight sharing (Nowlan and imton
199) all belong to this approch. However, for many practical hardwm inuntations the
network complexity is already determined by the hardware itself and one would like to fully
utilize existing hardware capability. Also it is not easy to modify the network architecture in
hardware impmntations.

In this paper we propose the other aproach, i.e. to inaese the underlying problem comple2ity.
By properly imposing additional requirements for low sensitivity on the hden-layer neurons, the
Problem complexity is increased to result in better generalization. The neural network
architecture and major parameters, ex numbers of synapses and hidden-layer neurons, are
unchanged during lern. The learning algorithm just utilizes maximum power of the
hardware available Also, the gradient-descent learning algorithm bapends to inc e both
the error back-prpagation and H-ebbian learning rules.
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2. Saturation Requirements on Hidden-layer Neurons

One of the most frequent symptom of the poor generalization with overfitting is errornecs high
sensitivity of output values on input values. For good generalization and robust classification we
would like to reduce the unreasonably-high sensitivity. By applying chain rule one obtains the
sensitivity as

ay, = Wrf,'(h) W()
9Xk i

where x and y are input and output vector, respectively, and Wk) and WI are synaptic
ntcoi-ctons. Although our approach can be extended to general multi-layer architecture,

only 2-layer Perceptron with linear output neurons is considered here for simplicity. The f (.)
is derivative of Sigmoid nonlinear function at hidden-layer neurons, and h, = -Wk)xk is post-

k

synaptic neural activations. From Eq.(1) the sensitivity can be made smaller by forcing the
hidden-layer activations to be saturated, Le. f (hi) t 0, and this additional requirement
increases the problem complexity for better generalization. Instead of standard output eror we
define a new error as

E =E, + 7Eh 1:E'.+ Ij- Eh , (2)

where the E. 1 .(t?-y)W is output error and the A = 2 f'(h7) is the additional

21'41i Nh I

error defined from dhe hidden-layer neural actvations. The el and y are target and output

values of the ith output neuron for the sth stored pattern, and i4 is the corresponding
post-synaptic value for the jth hidden-layer neuron. Here M, No, and Nh are number of
stored patterns, number of output neurons, and number of hidden-layer neurons, respectively, and
the errors are normalized with these numbers. If the neural activation of the hidden-layer stays
at linear region of the Sigrid function, it becomes sensitive to the input noise and high

hidden-layer error Eh is assigned. (The above definition of El results in 1 * 1:-fhj)]2N2 j
for bipolar hyperbolic tangent Sigmoid function and -- " fi/ i) [1-f(h)] for unipolar

NAJ
Sigmoid function) It is worth noting that both the output error Eo and hidden-layer ror Eh
are normalized to take similar values, Le. around 0.5 for bipolar Sigrnoid and 0.25 for unipolar
Sigmoid, for very small initial synapses and converge to 0 by training. By minimizing the Eh
one may push the network into nonlinear region for improved robustness. The r represents
relative significance of the hidden-layer error EA over output error E.

The network is trained by steepest-descent error minimization algorithm as usual. Although the
last layer is not affected by this additional error torm, the partial derivative of total eror E with
respect to each weight in the first layer now ins additional term and the weight update
becomes
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i.W 57 = 61)- + .-t *(i)+ ~' 4 f'h) (3)

where the 51 is back-propagated error an the jth hiclen-laye reurm for the sl bining

pattern as usual. The 'i is a learning coefficient, and f'(.) is second derivative of the
hyperbolic tangmt Sigmoid function fl.). The additional term in Eq.(3) happends to follow
Hebbian larning rule and this new lemring algorthm incorporates two popular larning
algorithms, i.e. the error back-propagation and Hebbian learning rules. It is worth noting that

the Hebbian term is also multiplied by f' (), which prevents the synaptic weights from

indefinite inease or decrease.

With very small initial synaptic values the ih-,O and the Hebbian term does not contribute

much. As learning process goes on by the first eiu- back-propagation term only, the hidden-
layer activation values become non-trvial and the Hebbian term starts contributing to push
hidden-lawr activations to the saturation regions.

Although the author's previous work to merge Hebbian learning and error back-propagation (Koh
et at 1990) was based on correlation matrix synapses, this new algorithm represents more
general adaptive Hebbian learning. Actually it shares more with Radial Basis Function networks.
(Hartman et a 1990; Lee and Kil 1991) Both networks incorporate competetive Hebbian learning
for the first layer and txor minimization for the second layer. However, instead of localized
Gaussian nonlinearity used for the Radial Basis Function network, our network utilizes
inotonically increasing global Sikmaid nonlinearity on the hidden-layer neurons, which allows
gradient-descent algorithm throughout the whole network with less problems. Also. synaptic
weights for both the first layer and second layer are adapted simultaneously here.

3. Simulation Results

The propose learning algorithm is applied to classification and hetero-association problems.
Results for cL--aatfion of 10 binary patterns are shown in Figures 1 and 2. The numbers of
irPut, hidden - output layers are set to 35, 30, and 10, respectively. In Fig.1 learning
convergences are shown in log-log scale. Fig.1(a) shows the total errors as functions of
'arning epoch for different -, Le. relative significance of the hidden-layer error Eh over output

error Eo. The new algorithm converges much faster than standard error back-oaation (Y

=0), and the trained results are not sensitive on -. As shown in Figs.1(b) and (c), the output
error Ea drops very rapidly after initial learning stage (around 10 epoches in this case), and

becomes much smaller than -, EA thereafter. This is the point when the Hebbian learning term
in EQ.(3) starts contributing. The dominance of the hidden-layer error at the later stage
exlan the insensitivity of this algorithm to the -.

Error correction probabilities after learning are plotted as functions of Hamming distances in
Figs. 2 and 3. In Fig.2 results of the same classification problem is plotted, while hetero-
association problems is shown in Fig.3. Both input and output layers have 35 binary neurons,
and 30 hidden-layer neurons are used in the hetero-association problem At each Hamming
distance, Le. number of different bits with a stored pattern, 100 test patterns are randomly
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geeated to satisfy the Hamming
distance with each of the 10 stored

-atrs and their overal performances
are collected for the 1000 test patterns.
In Figs2(a) and 3(a) the adaptive
training was stopped at E = 0(LO, while .01
the E was fmrther reduced to 0.001 in
Figs.2(b) and 3(b). When the earning
WUS not COMPlt the correct classifica- .00,,

tion probability is greatly affected by
the "r as shown in Figs2(a) and 3(a). . . . . ..
However, when enough learning was 1 10 100 1000

pefrmed in Figs. 2(b) and 3(b), the (a) ng pch
correct classification or association
probblty becomes much higher and
also insensitive to the T. These figures
clearly demonstratmch robust classi- "1
fication and hetero-association capability
of the p"oosed algorithm compared to R .01
the standard ertor back-propagation
algorithm (v = 0). .001

The proposed hybrid leming algorithm "_
is being implemented by modular o0! 1

neuro-chip set The chip-set consists w10 10 1000
of one synapse chip and one soma chip. (b)
Each synapse cell is composed of one
capacitor for weight storage, and 3
analog multipliers, one for feed-forward .. ,
signal flow, another for error back-
propagation, and the other for weight
update In the soma .01
chip the Sigmuid and its derivatives are
calculated with current sum. Also, the o
back-propagated error can be added up "1

with neural activations for the hybrid ".,
learning. These chip sets are designed .00014- .

to support modular concepts for generic 1 10 100 1000

neuro-computers with on-chip learning (c) leaming epoch

Casaility. Fig.1 Learning characteristics for a classification
4. Conclu problem. (a) Total error vs. learning epoch forclassification of 10 random patterns. Here, "o", "of,

In this paper we have presented a new and "x" denote cases for r=, 0.1, and 0.5,
supervised learning algorithm for 2- respectively. (b) Error vs. learning epoch for -=0.1.
layer feed-forward neural networks for (c) Error vs. learning epoch for T =0.5. Here, "o",
robust classification and hetero-associa- "e, and "x" denote the total error E, output error
tion problems. By forcing the hidden- Eo, and hidden-layer error - Eh, respectively.
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low nerons sabtad, we are able to incesm roblem coxplexty and inrove geeralization
capability. Also the gradient-descent algOrithm tms out to incouporate Habbian learning rule,
and onverges much faster than standard back-propagation algorithm Extention to geeral
muld-ilaw urchtecture seems straightfirward Modular uuro-chip to inemporate this leraing
algorithm is being developed. Also, adaptive modification, of the y, relative significanm of the
hidden-layer error EA over output ei Eo, is currently being investigated. Starting with
arbitrary - one goes on the earning process. After reahing the steady and slow mor
reduction stage, the output error may start increasing again due to the relatively high y value.

100 1 100-1
go- g' -o-." -

.0IS
g 60- 0

40 4

2020

0 2 4 6 8 10 0 2 4 6 8 10
Hammuing disan Huminng di=m

(a) (b)

Fig2 Carrect classification probabilities as functions of Hamming distance for a classifier
problem (a) at total error E - 0.03 and (b) at E = 0.0001. Here, "o, "W, and x"x denote
cases with y = a 0.1, and 05 respectively. The r= 0 case corresponds to standard error
b a pagation learning rule.

1001 100'

a60 6.:.
0 0 '

0 2 4 6 8 10 0 2
Hamming D iance HaminS Diswc

(a) (b)

Fig3 Correct association probabilities as functions of Hamming distance for a hetero-association
problem (a) at total error E = 0.03 and (b) at E = 0.0001. Here, "o, 'a, and "x" denot
cases with -r = Q 0.1, and O respectively. The -= 0 case corresponds to standard error
back-propagation learning rule.
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This mum the network complexity is not large enough both to minimize the output eror and to
saturate the hidden-layer activations. In this case the -t can be made smaller to keep the
output enotr going down.
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Abstract

The Backpropagation technique for learning internal representations in multi-layer neural
networks is an effective approach for solution of the gradient descent problem. However, being a
deterministic solution, it will attempt to take the best path to the nearest error minima, whether global or
local. If a local minima is reached, the network fails to converge and either will not learn or will learn a
poor approximation of the solution.

This paper introduces a novel stochastic approach to the Backpropagation model based on
Simulated Annealing. The model is designed to provide an effective means of escape from local minima.
This technique augments the traditional gradient descent learning scheme with a Metropolis loop. This
extension of the algorithm is shown to be modeled as a Markov chain consisting of a Markov neighborhood,
a selection function, an acceptance function, and a cooling schedule. The Markov neighborhood is defined
as the possible next states of the network and is a combination of the gradient descent weight deltas and a
noise injection method. The selection function provides for the probabilistic selection of the proposed next
state of the network. Several alternative noise injection methods and selection functions are presented
complete with experimental data. The acceptance function determines the probability of acceptance of a
new network state. The acceptance function for this model is based on the total network error. Simulated
Annealing is highly dependent upon cooling schedules and several alternative cooling schedules are
presented. Both static and dynamic approaches to cooling are examined. The prevention of premature
quenching is addressed and the selection of desirable quenching conditions are defined.

In experimental results the system is shown to converge with a much higher degree of reliability.
It is also shown to converge more reliably and much faster than traditional noise insertion techniques. Due
to the characteristics of the cooling schedule, the system also demonstrates a more consistent training
profile.
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Abstract

Backpropagation is a powerful learning algorithm, but its restriction to continuously differentiable
functions limits its use in many applications. One important example is training a multi-layered neural
network of hard-limiting units (signums instead of sigmoids). Another example is a control system that
uses discrete-level actuators, such as our free-flying space robot model equipped with on-off gas thrusters.

A new technique is presented that extends backpropagation to allow for discrete-valued functions.
Each signum that exists at run-time is temporarily replaced with a sigmoid during training, and noise is
injected at the input to the sigmoid. The noise prevents the use of the smooth transition region of the
sigmoid as the primary means of solution. The effect is that the sigmoid outputs are close to hard-limited
during training so there is not a significant performance reduction when the signums are re-introduced
at run-time. The use of differentiable approximating functions allows fast learning due to gradient-based
optimization. The noise does not corrupt the gradient estimation algorithm, so no modifications are
needed on the backward error propagation.

The viability of this method is verified by applying it to the training of networks with hard-limiting
units as well as a complex on-off thruster control problem associated with our free-flying space robot.

1 Introduction
1.1 Optimization with discrete-valued functions
Optimization methods that use gradient information often converge much faster than those that do not. Use
of the backpropagation algorithm (BP) [1][2] to get this gradient information for training neural networks
(NNs) has made them useful in many applications; however, BP's requirement of continuous differentiability,
not only for the network itself, but for anything that the error is backpropagated through (e.g. the plant
model in a control problem), limits its applicability.

This is a significant limitation since there are many applications where discrete-valued states arise. For
example: on-off thrusters commonly used in spacecraft; other systems with discrete-valued inputs and out-
puts; and neural networks built with signums (aka hard-limiters or Heaviside step functions) rather than
sigmoids. Signum networks may be preferred to sigmoidal ones due to hardware considerations.

In cases like these, one choice is to use an alternative method not restricted to continuously differentiable
functions, such as unsupervised learning, simulated annealing, or a genetic algorithm, but these are usually
significantly slower to train, because they do not use gradient information.

1.2 Related research
Learning algorithms for single-layer networks date back to 1960, with Widrow's ADALINE [31 and Rosen-
blatt's Perceptron [4]. Unfortunately, neither of these methods extend directly to multiple layers.

MADALINE Rule I was a two-layer nctwork (one hidden layer) that had a trainable first layer, but
the second layer was a fixed logic operation, such as OR, AND, or MAJ (majority) [5]. In MADALINE
Rule II, Winter [6] used a heuristic approach which had limited success at training a two-layer network
of hard-limiters (ADALINEs). These methods may be classified as "error-correction rules" rather than
"steepest-descent rules" (gradient-based) [3].

In recent research aimed at using gradient-based learning for multi-layer signum networks, Bartlett and
Downs [7] use weights that are random variables, and develop a training algorithm based on the fact that

*Ph.D. Candidate, Department of Mechanical Engineering. Research partially supported by NASA and AFOSR.
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the resulting probability distribution is continuously differentiable. The algorithm is limited to one hidden
layer, requires all inputs to be 1 or -1, and needs extra computation to estimate the gradient.

Another method is to approximate the discrete-valued functions with linear functions or smooth sigmoids
during the learning phase, and switch to the true discontinuous functions at run-time. This is similar to
the original ADALINE, where the neuron was trained on its linear output, but in operation, this output
passed through a signum function [3]. This method may work in cases where the behavior of the system
with sigmoids is close enough to that of the real system; however, this assumption is very often unreliable.

1.3 Outline of paper
There are three major sections in this paper. In Section 2, the technique of learning with noisy sigmoids is
explained and the training algorithm is derived. In Section 3, to demonstrate the usefulness of the method
for training multi-layered networks of hard-limiters, it is applied to two different problems. In Section 4, to
demonstrate application to a complex control problem, it is applied to a thruster-mapping problem involving
eight on-off thrusters controlling a 3-dof free-flying space robot.

2 Backpropagation Learning with Noisy Sigmoids
2.1 Training algorithm

We introduce the method of noise injection by applying it to the training of a single hard-limiting neuron,
as shown in Figure 1. This neuron could be trained with the ADALINE or perceptron learning rules, but
those methods do not extend to multiple layers, while this one does.

RUN-TM X nt =XW r X=[jX,....,j.f
W = [b w,w.... w.-

TRAINING
Forward X _ EoTt
Sweep N Td

nackward V Ml 1 7L-;.

During training, replace discontinuous signurns with sigmoids, and inject noise before the sigmoid
on the forward sweep. The backward sweep calculation is the same as standard backpropagation.

The first block diagram in Figure 1 shows the neuron as it appears at run-time, a dot-product and
hard-limiter. For simplicity in bookkeeping, the input, X, and weight, W, vectors are augmented to include
the threshold bias for the output function. The next two diagrams show the neuron during training, where
the signum has been replaced by a smooth sigmoid function. The input, X, is propagated through the
forward sweep, finally resulting in an error, c, and a cost. The derivative of this cost is calculated and
propagated though the backward sweep, resulting in a Ocost/OX to be propagated to more units upstream,
and a Ocost/Onet to be used in calculating Ocost/OW, which is used in the weight-update algorithm.

This is almost the same as training a standard neuron with backpropagation - the only difference involves
the injection of zero-mean noise, N, immediately before the sigmoid. While the mechanics of the backward
sweep are identical, different weight updates result because the forward sweep resulted in a different error.

Note that the noise injection does not corrupt the calculation of Ocost/OW (just as the desired signal
does not). Using an unmodified backward sweep is not only the simplest thing to do, it does precisely the
right calculations for estimating the weight gradient.

What makes this method useful is that as the noise level increases to cover the sigmoid's transition region,
adaptation with the resulting Ocost/OW leads to a set of weights that work well for the signum network.
To summarize, the training algorithm is:

" Replace the hard-limiters with sigmoids during training

" Inject noise immediately before the sigmoids on the forward sweep

" Use the exact same backward sweep as with standard backpropagation
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2.2 Why it works
Without addition of noise, the network may train using values in the sigmoid transition region (roughly -0.8
to 0.8) that will be unavailable at run-time. Simply rounding off at run-time may introduce significant errors.
The goal of noise injection is to move neuron activations away from the transition region during training, so
round-off error will be small when the discontinuous functions are replaced.

An intuitive reason for adding the noise is to throw the neuron off its transition region, and effectively
force it to hard-limit at the high or low value. Figure 2 shows how the neuron output distribution changes as
the noise level increases. With no noise, only a single output can result, but as noise increases to cover most
of the transition region, the output distribution approaches that of a hard-limiting function. Differentiability
is maintained, however, so gradient information will be available to speed up learning. Since the noise has
pushed the distribution to approximate a hard-limiting non-linearity, when the hard-limiter is re-introduced
at run-time the performance degradation will be small.

Noise = 0.2 Noise = 0.5 Noise = 1.5 Noise = 3 Input. Noise = 3 Output. Noise = 31 1r-ir I 1
0 0 j 0 K 0 ~ 0.5 2 W

-1 LJL
-4-2 0 2 4 -4-2 0 2 4 -4-2 0 2 4 -4-2 0 2 4 -4-2 0 2 4 -1 0 1

Figure 2: Effect of Input Noise Level on Sigmoid Output Distribution
Lightly-shaded region represents the sigmoid input probability distribution (in this case, -0.3 +
noise). Darkly-shaded region is the sigmoid output distribution (from -1 to 1), plotted horizontally
to correspond to the sigmoid plot. Each distribution has an area of 1. As noise level increases, and
the input distribution spreads out, the sigmoid output approaches that of a hard-limiter, whi!e
remaining differentiable. At right, input and output distributions are plotted separately.

2.3 Extensions, application considerations
2.3.1 Selection of noise level

One concern is the attenuating effect of the derivative-of-sigmoid function. When back-propagated through
many layers of near-saturated sigmoids, the error signal is attenuated and may lead to slow learning. To
handle this problem, it may be necessary to be gradual in increasing the noise level - slowly push the outputs
from the linear region to the hard-limits, rather than all at once. However, since all the experiments presented
here had a single layer of discontinuity, no such gradual increase was required.

For training networks with simple bi-level sigmoids, once the noise reached a sufficient level (roughly 0.5
and 3 in two different applications), there was no degradation if it were increased beyond that level. The
only possible drawback is the attenuation effect mentioned above. The required noise level varies in different
applications depending upon how sharp the decision boundaries would be with no noise (i.e. if it's a sharp
sigmoid to begin with, not much noise is needed to force it off the transition region).

When multi-level sigmoids are used, as seen in Figure 9, there is an upper limit to noise level. Too much
noise may cause the individual sigmoids to overlap, which in this example would blur out the middle level.

2.3.2 Discrete-valued functions other than bi-level signums

If adapting a system that contains discrete-valued functions that are not simple Heaviside step functions, the
method may work if a continuously differentiable approximating function is used. For example, a function
whose output can take on multiple discrete values may be approximated by combining multiple sigmoid
functions. For the thruster mapping problem described in Section 4, the thruster can take on three states:
forward, off, or backward. Two bi-level (-1,1) sigmoids were summed to produce a tri-level (-1,0,1) sigmoid.

2.3.3 Batch-learning
The randomness introduced with the addition of noise could make learning slow because of the reduction
in signal-to-noise ratio in the weight gradient estimation. Batch-learning, using the exact same training
set from one epoch to the next worked well (considering the "training set" to include the "input set" and
"noise set"). Freezing the training set and noise set defines a fixed deterministic cost hyper-surface. With a
fixed cost function, on-line tuning of momentum and learning rate can be applied to dramatically improve
convergence rate.
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2.3.4 Optimization of discrete-valued parameters

Another area where this method has potential is for optimization problems that have discrete valued pa-
rameters. For example, a design optimization problem where the task is to select the right DC motor, pipe
diameter, or gear ratio from a finite set of discrete-valued options. It is expected that this method will
extend well to this family of problems [8].

3 Application to Training Multi-Layer Signum Networks
In this section, this method is shown to extend to multiple layers of hard-limiting units with no modification.
Figure 3 summarizes the method; during training, replace each hard-limiter with a sigmoid and zero-mean
independent noise source. Note that the sharpness of the sigmoids does not matter at all here, since the
sharpness factor simply multiplies the weights, and the weights are adapted.

Run-time Training
Figure 3: A multi-layer signum network, seen at run-time and during training

In the first test, an adaptive 3 - 5 - 4 signum network is trained 4o emuldte the input-output mapping
defined by an independent, fixed, 3-10-4 sigmoidal network. Fewer hidden neurons are used in the adaptive
network to ensure that overfitting will not introduce unnecessary complications. The 3 - 10 - 4 network's
fixed weights were randomly chosen between -2 and 2.

Network Performance Average Weight Magnitude

i10
. Performance with Sigmoids

error boundsfir10tials 5
15 naetOfC wit sigflumis,1.5 error bowmds for 10 trials<

0 1 2 0 1 2
Noise Level Noise Level

Neuron Activation Distribution
" Noise =0 Noise= I Noise =2 Noise= 3

0.5 .. 40 40 40 40

a20 20 20 200~~~ OL 1 11 01
0 0.5 1 1.5 2 2.5 3 1 - 0 1 -1 0 1 -1 0 1 -1 0 1

Noise Level & activation activation activation activatior

Figure 4: Direct training of a multi-layer signum network, NN-generated training set
Left: with higher noise levels, performance on the noisy sigmoidal network approaches that of the
signum network, indicating that the noisy sigmoid is a valid (and differentiable!) approximation
for the signum. Right: As noise increases, the network adapts to sharpen its sigm, * ', causing
the first layer weights to increase, and the sigmoid output distributions to approach hard-limiters.
Activation distributions were collected over the whole training set, with no noise added.

Performance is shown in Figure 4. Each dot on the graph represents the final performance after a full
training run (10,000 epochs or until a local minimum was reached). Seven values for noise level were chosen,

III-335



and ten different network initial conditions were used at each noise value. With no noise, performance is
good for the sigmoidal network, but when the signums are reintroduced at run-time, the error increases
dramatically. One point is off the graph at an error of over 6 units. As noise increases, performance on
the sigmoid network decreases, as expected, but the signum-network-performance improves, and approaches
the sigmoid-network-performance. The weight magnitude and neuron activation distribution plots confirm
that as noise increases, the noisy sigmoids behave like hard-limiters. Note that these activation distributions
could not have been achieved by manually increasing the sharpness of the sigmoids - this would have had zero
net effect since the network would adapt the first layer weights to eractly counteract the sharpness increase.

Network Performance Average Weight Magnitude
1.6 20

1.4 ift Perfonnalce with Signwids, U 0.5.. e•- r bounds for 1 trials 1O
Peformace with Signums.

" 12 efforbouldsfor'10trials > >

0 0-
0 1 2 0 1 2

Noise Level Noise Level

u Neuron Activation Distribution
0.6 ~Noise 0 Noise=0.05 Noise 0.15 Noise 2

lo4.40 40 40 40

0.2 w 20  20 20 20

0 0.2 0.4 0.6 0.8 1 0-1 0 1 01 0 1 01 0 1 -1 0 1
Noise Level & activation activation activation activation

Figure 5: Direct training of a network of hard-limiters to emulate optimal thruster mapping

In the second application, the hard-limiting network is trained to emulate the optimal thruster mapping,
which will be described in detail in the next section. For now, this mapping is used as an independent second
test of the method. A similar dramatic improvement in hard-limiting performance occurs as noise increases
past about 0.5. It is not shown on the plot, but good performance is obtained at least up to a noise level
of three. The training set for this mapping represents continuous values being mapped to discrete values, so
the first-layer weights are high (indicating sharp decision hyper-surfaces), even for noise = 0.

4 Application to Robot Thruster Control
4.1 Robot Description
Experiments are performed ubin.g a mobile robot, shown in Figure 6, that operates in a horizontal plane, using
air-cushion technology to simulate the drag-free and zero-g characteristics of space[9]. The three degrees of
freedom (x, y, 0) of the base are controlled using eight thrusters positioned around its perimeter, shown in
the upper right of Figure 6. The on-off thrusters substantially complicate the control design, due to their
discontinuous nature and the fact that each thruster simultaneously produces both a net force and torque.

The overall objective is to use a set of eight full-on, full-off air jet thrusters to approximate a continuous-
valued force vector that is commanded by the position/attitude control law of the mobile robot. The neural
network determines the combination of thrusters to fire that will generate a (normalized) resultant force
vector as close as possible to that commanded.

4.2 Indirect training, Application of noisy sigmoids
Three different techniques used to solve this thruster mapping problem are summarized in the lower right
of Figure 6. The first implementation used an exhaustive search at each sample period to find the thruster
pattern minimizing the force error vector [9]. Symmetries are used to reduce the search space, but this
method relies on testing every possible thruster pattern to find the one with minimum error. The second
method used a neural network that had been trained directly to emulate the optimal mapping produced by
the exhaustive search, described in Section 3 and in [10] [11].
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INDIRECT TRAINING

Figure 6: Free-flying robot, Thruster mapping problem definition, Solution methods

Left: The robot is a fully self-contained planar laboratory-prototype of a free-flying space robot
complete with on-board gas, thrusters, electrical power, multi-processor computer system, camera,
wireless Ethernet data/communications link, and two cooperating manipulators. It exhibits nearly
frictionless motion as it floats above a granite surface plate on a 50 micron thick cushion of air.
Right: [Desired forces =* Thruster values] mapping: problem definition, solution methods. The
on-off thrusters and coupling between forces and torque make this problem difficult.

The third method, indirect training, is presented here and shown in Figure 7. In this case, the optimal
mapping is not used, and the NN must learn the mapping through experimentation with the plant model.
This requires back-propagation of error through the discontinuous thrusters, which motivated development
of the noise injection method presented in this paper.

RUN-TIME &srw IT!11:11 ise

TRAINING Fdcs Fact , Cos

Forward
Sweep

Backward I

Sweep

Figure 7: Thruster mapping, indirect training method

Figure 8 shows the result of training with two differentiable thruster models. During training with the
continuous thruster models, the NN produces a mapping with a very low error, but when the signums are
replaced at run-time, the error is large. This is because the network learned to optimize the solution using
outputs that would be unavailable at run-time. The resulting roundoff error is unknown to the NN during
training.

Figure 9 shows the results when the thrusters are modelled by noisy tri-level sigmoids. With noise = 0,
error is high, corresponding to the data in Figure 8, but as noise increases, performance approaches that of the
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Figure 8: Results of indirect training, two differentiable thruster models
The sigmoid-based approximation (without noise) is better than the linear model, but has limited
performance. The results from direct training represent a lower imit for comparison. Mapping
error is average percent error above the optimal mapping (which results from an exhaustive search
of all possible thruster combinations). The shaded areas represent the mean ± a for ten different
runs. 3 - 10 - 4 layered networks were used.

network trained directly (emulating the optimal mapping). The direct-performance represents a lower bound
set by the functional complexity of the 3 - 10 - 4 layered network. The best noise value in this application
seems to be around 0.15, and the resulting noisy sigmoid is shown in the left side of Figure 9. Examining
this figure, the sigmoid sharpness and noise levels seem to be set correctly according to intuition. As noise
increases beyond 0.2, error increases (as the "off" region of the sigmoid becomes blurred) as expected, but
the method is fairly robust to the noise value selected.

Noisy Sigmoid Thruster Model Performance on Actual Plant vs. Noise Level

11

0.5 -.

si mobaed model

12 Indirect Training,
sigmoid-based approx. of discontinuity

1l0
a~8

-0.54

higherrr drin trinig, he raiingalgritm mst inda sluton hatworsectl espaeiheioig

1Fgr 9:. 0eut of5 inirc triig no-sy DieTann0.1 0.15 0.2 0.25 0.3

addtio. hismenpt excaned a fth eoupurustt newln o stue e gintoenssenl

Figre : Rsuls o idirct raiing nosytn-level sigmoid thruster model
Left: the sharpness (4) and noise level (0.15) for the noisy t-level sigmoid appear to be intuitively
correct. Right: as noise increases, performance approaches that of the network trained directly
(emulating the optimal mapping). 3 - 10 - 4 layered networks were used.

A good solution results when noise is added because it prevents the network from using a solution that
uses non-saturated portions of the tni-level sigrnoid. Such a solution would give a nearly random output and
high error during training. The training algorithm must find a solution that works well despie the noise
addition. This means the expected value of the output must be well into the saturated region to consistently
work well. The results approximate the optimal solution very well, and work when the tni-level sigmoids are
replaced with tri-level signums.
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5 Conclusions
This paper has described a new technique that allows backpropagation learning to work with systems contain-
ing discrete-valued functions, despite the discontinuity that exists between discrete values. The modification
to backpropagation is very small, simply requiring sigmoidal approximation of the discrete-valued functions,
and careful injection of noise into the smooth approximating function on the forward sweep. The noise
injection is critical to ensuring that the noisy sigmoid behaves like a signum during training.

Multi-layered networks of hard-limiters require simpler processing hardware than do multi-layered sigmoid
networks. Sigmoid networks are commonly used due to their increased functionality as well as the lack of a
reliable training algorithm for signum networks. Multi-layered signum networks have now been successfully
trained using this noise injection method in two different applications, clearly demonstrating its usefulness
in this area.

Application to a complex thruster control problem, with implementation on a laboratory model of a free-
flying space robot, has demonstrated the method's realizability and usefulness for on-off control problems.

In each application, the training behavior in the presence of noise has been well-understood, and the
algorithm appears to be relatively robust to the amplitude of the injected noise.
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Abstract

In class backpropagation nets, as introduced by ltumelhart et al.[l], the weights are modified ac-
cording to the method of steepest descent. The goal of this weight modification is to minimise the error
in net-outputs for a given training set.

Basing upon Jacobs' work [2], we point oat drawbacks of steepest descent and suggest improvements
on it. These yield a backpropagation net, which adjusts its weights according to a parallel coordinate
descent method, whose parameters are being fuzzy-controlled.

1 Introduction
The backpropagation net is a multilayer neural net consisting of one input-layer, one output-layer and at least
one hidden-layer. The weights tV = (wi,. . ., w,) of this net are modified by means of the backpropagation

learning role, which is supposed to perform steepest descent with the mean-squared-error-function F(wi).
To accomplish this, Rumelhart et al. introduced the generalised delta rule:

t5"= toOl - (IOF)-

VdF(w-) is the gradient of F with respect to ti and gives the direction of maximum increase relative to tV.
9 > 0 is a constant, which is referred to as the learnrate. The portion of -VoF(tV) by which the weight
vector 0 is moved, is determined by the value of this learnrate.

Image(F) can be interpreted as a surface over the space of weight vectors. F(O) gives the 'height' of
this error surface at wi. The goal of all weight adjustments is to find a t* for which F takes on a global
minimmn F(O*) = Fr., (typically, Fm, > 0).

An advantageous property of the method of steepest descent is its global convergence, which may only lead
to a local minimum though. Many modifications of the backpropagation algorithm that find a minimum of
the error surface more quickly, can only guarantee local convergence. The Quickprop algorithm is an example
for this; it implements an approximation of Newton's method and its order of convergence is two.

The parallel coordinate descent we propose, which provides each weight with its own learnrate, comes
without this disadvantage and it seems to find its way along the error surfaces faster than the original
backpropagation algorithm. By introducing a fuzzy control of some descent parameters we are able to
further improve the performance of the algorithm.

We will now point out the drawbacks of steepest descent and consider the improvements suggested by
Jacobs [2], thereby putting forward coordinate descent and the delia-bar-delta rule. Subsequently a hybrid
from delta-bar-delta and momentum version is introduced and a fuzzy control of this hybrid is explained.
In the end we test our new algorithm and compare its performance with that of the generalised delta rule
and delta-bar-delta rule.

*e-mal: lipp.ftkat.su-auaster.d., fourinugfatb.al-muenster.de, tenhagaftath.uni-menster.de
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2 Problems with the Method of Steepest Descent

The method of steepest descent, which is implemented by the classic backpropagation learning law has some
weak points, that take effect on typically shaped error surfaces.

Hecht-Nielsen (31 makes the following statements about the shape of backpropagation error surfaces:
* Many error surfaces have extensive flat areas and troughs with little slope.
* The symmetry of the net weights (each weight vector behaves equivalent to certain permutations of

itself) causes many global minima to exist. As a result, most error surfaces appear rough in many
dimensions.

• Error surfaces with real local (not global) minima at a 'high' errorlevel do exist. Little is known about
the position and number of these minima.

Jacobs [2] closely examined the behaviour of steepest descent on backpropagation error surfaces and reached
these conclusions:

" If the error surface is flat in the dimension of one of the weights, the corresponding derivative is
(absolutely speaking) small. Because of the gradient-component being that small, changing the corre-
sponding weight by a portion of it (determined by the learnrate q) yields only a slight adjustment of
the weight. If the error surface is flat in all dimensions, application of the learning law takes almost
no effect. Consequently the progress of the method is very slow in situations like these; it may even
stop because of computing-inaccuracies.

" If - on the other hand - the curvature of the error surface is high for some weight-dimensions, a
related problem with (absolutely speaking) large gradient-components arises. The weight vector may
be moved too far - thus overshooting the minimum.

" The gradient gives the direction of the steepest ascent. But the negative gradient does not necessarily
show the shortest way to a minimum. So steepest descent may make a detour on its way to a minimum
and thus may encounter more difficulties.

3 Improving the Backpropagation Learning Algorithm
Jacobs (2] discusses some improvements to the generalised delta rule, upon which we enlarge:

3.1 Parallel Coordinate Descent

The learnrate 'i determines decisively by what amount each weight is adjusted. Because one learnrate for all
weights cannot allow for the different curvature of the error surface in each dimension, each weight should
be equipped with an individual learnrate.

By using individual learnrates, the learning law no longer moves a point on the error surface in the
direction of the negative gradient and therefore no longer performs steepest descent.
Actually, a kind of coordinate descent is now executed. This does not minimise F(w-) directly, but searches
for mini,(F(tg)) for each component toi of tV. Unlike 'normal' coordinate descent methods, which change
the weights one at a time (for instance the Gauss-Southwell method [4]), this method adjusts all components
of t6 in parallel.
The learning law implementing this parallel coordinate descent looks like this (it is derived by slightly
changing (1) (to allow for individual learnrates)):

tilnew = IoId _ RAX FVF )'  (2)
i=l

where n is the dimension of t6; qi > 0 is the learnrate corresponding to w,; Ei,i is a n x n Matrix, with every
cvmponent = 0, except one component with row = column = i, which is = 1, (1 < i < n). Now holds:

Theorem 3.1 If the preliminaries for the convergence of the classic backpropagation algorithm are given,
the parallel coordinate descent method will also converge to a minimum of the error surface.

This can be prooved analogously to the corresponding proof for the backpropagation algorithm (if all % are
equal the method behaves like steepest descent).
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3.2 The Delta-Bar-Delta Rule

Because the error surface curvature (in each dimension) is not the same everywhere, every learnrate q, should
be allowed to vary. This variation can be controlled by the following heuristics:
When the sign of the derivative of a weight is the same on several consecutive steps, the corresponding
learnrate should be increased (we suppose the error surface to be flat in this situation). When the sign
alternates on consecutive steps, the learnrate should be decreased.

The delta-bar-delta rule was developed by Jacobs [2]. It is a variation of the generalised delta rule and
implements the heuristics mentioned above. In fact it consists of two rules: one for weight adjustment and
the other for control of the learnrates.
The weights are modified analogous to (2):

S+ =) = - (3)

where ti(t) is the weight vector's value at time step t and qd(t) is the value of 7i at time step t.
Every learnrate is adjusted according to q(t + 1) = q(t) + A,(t), (for convenience we write q instead of i)
with:

C ,if6(t- 1)6(t) > 0
A1(t) = - 7(t) ,if 6(t - 1)6(t) < 0 (4)

I 0 else

Ft 6(t) - (1 - e)6(t) + O6(t - 1)
where 6(t) - OF() and

Ow(t) = (-)96ti

i=O
K > 0 and 0 E (0, 1] are constants, # is E (0, 1], K, 0, # are the same for every learnrate.

When the sign of the current (step t) derivative and that of the exponential average at step (t - 1) are
the same (% the error surface is flat), the learnrate is increased by K. When the signs are different (f the
curvature of the error surface is high) the learnrate is decreased by a portion (determined by 0) of itself.

The % are decreased exponentially by the 6-6 rule, thereby guaranteeing fast decrease and i > 0.
The increase of the learnrates is done linearly to prevent them from increasing too quickly.
The effectiveness of the net depends decisively on x: Set to an inadequately small value, the increase of the
learnrates will take place too slow. If iK is set too large, the algorithm will become very inaccurate. Taking
into consideration the existence of extensive fiat areas on error surfaces (see (2)), we see the importance of
a good choice for K (in flat areas the first case of (4) takes effect). A 'good choice' for i can only be made
after a coule of experiments.
Ideally, K should be set to a different (appropriate) value for each weight and each step. Therefore we
introduce a fuzzy control of K in (4).

3.3 The Momentum Version

This modification of the generalised delta rule leaves the (single) learnrate unchanged.
At step t each weight w(t) (no indices for convenience) is adjusted according to:

w(t + 1) = w(t) + Aw(t) (5)

Aw(t) = -(I - a)i q F(t) + aAw(t-_l) a) 1l 7 aZ OF(t- ) (6)
Ow(t) O F(t - i)i=0

where a E (0, 1] (referred to as the momentum term) and q is the learnrate. Aw(t - 1) gives the amount by
which the weight w was changed during the previous step. Typically, a is set % 0.9. This is an arbitrary
choice and may have to be revised after a couple of experiments.
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When the derivatives have the same sign on consecutive steps, the sum in (6) grows larger (causing the
change in w to be greater), otherwise it stays small (causing smaller change in w).

The momentum version has chiefly two weak points:
There may exist an upper bound on the sum in (6)(if all derivatives are = 0, for instance); thereby the
greatest amount by which a weight can be changed is limited, which is not desirable in certain flat areas of
the error surface. In addition, the sign of the sum starting at i = 1 may differ from the sign of the current
derivative; thus - in an extreme situation - w may be moved in the wrong direction.

3.4 The Hybrid Rule

The hybrid rule uses individual, variable learnrates and a momentum term. The learnrates are adjusted
according to the learnrate updating rule (4) of the 6-6 rule. The momentum version (5) (with individual
learnrates) is used as weight modification rule.

Without further changes both methods do not cooperate ideally (which is what Jacobs observed in his
comparison of pure 6-6 rule with the hybrid rule).
On the one hand the momentum-term being large (i.e. (I - a) is small), causes the learnrate to be less
important in determining the weight change - the benefits of the complicated 6-6 rule take only little effect.
On the other hand the effectiveness of the momentum version on flat areas of the error surface is greater, if
a is large, whereas a should be small on areas with high curvature.

4 The Fuzzy Controller

From our observations in (3.2), (3.3) and (3.4) we draw the following conclusion: The hybrid rule (from
(3.4)) can be improved strongly by allowing the parameters ic (of the 6-6 rule) and a (of the momentum
version) to vary. To control these parameters we use a fuzzy controller. The heuristics for adjusting sc and
a are easy to implement this way. Also, fuzzy control yields flexible outputs and we do not have to think
about exponential and/or linear de- or increases. The heuristics we used in the construction of the controller
(see (App. B)) are:
The longer the weight vector is in a flat area of the error surface the larger ic and a may be set. ic should be
allowed to become large enough, so it can take effect despite of a large a. In areas of high curvature ic and a
should be small. We employ a Sugeno-type fuzzy controller [5], which is based upon the 'familiar' IF... TMEl
rules. In contrast to these 'familiar' constructs the Sugeno-type THEN instructions do not contain any fuzzy
sets but crisp functions. The output of the controller is the average of these functions' values. As a result
of that, no defuzzification has to be performed and the fuzzy controller works faster than the 'familiar' one.

For use in the IF clauses, a couple of fuzzy sets is defined. These describe the current curvature of the
error surface (for instance VERYLow, NOTSURE, HIGH). In a new variable we record how often each case
in (4) is selected. This new variable is then used to represent the curvature of the error surface.

4.1 Computational Expense

The new learning law is more complicated to compute than the generalised delta rule. A couple of extra
additions, multiplications and comparisons have to be executed. These additional computations take less
time than performing one complete training step. The additional expense is justifiable since the faster
convergence of our new method decreases the number of training steps which have to be computed.

5 Conclusions

We modified the classic backpropagation algorithm to perform a parallel coordinate descent, based upon
Jacobs' ideas. Heuristics about the properties of the error surface further have been implemented in a fuzzy
control of the parameters K and cr. The modified net needs far less training steps 'to 'learn' a training set,
without too much extra computations. In addition we still have a method with global convergence.
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Appendix A: Two Tests

Our new learning law (referred to as fuzzy hybrid) is tested with two different problems. We compare the
results of fuzy hybrid, with the performance of the generalised delta rule and the 6-6 rule. The parameters
of each rule were set to values that lead to fastest convergence.

1. The net is trained to learn the XOR function. The training was repeated 40 times, starting with a
different weight vector each time. The diagram shows the average of the results.

2. The training set consisted of 28 examples of f(z) = X
2 , where z E [1, 101. The diagram shows the

(typical) results of training the net once.

Note" 07o and Ko are starting values that have to be set by the user.
The p-axis of each diagram is scaled logarithmically.
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Appendix B: Details of the Fuzzy Controller

The value of the variable c (iJ describes the curvature of the error surface in the i-th dimension (the
corresponding weight is wj):

Sc [i] +1 ,ifq was increased by o,
c~ic iJ -5 ,if pj was decreased by -4'?N(t).

K and 4 are parameters of the 6-6 rule and qj is the learnrate corresponding to w,.
Additionally, we make certain, that c iJ E [- 1, 100].

r and a are controlled by the following rules:

(V)ERYLow V(C~l 1 *( A 0.79
IF ( U (L)ow T r L(c IA) * 10co L(c[iJ) * 0.7

(C (N)OTSURE N(c[i])*K0 ; N(c[A)*0.3

(H)iGH H(c[iJ) * C,/10 H(c¢[iJ)* 0.01

KO is a starting value that has to be set by the user.
(oc and a are computed newly for each weight at each step, so their values do not have to be stored.)

The four fuzzy sets are defined by:
1.0A N L V

0.5-

0.-
-1 10 50 100
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ABSTRACT

In many domains where the data belongs to a multdimeional vector space, there is a need to have
vector representation and vector processing of signals. This paper gives a new tool to do this: The multi-
Lyer vector neural network. In this architecture, the neuron inputs and outputs are vectors, the weights
are matrices, and the activation functions are vector functions. The training technique presented in this
paper is the vector back propagation algorithm which is a generalization of the scalar back propagation
algorithm.

I. INTRODUCTION

Real-valued neural networks (RNN) have been applied to many fields [14] such as signal processing,
pattern recognition, vector quantization, function approximation... These neural network models have
very interesting properties: Parallel distributed processing [21], self organization [13], universal
approximation [4, 9, 11, 17], best approximation [101, fast adaptive filtering [12] ... This allows RNN
to have, in general, better performances than non neural processing tools. The back propagation (BP)
algorithm [ 16, 21, 22] is one of the most popular algorithm used for the learning process.

Recently, some authors have proposed complex-valued neural networks (CNN) and extended the BP
algorithm to the complex plane [5, 8, 15]. These architectures can be applied to domains where signals
have complex representation (e.g. signal processing and digital communications) [5, 6, 7].

In many domains, like array signal processing, the data belongs to a vector s and its treatment needs
vector mappings. It is of a great importance, therefore, to have neural netwots that allow not only a
vector representation of signals, but also a vector processing of them. Scalar-Valued Neural Networks
(i.e. RNN and CNN) can not allow both vector representation and vector processing because the
activation functions are scalar functions.

In this paper we present the multi-layer vector neural network (MVNN). In this architecture, the neuron
inputs and outputs are vectors, the weights are represented by matrices, and the activation functions are
vector functions. The training algorithm is called the Vector Back Propagation (VBP) algorithm because
it propagates error vector terms in a backwards fashion. The classic BP algorithm [16, 21, 22]
corresponds to the VBP when all variables are scalars and the activation functions are defined in the
real or the complex domain.
The VBP algorithm can be useful in many applications dealing with vector data like vector quantization,
array signal processing, principal component analysis, digital communiction over non linear channels
(with complex valued signals), speech coding, classification and pattern recognition, vector fimction
approximaton, learning under constraints, robotics, parallel distributed processing ...
Tis paper is restricted to MVNNs, an analogous analysis concerning vector self organisatio and
associative maps (VSAMs) is discussed in [18]. VSAMs generalise Kohonen feature maps (KFMI and
the adaptive resonance theory (ART) to multidimesioal vector spaces.
Since vector spaces are linear manifolds, both MVNNs and VSAMs are special cases of the manifold
neural network (NN) presented in [ 18, 19].
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11m paper is organized as Mlowm: In part 2 we ducrib the MVNN architecture. Pait 3 gives the VBP

learning rule. Finally, som concluding remarks are given in part 4.

2. THE MULTI-LAYER VECTOR NEURAL NETWORK

The letters R and C will denote the set of real and complex numbers, respectively. Let 0 be either R or
C. E1 denotes a K dimensional vector space over 0. B1 = (e1,..,eK) deacate the canonic basis of EK
which is supposed to be normed by mans of the usual Euclidean metric. L(E11, , EK ) denotes the field
of linear mappings defined from Eto EK2 . F(E11 ,EK2) denotes the field of vector functions defined
from Eto E1 2.-
The multi-layer vector neural network consists of many vecor units, or vecto neurons. A vector neuron
is composed of a vector linea combiner Z and a vector activation function fjj:

xb

Wikxl

x -N(lr *W IN(11I)k

Figure 1 : The vector neuron

Note that the indices i and k are not important heme. They rer to the layer index and the neuron index,
respectively, see figure 2.
Ile input {xq- 1j1, 15j:5NQ-l1) is composed of N(i-1) vectors of a vector space EX(/...). The

weights [Wyk ,l 1 -- NQi - 1) are K(i) x K(i - 1) matrices (they correspond to matrix representations

of N linear mappings of L(EK(I...),EK(,))). The bias b&~ belongs to EK1 j. The linear combiner sums

the bias and the input vectors {xj..Ijj multiplied by the corresponding matrix weights:

T~j)
j=1

The activation finctionfik maps the vector net&k into av'ectorx:

A/ : -+i) EKi

net/k -+ ik=Ik(netik)=fik( kx...j+ bk) ()

In the canonic basis Bj), vector x/k can be written

Afi (ne tk)
X&k

Note that the finction fkP (corresponding to the direction ep), is funiction of the vector net./k (and not of

the Scalar fe). This is the main difference with SNNs.
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fk can be any vector function (differentiable or not). For example, it can be the gencralized

characteristic function (in the case of vector spaces defined over R):
flk = A,(M40k)=[I...l] if,neti>0 foroa l t<5KQ)

=[0..o01 ifnet'k<5O forall l:.'S K )

An other example of fik, is the multidimensional quadratic sigmoidal function:

,h(netAne'A ) 1
fAk(mt )= I"

th (net*'AK(i)neti)-

where {At, , 1< p5 <K(i) are K() x K(i) matrices and th is the hyperbolic tangent finction.

The multi-layer vector neural network is shown in figure 2.

x
01

X02 X
LI. I,

ON *LN(L)

Input layer 0 Layer i Output layer L

Figure 2 : Multi-layer Vector Neural Network.

In figures I and 2, i denotes the layer index, xk the output of neuron k of layer 1, Wgjk the matrix weight
that links vector ;4- j to neuron k of layer i, N(Y) the number of neurons in layer i, and EK(Q) the vector

sa to which belong layer i outputs.
The network works as follows: N(O) vectors (of a vector space EK(0)) are fed to the network input and

are processed in a feed forward fashion through intermediate vector spaces: Each layer i has in its inputs
N(i-J) vectors (of the vector space EK,-.)) and maps them into N(i) vectors (of the vector spaceEK()).

If we denote by IF this mapping, then we have

.. (. .-.. ... ,Xi-(-l)) (l..i)))

The global network input-output mapping represents a function T which belongs to the set of vector

backms F(EK(o))N(O), (EK(L))N(L)):

IF : (E -+)(0 (EK(L) )M(L)

(X0I.....XON(O)) -+ (XLI,-...,XLJ(L))

If all variables are scalars (EK() = )), then the VNN is reduced to an SNN. Therefore, the mapping

ISNN belongs to FQ(N(O),4)N(L)).

Many algorithms can be used to train the VNN (in supervised or unsupervised learning procedures), in
this paper we describe only the vector back propagation algorithm which is a generalization of the scalar
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back propagation algorithm. Other algorithms used for SNN (see for instance [14, 161) can also be

gerlized to VNN.

3. THE VECTOR BACK PROPAGATION ALGORIM (VBP)

In supervised learning, N(O) input vectr I )1'.....X)N(O)l (of a vector space Eir(o)), and N(L)

desired output vectors f{dI....,dN(L)l (of a vecto space EK(L,)), are presented to the neural network at
time L Thegoul is to adjustthe network weights in order to minimiizea cost fimction C.
We define t erro vectors v1 (t) at tim t as the difference bdvmee the desired output vectors
d1Qt)and the output vectors zt)

The cost function as defined as the sum of the norm of these error vectors:

~~~ NjL)1  to

whee ij denotes the conjugate of vector ej, and &4j denotes the transpose.
Without loss ofgeneralit, we suppose that 4D = R. A similarstudy can be done for the case 0=C (one
should calcullate the derivatives according to the conjugate variables).
We suppose that the vector activation function are all diflfrentiable.

3.1 Notatinia

We denote by J(fik) the diffrential matrix of fa with respect to vector neeq:

AM = I . I zp5KQ) (line index) , 1:5l 5K(i) (columnuindex)

We denote by Juw (4) the differential matrix of 4 with respect to the matrixWO[W( ...) Lj. 1:5m:5 KQ) (ine index) , 1:5n:5KQ -1) (cohumindex)

We denyAi(4td i satof ith respectto vector bik:

Abi (4 r a4 1 -15l ) (ine index)

We denote by 8i the gadientofwi :eet toveimp rX&

4W= ' 1:: 1 KQ) (line index)

3.2 The VBP Algoithm

The VBP algorthm nmnmzes the cost function by updating weights and biases according to the
gadient search technique:

W~k + 1 W# W -U J~* M(2)

bik t +1) b (t -.uJb*(4)(3)

,u is a small positive constant
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The tm Jw* (4) can be expressed as a function of 3 terms:

JW(* (4) =(J(A,))Y ,J& 3-Ij (4)

The second term ofthe right hand side (RHS) of(4) 5,*, called error term, depends on the cost function
C, the other two depend only on layer I parameters (i.e. the activation function and the input vectors).

The term Jb, (4) can be expressed as a function of two terms (5). The first depends only on layer 1, the

second is the error term 4:

Jb,* (0=(J(f k)f 8Y4 (5)

The error tams 8 are conputed efficently by starting with the output layer:

S)N(L)K(L)
" ( --k (6)

&N(L) 
J

_,ON~(L)=k
and working backwards through the othe layers:

41 = I (J(f +)W ~kk)'i + (7)
W11

The Vector Back Propagwto Algorithm:
Step 1. Initialize matrix weights and vector offsets:

Set all matrix weights to small values (according to a matrix norm), and all vector biases to
small values (according to the Euclidean norm).

Step 2. Present inputs and deired outputs:
Present N(O) input vectors { X01,...,XON(0)I (of a vector space EK(0)), and desired output

vectors {dI ... ,dN(L) (ofavectorsp EK(L))
Step & Calculate actual outputs:

Use the formula (1) to calculate the outputs I XL1 I... ,X1J(L)I
Step 4. Adapt weights:

4 ) = + w , (t - 4 -(J(fd)Y 4

5j* is calculated as fbows:
For the output layer Lk =- 2(d k -xLk) (a KL-dim. vector)

For layerli:, 1 = .,(J{+,+lk,) i lk , (a KQ)-dm vector)
/k-I

Step . Repeat by oing to step 2.

4. CONCLUSION AND FUTURE WORK:

In this paper we have presented the Multi-layer Vector Neural Network (MVNN) whose neuron inputs
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and outt arm vectors, weights ame matries, and activation functions ame vector functions. The Vector
Back Propagation (VBP) algorithm, which is a generalization to the scalar one, was also presenited.
Other algorithms and models used in Scalar-valued Neural Networks (SNN) (wee fior instance 3, 5, 16,
21]) can also be extenaded to MVNN. In further omuications we try explore the mathematical
properties of VNN, like those obtained for SNN (se for instance 1. 10, 20]). Many questions have to
be answered:- Can the universal aproIma tion [111 be generalized to MVNN, and whichi activation
functions ame able to do this? How toextend the learning curve models, studied for SNN (e.g. [2, 12, 13,
20]), to the ase? Note that the universal appimatio of SNN was demonstrated
after 19881
The answers to thesequsinamntytkonWetikhwmdu N cnbenupoat

too[to rea prolem(swthecomputational examples given in [1S]).
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Abstract
In the present paper, we propose a method of entropy maximisation to improve general-

isation. For good generalization, the strength or the number of weights must significantly
be reduced and the input patterns must be represented over many hidden units. In other
words, the cost (represented in the number or the strength of weights) must be as small
as possible, while the diversity of hidden unit activity is as large as possible. The diversity
can be represented by an entropy (H) with respect to hidden unit activity. The cost (C)
can be the average of the squared weights. Then, to obtain the better generalization, the
ratio (H/C) must be as large as possible. We formulated a learning rule to maximize this
ratio and applied it to the identification of frequencies. The results confirmed that the
ratio of entropy to the cost was increased and the generalization performance was greatly
improved. In addition, the learning time was significantly improved by using the entropy
method.

1 Introduction

Neural networks can create the internal representation or hidden unit activity patterns in the course of the
learning. The information, contained in input patterns is recoded in distributed ways or represented over
many hidden units. Because of the distributed representation, the networks can appropriately generalize
to novel situations [4]. Thus, the improvement of generalization performance depends upon the recoding of
input patterns at hidden layer. In addition, it has been well known that a weight decay method and weight
pruning contribute significantly to the improvement of the generalization [5],[6], [7], [8]. To achieve good
generalization, the number of weights or the strength of weights in networks must be small.

To represent concretely this condition, let us define an entropy function (H) with respect to hidden unit
activities,

H= -plogpi,
i

where pi is a normalized hidden unit activity and the summation is over all the hidden units. If this entropy
is maximized, all the hidden units are equally or uniformly activated. On the other hand, if this entropy is
minimized, only one hidden unit is activated and all the other units are off. To achieve better generalization,
entropy must appropriately be increased, that is, hidden units are activated over many input patterns. Now,
let us formulate the average cost for each hidden unit or weight strength (C) as

C= Li

where Ci is the sum of the squared weights into ith hidden unit, M is the number of hidden units. This
average cost must be as small as possible and entropy for hidden units must be as large as possible. Thus,
if the ratio (G)

H
G= 3C
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is maximized, the generalization will be improved.
In the following sections, we formulate the maximization method of the ratio of entropy to the cost.

Then, we apply the method to the identification of frequencies. We show that the ratio of entropy to the
cost is significantly increased and the generalization is greatly improved in all cases. Finally, the comparison
with the simple weight decay method is presented.

2 Theory and Computational Methods

2.1 Entropy Function

Let us formulate the entropy maximization for the improvement of generalization performance. Suppose
that a network is composed of three layers: input, hidden and output layers. Hidden unit activities are
denoted by vi and input terminals by 4i. Then, connections from inputs to hidden units are denoted by wij
and connections from hidden units to output units are denoted by Wj.

A hidden unit produces an output Vi= f(N,,,

where ui is a net input to ith hidden unit and defined by

L
Ui = E uifi.

uil
j=1

where Ci is ith element of an input pattern and L is the number of elements in the pattern. An entropy
function at hidden layer is defined by

MH = P, logPi,,1
i=1

where i
Ai - E, Vm

where the summation is over all the hidden units.

2.2 Input-hidden Connections

The cost can be measured by the total sum of the squared weights. Thus, the cost for ith hidden unit is
defined by

L

.=i

j=1

where the summation is over all the input units (L input units). Thus, the average cost per unit is computed
by 1M

A function to be maximized is the ratio of the information entropy to the average cost:

H
C
-M EiP logp, (2)

By differentiating both sides of this equation, we have
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-M(logp + 1) Nui)(

-2M pj logpj
(E,~ E W,2 )2 

I~
M H

f- 2M j. (3)

where 4 -is defined by

,= (lop,+ E) - )

Update rule is formulated as follows:

SOG _ 0wE

1 H

where a = eM and bi is the ordinary delta for the back-propagation.

2.3 Hidden-Output Connections

Let us formulate a cost for the hidden-output connections. A cost for ith hidden unit is formulated by

N

i--1

where Wii is a hidden-output connection and the summation is over all the output units (N output units).
Thus, an average cost is

M
D = VE=*

j=1

M N

"= VEEW.

A function to be maximized is defined by j
P= H_

D

Differentiating both sides of this equation with respect to Wi,, we have

OF H
ew, =2a-Wi,

3 Results and Discussion

3.1 Identification of Frequencies

We applied our method to the identification of frequencies[8. Networks must identify three frequencies of
sine waves with phases shifts, different from those of training data sets. First, training data were divided
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Table 1: Summary of experiments for network with nine hidden units.

o,(/ log M) G(/HIC) F(tID) HD(%7) SSE Epoch (x3O)

0 3.10 6.50 4.44 4.48 192
0.01 3.31 6.35 5.93 4.05 189
0.02 3.66 6.65 0.74 2.24 175
0.03 3.79 6.64 0 2.06 177

into three classess with three different frequencies (2, 4, 6). Each class has ten examplars with sixty-four
smaples from sine waves. Thus, the number of input units was sixty-four. The number of output units was
three and specific target values were assigned to each output unit, according to the frequency of a class. Let
us take an exmaple of frequency 2. The class of frequency 2 have a target output (0,0,1) and input(&) are
given by

& = A sin(2i r + p),

where i=1,2,...,64, A=0.8 or 1.0, and p= 2jir/5, j=1,2,3,4. Total number of training data was thrity
exmaplars. Following the specfication of Siestma et al. [81, test data was made with phase shift p= (2j-1)7r/5,
i=1,2,3,4. However, the amplitudes were set to 0.7, 0.9 and 1.1. Thus, total number of training sets was
forty-five, compared with fifteen of Siestma's original data. In addition, input sine waves were modified by
using the sigmoid function. Experiments were performed as follows. First, only input-hidden connections
were updated so as to increase entropy. Only when the generalization performance was not significantly
improved, in addition to the update of input-hidden connections, hidden-output connections were used to
increase entropy. Because the update by input-hidden connections were very stable, while the update of
all the connections tended to be unstable. Several times, same experiments were perfomed with different
intial values for weights, ranging between -0.5 and 0.5. The learning was considered to be finished when the
absolute differences between targets and ouputs were all below 0.2. Though the final Hamming distance and
the sum of squared errors were dependent upon chosen initial values, approximately the same improvement
(relative improvement) in the generalization performance was obtained. Thus, in the following sections, only
one typical result was given for each experiment.

3.2 Generalization Performance

Table 1 shows the summary of experimental results, when the number of hidden units was nine. Only input-
hidden connections were used to increase entropy. To facilitate the adjustment of the parameter a, values for
the parameter a was divided by the maximum entropy: log M. HD means the Hamming distance between
targets and outputs, averaged over all the input patterns and all the elements in the patterns and ranged
between zero and one. Outputs greater than 0.5 were set to one, while outputs less than or equal to 0.5 were
set to zero. One epoch means thirty presentations of input patterns. As can be seen in the table, the ratio of
entropy to the average cost (G) increases significantly from 3.16 to 3.79. Average hamming distance between
targets and outputs decreases from 4.44 to zero, meaning that the network can produce perfectly targets. In
addition, the number of epochs needed to finish the learning decreases as the parameter a decreases.

Then, we increased the number of hidden units from nine to fifteen. Table 2 shows experimental results,
when the number of hidden units was fifteen and only input-hidden connections were used to maximize
entropy. As the parameter a increases, the ratio of entropy to the cost increases significantly from 5.74 to
8.66 for input-hidden connections and from 11.03 to 18.01 for hidden-output connections. Average Hamming
distance decreases from 4.44 to 2.22. Then, we used all the connections to increase the entropy. Table 3
shows experimental results when all the connections were used to increase the entropy. As can be seen in
the table, the Hamming distance decreases greatly from 4.44 to zero, meaning that networks can produce
targets perfectly. In addition, we can see that the number of epochs for finishing the learning is significantly
decreased from 237 epochs (by standard back-propagation) to 119 epochs at the end.

The number of hidden units was increased from fifteen to twenty-one hidden units. In this case, we can
also see a significant increase in the generalization performance by entropy maximization. Table 4 shows
results when the number of hidden units was twenty-one with updates of input-hidden connections to increase
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Table 2: Summary of experiments for networks with fifteen hid-
den units only with updates of input-hidden connections.

a U F HD SSE Epoch
0 5.74 11.03 4.44 3.27 237

0.06 7.72 16.12 2.96 2.26 169
0.12 8.66 18.01 2.22 2.45 154

Table 3: Summary of experiments for networks with fifteen hid-
den units with updates of all the connections to increase entropy.

a G F RD SSE Epoch
0.04 7.22 10.99 4.44 2.65 129
0.08 8.02 13.13 0 2.35 119

the entropy. As the parameter a increases, the ratios of entropy to the average cost significantly increase.
The Hamming distance decreases from 10.37 to 3.70. The number of training epochs decreases from 157 to
135 epochs. Then, we used all the connections to decrease the Hamming distance. As can be seen in Table
5, computed with all the connections, the ratio (G) increases, while the ratio(F) does no increase. However,
finally Hamming distance decreases and reaches the level of 2.22. The number of epochs also decreases
significantly from 157 (by standard back-propagation) to 104 epochs.

3.3 Simple Weight Decay

It has been well known that adding a simple weight decay term increases the generalization performance
[61. Let us compare the performance by entropy method with that by the simple weight decay method. The
weight decay method can be formulated as

Awj = _ OF,Owij -)wj

where wei means all the connections, including hidden-output connections. Table 6 shows experimental
results by using the weight decay method. As can be seen in the table, the minimum Hamming distance(1.48)
is larger than the minimum(0) obtained by entropy method. See Table 1. In addition, the number of epochs
to be needed for the learning increases significantly, as the parameter X increases. Even if the sum squared
error (SSE) decreases below the minimum level (2.06), obtained by the entropy method, the Hamming
distance can not decrease to the minimum level (zero) by the entropy method. As shown in the table, the
ratio (G) and (F) increase greatly as the parameter increases. Thus, the weight decay method is only a
method to increase the ratio with fixed entropy values.

Table 4: Summary of experiments for networks with twenty-one
hidden units only with updates of input-hidden connections to
increase entropy.

a UG F HD SSE Epoch
0 9.51 24.60 10.37 6.36 157

0.2 11.93 29.74 5.93 4.63 137
0.4 14.14 32.15 3.70 3.99 135
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Table 5: Summary of experiments for network with twenty-one
hidden units with updates of all the connections.

a G F HD SSE Epoch
0.10 11.17 17.56 4.44 2.36 164
0.17 12.24 18.04 2.22 2.73 104

Table 6: Summary of experiments for networks with nine hidden
units with a simple weight decay method was used.

A(x - O F HD SSE Epoch
0.5 3.60 6.11 4.44 3.34 219
1.0 4.62 6.27 1.48 1.78 263
1.5 5.53 6.96 1.48 1.84 304
2.0 6.50 6.96 7.41 3.51 439

4 Conclusion

In this paper, we have proposed an entropy maximization method to improve the generalization performance.
To achieve the better generalization, the information, contained in input patterns must be represented over
many hidden units. The number and the strength of weights must significantly be small. We have formulated
a method to increase the ratio of entropy to the cost (total sum of squared weights). We have shown that the
ratios are significantly increased and the generalization performance is greatly improved. In addition, the
learning time is significantly improved, compared with the weight decay method. By maximizing entropy,
networks try to use as many hidden units as possible to finish the learning.
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Abstract

We introduce in this paper the boolean sphere, x visualization of the
solution regions for perceptron learning. Linear threshold elements with n
boolean inputs can be used to compute a subset of the 22' boolean func-
tions definable on n inputs. Each one of these linearly separable boolean
functions corresponds to a region on the surface of a sphere defined in
weight space. Perceptron learning can be thought of as the process of
examining the solution regions on the boolean sphere. The case of two
boolean inputs provides a nice graphical illustration of perceptron learn-
ing and its convergence. Moreover, symmetry considerations show why
perceptrons are more easily trained using bipolar than binary vectors.
The boolean sphere allows us to give some estimates of the complexity of
learning problems,

1 Perceptrons and linear separability

Linear threshold elements have attracted attention in the last years as build-
ing blocks for artificial neural networks and it is in this context that they are
called perceptrons. Their properties have been extensively studied and there
exist learning algorithms to train them efficiently. A perceptron with n inputs
X1, X2,..., z, and n + 1 associated weights w1, W2 , .. ., wn+ outputs a one if
X1W1 + . + XnWn + wn+1 :< 0 and a zero otherwise. In our notation -wn+l
is what is normally called the threshold of the perceptron. Boolean functions
of n arguments computable by a perceptron with n + 1 parameters are called
linearly separable. It is well known that of the 22' possible boolean functions of
n variables only a vanishing percentage of them is computable by a perceptron
when n goes to infinity [1]. This fact can be related to the number of regions

delimited in weight-space by the hyperplanes defined by the input vectors in the

training set. By defining the boolean sphere we can attempt to actually measure
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the relative sizes of each region. This allows us to make certain predictions re-
garding the learning difficulties of perceptrons and perceptron networks. Before
doing this we have to take a closer look at the solution regions for perceptron
learning.

Let us suppose that we want to find the perceptron's parameters for the
computation of a given boolean function f of n arguments. There are 2" different
possible inputs which can be enumerated. Let us call fi the value of f for the
i-th input vector. The n + 1 parameters for each of 2n possible inputs must
satisfy the inequality

if fi = 1, or the inequality
X'jW1 + X'2w2 +.. + Z',, < 0

if f = 0. Here 4 stands for the j-th bit of the i-th input vector. A learning
algorithm should be able to find the n + 1 necessary weights if they exist.

We can visualize this problem either in the n-dimensional input space as the
question of separating the positive from the negative examples with a hyper-
plane, or we can visualize it in weight space as the problem of finding a point
(w1 , w2,. .. , wn+ 1) which fulfills the above 2n inequalities. The first alternative
is the traditional approach used in most textbooks. The second alternative is
more interesting because it allows us to look at the inner working of training
algorithms.

Each one of the inequalities referred above represents a cut through the
origin with a hyperplane of dimension n of the n + 1 dimensional weight space
corresponding to the i-input z ,...,4. Weight space is thus divided into a
positive and a negative halfspace. Weight combinations (wI, w2, .. . , wn+) in
the positive halfspace produce the perceptron output fi = 1 for the i-th input.
Weight combinations in the negative halfspace produce the perceptron output
fi = 0 for the same input.

Perceptron learning amounts to finding a point (wI, W2,... , w+) in weight
space which lies in the positive halfspace of the i-th cut whenever fi = 1 and
in the negative halfspace whenever f, = 0. This is the dual view of perceptron
learning, in which learning amounts to finding an interior point in an inter-
section of halfspaces defined by all possible inputs to the perceptron. Since
the boundaries of the solution regions are hyperplanes, the learning problem
amounts to finding an interior point of a poltype defined by linear constraints.

Each one of the regions defined by the intersection of halfspaces is a solution
region for a linearly separable boolean function. Not all solution regions have the
same shape and an interesting problem is the relative volume of each one. Since
perceptron learning normally starts at a point chosen at random and proceeds
looking for the interior of a specific solution region, it is intuitively clear that
the smaller this region, the harder learning should be. We discuss this problem
in the next section.
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Figure 1: The boolean sphere in thfee dimensions

2 The boolean sphere

One way of looking at the regions defined by m hyperplane cuts going through
the origin in an n-dimensional space, is by requiring that the weight vectors for
our perceptron be normalized. This does not affect the perceptron computation
and is equivalent to the condition that the tip of all weight vectors should end
at the unit hypersphere of dimension n. In this way all the convex regions
produced by the m hyperplane cuts define solution regions on the 'surface' of
the hypersphere. Figure 1 shows an example for the case of the perceptron with
two binary inputs. Since the perceptron uses three parameters, weight space
also has this dimension. Note that four possible binary inputs define four cuts,
but four cuts in the three dimensional space define only 14 different regions.
This means that only 14 of the 16 possible boolean functiots of two arguments
can be computed by this perceptron.

Figure I immediately leads to a conjecture. Since the relative sizes of the
solution regions on the boolean sphere represent how difficult it is to learn them,
and since our learning algorithm will be asked to learn one of these functions
randomly, the best strategy is to try to get regions of about the same relative
size. Binary input vectors however lead to unsymmetrical cuts in weight space
and the solution regions are of very different size. Symmetrical cuts can be
achieved by substituting the binary input vectors by bipolar ones and training
the perceptron under this coding. Table 3 was calculated using a Monte Carlo
method. A normed weight vector was generated randomly and its associated
boolean function was computed. By repeating the experiment many times it
was possible to calculate the relative volumes of the solution regions. The table
shows that the maximum variation in the relative sizes of the 14 possible regions
is given by a factor of 1.33 when bipolar coding is used, whereas in the binary
case it is about 12.5. This means that with binary coding some regions are
almost an order of magnitude smaller than others. And indeed it has been
empirically observed that multilayer neural networks are easier to train using a
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Table 1: Relative sizes of the regions on the boolean sphere

Coding Boolean function number
0 1 2 3 4 5 6 7

binary 26.83 2.13 4.18 4.13 4.17 4.22 0.00 4.13
bipolar 8.33 6.29 6.26 8.32 6.24 8.36 0.00 6.22
Coding Boolean function number

8 9 101 111 12 13 14 15
binary 4.28 0.00 4.26 4.17 4.17 4.14 2.07 27.12
bipolar 6.16 0.00 8.42 6.33 8.27 6.31 6.25 8.23

.,Xf2 X

Figure 2: Solution regions on the surface of the boolean sphere

bipolar representation than a binary one. The rationale for this fact is given by
the size of the regions in the boolean sphere. It is also possible to show that
bipolar coding is optimal under this criterion.

We can go one step further and ask what is the shape of the error function
for perceptrons in weight space. Given a boolean function f and a weight vector
W1, W2,. . . , Wp+1 the error function is the number of misclassified input vectors.
We can visualize this function for the case of a perceptron with two inputs
by projecting the solution regions on the three dimensional boolean sphere in
weight space on a plane using an adequate transformation. Figure 2 shows a
stylized representation of the rsult of using a stereographic projection. The
geat circles on the boolean sphere are projected to ellipses. Since we are only
interested in the number of regions and the topological relation between them,
we can think of the projection of the great circles of the boolean sphere as circles
in the plane. The result is Figure 2, which also shows which boolean functions
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Figure 3: The error function on the surface of the boolean sphere

of two variables are computed in each region.
If we are looking for a weight vector to compute the zero function, the shape

of the error function is the one shown in Figure 3. It can be seen that there is
a single region in which the error function reaches its maximum, and a single
region in which it reaches its minimum. Since there are no local minima, any
greedy procedure, like classical perceptron learning, converges to a solution in
weight space whenever this exists.

It should be clear from the figure that these conclusions do not depend on
the specific function selected for the training process. This visualization of the
error function is superior to the one used in [3].

In the case of multilayer networks we can also visualize the form of the error
function, like it is shown in Figure 4. In this case a network of two hidden units
has been used. The boolean functions of two arguments have been numerated
from fo to f15. The table shows which function is computed by the first hidden
unit (rows) and by the second (columns). It is shown at each place in the table
thus defined which function is computed by the output unit. One can think of
this diagram as of the surface of the boolean sphere associated with the nine-
dimensional weight space of the three unit network used to compute XOR. All
solutions for the XOR task are shown in the diagram, and one can see the high
symmetry of the solution regions. They are uniformly distributed in weight
space, although the volume of each region differs.

3 Conclusions
The relevance of the boolean sphere relies not on its practical application to
perceptron or neural networks learning, but in its visualization power to under-
stand how learning algorithms work and why they sometimes fail. The boolean
sphere allows us to measure the difficulty of a learning task by relating it to the
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Figure 4: Regions in the boolean sphere for the XOR problem

volume of its solution region in the boolean sphere. With an estimate for this
volume it is possible to give an upper bound for stochastic learning of boolean
functions. It is easy to compute, for example, that a solution for the XOR
problem can be found with probability 0.001 using a network with two hidden
neurons and trying around 1800 different weight combinations. This would be
uninteresting, were it not for the fact that some authors normally report still
larger iterative cycles using fancy algorithms. The boolean sphere is thus a
conceptual instrument which allows us to understand neural networks better.
As a matter of fact, it has been used implicitly in the Karnaugh maps of logical
functions. Simplification of logic expressions amounts in this formalism to the
elimination of superfluous hyperplane cuts.
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Conventional methods of supervised learning are inevitably faced with the problem of
local minima; evidence is presented that conjugate gradient and quasi-Newton tech-
niques are particularly susceptible to being trapped in sub-optimal solutions. A new
classical technique is presented which by the use of a homotopy on the range of the
target outputs allows supervised learning methods to find a global minimum of the
error function in almost every case.

Introduction

The problems to which neural computing techniques are most frequently applied involve the
supervised learning of an input-output mapping, defined implicitly by a set of P input patterns
together with their desired outputs. Such tasks can be formulated , error-minimisation prob-
lems, where the error function is usually given by v N

E 1: Ep = -a I I (di~p -Zp 1
p =l1 pN l i=lI

where d, and z p are the desired ad actual values of the ith output unit for pattern p, for a net-
work with N output units. E is a function of all the parameters (weights and thresholds) of the
network; this parameter list can be written as a multidimensional vector w. The problem is to
change w so as to avoid those solutions of the minimisation condition aE/d-v = 0 which do not
corrcsp6fid to the lowest value of E, the local minima of the error-weighT surface. The most
commonly used supervised training technique, error backpropagation (BP) (equivalent to gra-
dient descent with a fixed step length) is well known to have difficulties with local minima,
especially for non linearly separable problems [1]. What is less well known is that the neural
implementations of more efficient classical minimisation algorithms, such as conjugate gra-
dients (CG) or the quasi-Newton method (QN), are even more likely to be trapped in sub-
optimal solutions. Table 1 shows the percentage success in reaching a global minimum for 100
(2-2-1) networks learning to solve the XOR problem.

XOR % reaching global minimum
method sigmoTm tinal layer 51earm final layer

on-line BP 85 95
batched BP 75 96
CG 51 80
QN 34 66

Table 1
XOR is a useful benchmark because it is a non linearly separable problem with known local
minima [2], but one which can be solved by a small network with only 9 adaptive weights.
Linear outputs in the second layer (as opposed to sigmoidal squashing for both computational
layers) improve the percentage success, but there is a clear trend toward worsened performance
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for the more sophisticated algorithms. Simple on-line BP (without momentum) performs best;
this may be due to the method's stochastic features, as discussed in [3].

Trapping in local minima can also be observed for continuous function learning problems.
Mclnerney et al [4] have discovered (by exhaustive search of the error-weight surface) local
minima in a (1-2-1) network (with a linear output node) learning the sine function. This problem
was also investigated, using the same training set as in [4], and the results are summarised in
Table 2.

sine % reaching global minimum
batched BP lot
CG 96QN I87Table 2

These results do not show as high a probability of trapping in local minima as in the XOR
example, but there is still a significant correlation between the probabilit failure and the
convergence speed of the method; the quasi-Newton method, with a 135/ re rate, would
probably not be a good choice unless multiple restarts were acceptable.

It is commonly believed - though we do not know of any 'no-go theorem' to this effect - that the
only techniques guaranteed to converge to a global minimum with a probability approaching 1
are stochastic in character, with methods based on simulated annealing [5] and, currently,
genetic algorithms [6] being among the most popular. However these techniques can be very
slow and must be applied carefully in order to ensure a good solution. Is there a way to retain
the fast convergence of techniques like conjugate gradients and the quasi-Newton method whilst
improving the robustness of these algorithms in the face of local minima? We will present here
a new and purely classical method which is guaranteed to succeed in avoiding local minima in
almost all cases.

Expanded range approximation (ERA)

The basic idea underpinning this new algorithm is that of a homotopy on the range of the target
values dp (for simplicity we consider just one output no4e). This range is modified by compress-I1r

ing these values down to their mean value <d> = P 1: dp and then progressively expanding

these compressed targets back toward their original vaes (hence the epithet 'expanded range
approximation', or ERA, we have coined for this approach). We define a modified training set

S(Z) = Ip, dp (X)) = I !p, <d>+ (dp -<d>))
where the dp(X) are the new, compressed, targets. The problem defined by S(0) is easy for the
network to solve (the corresponding error-weight surface can be shown to have only a global
minimum); S(l) is the original problem with training set 11p, d ) The homotopy parameter X
interpolates between these extremes. A X-parametrised error tunction can be defined during
training on each of the sets S(X) b 1

E(X) = - [<d> + X(dp - <d>) - zp(X) ]2 (2)

[1=where the z,(X) are the actual network outputs during this procedure. Setting X = 1 gives
E(l) a E, the error function (1) in the case of a single output node. The ERA method involves
first solving the problem S(XI) for small X1, then the problem S(X2) with X2 > X1, and so on up
to the original problem S(1). We have usually chosen to increase X by uniform steps of i,; an
'N-step ERA' method refers to the progressive solution of the N problems S(. = nT) for
n = 1..N=I/TI ('1-step ERA' (71=l) is the conventional single step training technique).
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As a first example, the ERA method was applied to the same 100 XOR networks (with sig-
moidal output in the final layer) as in Table 1, using the CO algorithm. With 10-step ERA
(it=0.1), the success rate improves dramatically from 51% when rj=l to 94%. Figure 1 shows a
training curve for a particular set of XOR weights which led to a failure when 'r=l (curve (a)),
but succeeded with 10-step ERA (curve (b)). The error function plotted for the 10-step ERA
case is the square root of E(1), the error with respect to the original, uncompressed targets. The
errors E0.) always decrease during ERA steps, but the overall E can show local increases, as is
evident from Figure 1.
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If the step size 11 is decreased, the percentage success improves still further: 100-step ERA
(71--0.01) is 100% successful in solving the XOR problem. As a second example, 2-step ERA
(71--0.5) was applied to the sine problem of Table 2, using the QN method. In this case - a con-
tinuous as opposed to binary problem, a linear as opposed to sigmoidal output in the final layer,
a different training method - there was also a very significant improvement, from 87% success
when ri=1 to 100% for 2-step ERA.

It might seem that the ERA technique could become computationally expensive if very many
small steps were required. In fact we suspect that it will be possible to make a short cut in many
cases. We have so far observed that an ERA simulation which fails to find a global minimum of
E(X1 ) will not subsequently succeed as the homotopy parameter X -) 1. Conversely, however,
in our experience a simulation which succeeds at the first step never subsequently fails. This
suggests that it is most important to get the first step right, and that subsequent range expansion
does not need to be done so carefully. Figure 2 shows the percentage of successes at the first
step (successful minimisations of E(Q, = i) as a function of the size of i for the same 100 XOR
networks used in the single step (conventional) and 10-step tests. The dependence appears to be
roughly linear, with, in this case, 100% success at 11-= 0 .0 1 .

All the initial simulations suggested a special role for 1, the size of the first step. In order to try
to get some further insight into the process, we looked at the trajectories in output space fol-
lowed for the XOR problem by the z,(X, = Ti), the first-step responses to the four patterns p =
00, 01, 10, 11. Since the initial weig ts are randomly chosen (from the interval [- 1,1.) the tra-
jectories in these experiments begin at some arbitrary point inside the hypercube [0,11 . The tar-
get for Ti=1 is the point (0,1,1,0); the targets for 11 < 1 lie on a line joining this point to
(1h, 1/,2, 1/2). By taking pairs of these responses we were able to plot trajectories in the six 2-
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dimensional (zp, (ii), zp, (1)) subspaces during CG training. Figures 3a-d illustrate trajectories in
(zoo(yl), zlo0@)) space for 'i=1.0 (Figure 3a), I--O.3 (3b), i"=0.2 (3c), ?1=0.I (3d). A coordinatetransformation (x, y) = I(zoo - '/(1-1i), z10 - '(-71))

is used in plotting the diagrams so that the scales are identical, and in each case the target is the
top left hand comer. The midpoint on the y-axis represents a local minimum.
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Figure 3a shows a conventionally trained 0i1-1) network which fails to solve the XOR problem,
becoming trapped in the local minimum corresponding to a final response to the four patterns of
z = (0, 1/2, 1/, 0). Figure 3b also shows a failure, for ql=0.3, but notice that the trajectory appears
To almost escape from the local minimum. Figure 3c shows a success at -O.2, but the trajectory
still spends a lot of time in the vicinity of the local minimum before escaping. Finally, Figure
3d, with il--O.lI, shows a trajectory which entirely avoids the vicinity of die local minimum,
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heading more or less directly for the global minimum of E(X = 'l). There appears to be a pro-
gressive change of behaviour as i1 is decreased; this progression is most marked for small values
of TI.

In order to further investigate this progressive change in the first-step behaviour we looked at
the values of the 9 weights which were developed by typical examples of the (2-2-1) XOR net-
works after minimisation of the first-step error function E(It). In Figures 4ab the weights plot-
ted for the 'test number' -1 are the original, randomly chosen weights F [-1,1], those for test
number 0 represent the solution reached when il=O (when the error-weight surface has only a
global minimum), those for test numbers > 0 the weights w(i) developed during the minimisa-
tion of E(vt > 0) for progressively larger values of il (usiFii a logarithmic scale). In Figure 4a,
tests 1, 2, 3, 4 represent il-values 0.001, 0.01, 0.1, 1.0; in Figure 4b, tests 1, 2, 3 represent 11-
values 0.00001, 0.0001, 0.001.
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Figure 4a shows almost linear relationships between the values of the 9 weights and log(j), but
with a very striking change in behaviour (possibly representing a phase change of the learning
system) at some critical value 1lait between 0. 1 and 1.0. A somewhat closer investigation shows
that in this case 0.1 < Tjt < 0.2. We note that this system succeeds in finding the global
minimum of E(0.1), but falls into a local minimum of E(0.2); the change in behaviour in w(rl)
evident in Figure 4a is clearly related to the switch from success to failure as TI increases wfich
is illustrated (for another XOR network with 0.2 < -it < 0.3) in Figures 3a-d. One criticism
that might be levelled at the results shown in Figure 4a is that the weights for small TI look very
similar to the starting weights - has the network been trained sufficiently in these cases for any
meaningful conclusions to be drawn? By looking more closely at the behaviour for very small
11, this criticism can be seen to be unfounded. Figure 4b, which uses a different set of starting
weights, shows that in general there is a large difference between the starting weights and the
rj=O solution, but thereafter a much smoother progression with increasing rj.
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Discussion

This paper has presented results which violate the widespread belief that the only way to avoid
local minima in supervised learning problems with complex error-weight surfaces is to use com-
putationally expensive stochastic procedures like simulated annealing or genetic algorithms. If
the results presented here can be shown to be securely founded, and the ERA method shown to
have wide applicability, there could be a significant changes in the way that supervised learning
tasks are approached. We believe that it is possible to construct a rigorous mathematical proof
that the ERA method will work in all but pathological (and rare) cases. The details of this proof
are too lengthy to be presented here, but the general principles can be outlined. Initially we
look at the first ERA step, for which the homotopy parameter 0 < X - 1. For such small X, the
error E(X) of (2) can be expanded as

E(k) = E(O) + XE1 +0(X 2)
where

E(0) = I [<di> - zp() 9  El = P Y (dp - <d> - z'p(O))zp(O)

where the derivative z' (0) depends on the particular learning law, but is assumed bounded. It is
possible to show that (0) has only a global minimum. Then we can investigate the shape of the
surface E(X) by looking at the effect of the additional term XE1 for small X. Outside some small
neighbourhood No of the global minimum P0 of E(0) the effect of this additional term can be
made arbitrarily small by choosing X small enough. In particular it can be shown that no local
minima can exist outside No, as

I aEI I I YE(O) I
LI -- I < 1-1 - -(E(O) +XEI) * 0I Z°W-- I (( ,w  I

Within No the global minimum o 0 wil in general be shifted; there can be degenerate cases

where a number of global minima could arise, but this set would be expected to be of measure
zero. Continued expansion of the homotopy parameter X -+ 1 is handled in a similar way to the
first step above. There may be obstructions to performing the homotopy up to X=1, but we
expect that such cases will be rare. Further investigations are in progress, and will be reported in
the literature.
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GLOBALLY OPTIMAL NEURAL LEARNING

J. Barhen 1 2 , A. Fijany1 , and N. Toomariani

California Institute of Technology
Pasadena, CA 91109

Abstract: One of the fundamental limitations of current artificial neural network learning
paradigms is the susceptibility to local minima during training. Building upon the recently
discovered TRUST global optimization methodology, computationally efficient algorithms are
presented, that enable overcoming local minima, both for backpropagation schema in feed for-
ward multilayer architectures, and for adjoint-operator learning in recurrent networks. Exten-
sions to TRUST are introduced, that now formally guarantee convergence to a global minimum
in the multidimensional case. Results for a standard benchmark are included, to illustrate the
theoretical developments.

Introduction

Considerable efforts have recently been devoted to the development of efficient com-
putational methodologies for learning. Even though the primary emphasis has largely
been on error-backpropagation algorithms for "feedforward" [1] architectures, the more
complex "recurrent" networks [2-5] are currently receiving renewed attention. In partic-
ular, the introduction of adjoint-operator formalisms for very fast procesing of static [6)
and time-dependent [7] phenomena has opened new avenues in terms of computational
efficiency and relevance to real-time applications. The development of such learning algo-
rithms is generally based upon the minimization of an energy-like "neuromorphic" function
or functional. The main emphasis of most research to date has been on how to best obtain
the gradients 18] of this fiuction or functional with respect to the various parameters of
the neural architecture.

The susceptibility to local minima during training remains, however, one of the fun-
damental limitations of current artificial neural network learning paradigms. Heretofore,
local minimization techniques have provided the main operational tools for implementing
the corresponding algorithms, with the notable exception of stochastic paradigms such as
the "Boltzmann Machine" [9] or "diffusion" processes [10]. This paper presents a new
approach to learning, in which the gradient descent mechanism is replaced by a method-
ology based upon a recently developed global optimization scheme, acronymed TRUST
(11]. The deterministic TRUST algorithm formulates global optimization in terms of the
flow of a special nonlinear dynamical system. TRUST can be applied both to backpropa-
gation learning and to recurrent networks. Originally [111, we could only guarantee con-
vergence to a global minimum for 1-dimensional problems, eventhough in practice, for all
n-dimensional applications, a global minimum was always reached. Here, we introduce a
simple extension to TRUST, which now formally guarantees convergence to global minima
in the multidimensional case. We demonstrate, on a couple of standard benchmarks, that
our approach indeed overcomes encountered local minima, and thereby provides a globally
optimal solution to the learning problems under consideration.

(1) Jet Propulsion Laboratory, 4800 Oak Grove Dr., Tel. (818)354-9218, Fax (818)393-
5013, (2) Applied Physics Department
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Global Optimization

Let f(x) be a twice continuotusly differentiable scalar function of the variable x defined
over an interval of interest. Consider the nonlinear transformation

E(x, x*) = In 1 3 _ X*)4/3 H[!(x)1 (1)
1 + e-U(x)+e1 4

where H denotes the Heaviside function, x* is a fixed value of x, the selection of which
will be discussed below, and f(x) represents an offset of f(x) by the amount f(x*). The
positive parameters e and p will be specified in the sequel. To highlight the two basic
concepts which underlie the TRUST formalism, we rewrite Eq. (1) as

E(x, x*) = E,.b(x, x) + E,(x, x) (2)

The sub-energy tunneling function, E, 6 , is defined as the first terni in the right-hand-side
of Eq. (1). It has the same relative ordering of local and global mininma as f(x) since

OMo,,b -0 t f =0

Ox dx

Firthermore, E,. is monotonically increasing in termns of both f(x) and f(x). We want
E,.b to have the following effects: first, it should suppress f(x) to zero for f(x) > f (x*);
second, it should leave f(X) nearly unmodified for f(x) < f(x*). These requirements
determine possible values for the parameter E. Figure 1 illustrates the action of E,,b on
the function f(x) = Isin2x - x - 1]2 with x* "- -6.80678 and e = 2. We see that E.,b
preserves all properties relevant for optimization. The term E. induces a termninal repeller
[121 effect.

The basic idea driving our approach to globally optimal learning is to construct a
dynamical system which switches autonomously between two phases: (1) a tumeling phase,
where the system flows under the action of a terminal repeller over a sub-energy surface
flattened to near zero level for all values of f(x) above a threshold f(x*); (2) a gradient
descent phase, during which the repeller effect is switched off, and which starts whenever
a lower energy valley has been reached, to obtain a new threshold f(x*).

For actual neural learning, f is an error function or functional of a parameter vector
x ( including, e.g., the synaptic weights, the potential decay constants and the sigmoidal
gains). For the sake of simplicity, the following discussion is limited to one dimension. In
this vein, upon application of gradient descent to the E functional, we obtain

df(x) 1 + p(x -x*)/ 3 H[(x) ]  (3)
dx 1 + ef(z)+e

We assume that the optimization is to take place in a specified domain, D, which, in the
multidimensional case, will be taken as a hyperparallelepiped. In the one-dimensional case,
D is simply the interval [XL, xu]. To initiate the optimization process, x* is chosen to be
the lower limit of D, i.e., x* = XL. This point need not be a local minimum. A repeller
is placed at x*, and the dynamical system (3) is given the initial condition x* + , where
C is a very small positive perturbation, so that the system flows in the positive direction,
i.e., toward the upper limit of D.
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The selection of x* defines a threshold called the zero sub-energy limit, f(x*), above
which E.,, (x*) is nearly zero in value and approximately flat. If f(x* + t) < f(x), the
algorithm immediately enters a gradient descent phase, in which the state of the dynamical
system flows down the gradient and reaches its first local minimum at x = x'(*). At this
point, we set z* = zi(*) in (3), and perturb x to x* + . Since xi(*) is a local minimum,
f(x)>f(z*) in a neighborhood of x*. Consequently, the repelling term is active. The
repellerlocated at x* drives the solution across the flattened sub-energy surface, which in
effect pushes the system uphill on the surface of the associated objective function. The
dynamical system remains in the repelling phase until it reaches a lower valley, where
f(x) < 0. This phase tunnels through all of the state space region with functional vahws
that lie above the last found local minimum, f(xI(*)). A lower valley of E.,&(x,x* ;, a
lower value of f(z) as well. As the dynamical system enters the next valley, the algoriLlim
automatically switches to the second phase, where the terminal repeller term is zero and
gradient descent takes over, leading to further minimization of f(x). The system will
equilibrate at the next lower local minimum, 2 (). We set X* = X2( *) and repeat the
process. If f (x + ) > f (x) when the optimization procedure is initiated, the dynamical
system will initially enter the tunneling phase. The tunneling will proceed to a lower valley,
at which point the algorithm enters a gradient descent phase and follows the behavior
discussed above.

The two-phase descent-and-tunneling process continues until a suitable stopping cri-
terion is satisfied. Here, as soon as the lowest local minimum, x2c, in D has been reached,
the optimization cycle is repeated by placing a repeller at x4C and perturbing the system
to initiate the next tunneling phase. In this case, the sub-energy transformation flattens
f(x) in the entire domain of interest, since f(xL,) is the lowest objective function value in
D. The perturbed dynamical system, which is now in the repeller tunneling phase, will
eventually flow beyond the upper boundary of D. Thus, when the state flows out of the
domain boundary, i.e., when z > zy, the last local minimum found is the global minimum
of the function in D.

Multidimensional Global Optimization

The one-dimensional algoritlun can easily be extended to handle multidimensional
problems. Let f(x) be. a function of the M- parameter vector x, and define the nonlinear
transformation

E(xx)=InI + e-[(x)+e) - 4P (X - X1) 4 / 3 H[i(x)] (4)

The multidimensional sub-energy term is analogous to the one-dimensional sub-energy
functional E8,.. The portions of the objective function surface which lie above the zero
sub-energy limit, f(x*), are flattened by the use of the E,,,b(x, x*) transformation.

Upon application of gradient descent to E(x, x*) in Eq. (4), we obtain the vector

differential equation

df(x) 1
dx, 1 + ef(x)+e +p11 - H i(x)])

The dynamical system (5) has a highly parallel structure and its initial conditions, opera-
tion, and stopping criterion are highly analogous to the one dimensional case.
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In the multidimensional case, x* is initially chosen to be one corner of the hyperpar-
allelpiped D, usually z! = XiL Vi. A repeller is placed at x*. It should be noted that
the repelling terms in tle multidimensional case can be interpreted as "line" or "hyper-
plane" repellers, and are active whenever f(x) > 0. It should also be noted that in the
multidimensional tunneling phase the sub-energy gradient is not identically zero. While
the repeller terms dominate, the amount of information in the sub-energy gradient helps
the state to flow in a direction that ultimately leads to the next lower valley.

In a departure from this paradigm, described in detail in [11], and in order to for-
mally guarantee the convergence to a global minimum in the multidimensional case, we
consider here an approach whereby the M-dimensional learning error function (typically
M > N 2 , N being the number of neurons in the network) is represented in terms of a
single variable. To achieve such a representation, Kolmogorov embeddings [13] could be
envisioned, but they result in a computationally complex nonsmooth transform. On the
other hand, multidimensional embeddings based on the dense covering of the real plane by
an Archimedes' spiral are well known [14]. Using the latter transformation, we can write:

f[w,.., wO,... wM] = f[ai,(w), --. a(w),. ..Ckm(w)] (6)

Each synaptic weight w, has been expressed in terms of a single parameter w, using the

Archimedes spiral representation. Specifically, for a 2-dimensional case, we can write

wl = aW cosw w2 = aWsinw (7)

where a is a constant controlling the precision of the computation. TRUST, the fastest
known [11] 1-D global optimization algorithm can now readily be applied to the function
f(w).

Learning Examples

To illustrate the power of this novel approach, we sek the global minima of the fol-
lowing two functions:

f( w), W2) = {Zicos[(i+1) w, +i]}. icosC[(j + 1) w2 +il (8)
i=I j---I

and
f( w 1 , w2)= [4-2.1w2 + (wI/3)]w2 + w1 w2 + 4(w2- 1)w2 (9)

The first function is displayed in Fig. 2, and is shown to exhibit a very complex structure.
For weights in the domain [-10, +10] x [-10, +10], it possesses 760 local minima. We
measure the cost of the global minimzation in terms of the number of fmuc!" )n evaluations.
Then, under identical operating conditions, we find that the respective costs of the best
stochastic method (Aluffi-Pentini [15]), Newton-tunneling (Levy-Montalvo 116]), and in-
terval algorithm (Walster [17]) were 241215, 12160 and 7424, respectively. TU T, on the
other hand reached the global minimum after only 269 function evaluations. The second
benchmark, the well known two-dimensional six-hump camelback function, possesses six
local minima and two global minima in the domain [-3, +31 x [-2, +2]. Starting at point (-
3, -2) it required 10,822 evaluations using the fastest stochastic methods, 1496 evaluations
using Newton-tunneling and 168 evaluations via TRUST.
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Covariance Learning Rules for
Stochastic Neural Networks
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In the present article we present two learning rules for symmetric diffusion
networks (SDN), a family of networks related to the Boltzmann machines but
that work in continuous time with continuous activations. We focus our analysis
primarily on a property of SDN's and Boltsmann machines that arises jointly
from their stochastic character and the pressence of symmetric connections.
This is the fact that they are capable of using covariance information, rather
than explicit error information, to drive learning. In essence, symmetric con-
nectivity allows covariances between quantities computed deep inside a network
and quantities computed at the output to provide information on how to im-
prove performance. In the following sections we briefly describe SDN's followed
by the derivation of the learning rules and simulation experiments.

1 THE DIFFUSION EQUATION

SDN's can be seen as a variant of the continuous Hopfield model (1984) but with
hidden units and a stochastic component. Let a = faI, ...an] be a real valued
activation row vector. Let W = [w, ..., wl] be a real valued symmetric matrix
of connections, where each w? is the column vector of connections to the 0h
unit. The evolution of the activations is governed by the following system of
stochastic differential equations:

da,(t) = A, drift,(t) di + odB,(t) ; i E {1, ...,,} (1)
where A, is the processing rate of the iih unit, a is the diffusion constant, which
controls the flow of entropy throughout the network, and dBi(t) is a Brownian
motion differential (Soon, 1973).

Equation I is known as a Langevin description of a Markovian diffusion pro-
cess with a diffusiox matriz a! and a drift vectordrift(a) = [drifti(a), ..., drift.(a)].
The drift vector is the exact gradient, times a negative sign, of a Hopfield style
Goodness fu ction

G(a) = aW JT f(z)dz (2)

where rest = f(0). We call the integral ,, f(z)dz the stress (si) of the ith

unit. If we use a logit function scaled in the min-max interval, the stress has
the following form: I

a, = (a - min)iog(ai - min) + (max - ai)log(maz - a,) (3)
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A known result in Markovian diffusion theory is that processes defined by a
Langevin equation satisfy the forward Fokker-Planck diffusion equation. In the
SDN case, the diffusion equation assumes the following form:

OP(a; tia=; to) -V.(drift(a) P(a; tla0 ; to) ) + !2V2P(a; tlao; to) (4)
at 2

where P(a; tlao; to) represents the probability density of the network being
in state a, at time t, given that it was in state ao at time to _5 t. The symbol
V. is the divergence operator

V.(drift(a)P(a;tao;to) ) = -(driftj(a) P(a;tja0 ; to) ) (5)

and V2 is the divergence of the gradient, also known as the Laplace operator,

V2 P(a;tlo; to)=V.VP(a;tlao;to) = a t(6)
Oa1

It is easy to show that the Boltzmann probability density function

P(a) _1e2G(a)l2 (7)

makes the left side of equation 4 vanish and is the unique limiting distribution
in these networks.

2 COVARIANCE LEARNING RULES

To begin, we partition the activation vector, a E {A}, into an input vector,
x E {X}, a vector of hidden unit activations, h E {H), and an output vector,
y E { Y}. So that a = [x, h, y]. The input, hidden, and output sets may be
different for different patterns. The central problem is to find the gradient with
respect to the weight and gain parameters of an error function in the set of
output units when the set of input units is fixed to a particular vector x. Since
most of the results are common to both gains and weights, we proceed with our
derivations in terms of a generic parameter 0, which can be a weight parameter
w1j, or a gain parameter 9k. Let us define a random variable, r, which we will
name the goodness signal

'rxhy
=-8xyo

From the definition of goodness in equation 2 it is easy to show that for 0 = wij
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Srhy = (a, a ).hy (9)

where (a a, )xhy is the coproduct of the sth and 3th elements in the xhy vector.

For 0 = g-1

S= _/ Y f(z)dz = -si
real

We now proceed to derive the learning rules.

2.1 Minimizing Information Gain

In this case the derivations are similar to the Boltzmann machine learning
derivations (Ackley et al., 1985) but replacing sums with integrals. However,
since SDNs are defined in continuous activation space, we can also derive rules
for the gain parameters.

We use as error function a continuous version of the total information gain
function (Ackley et al., 1985)

TIGx() =Jy n(Y) PX( - dy (10)

where Px(y) represents the obtained equilibrium probability of output vector
y, when the input activations are fixed to the vector x and Pxd(y) represents
the desired probability density of the output vector y when the environment is
in input state x.

Following steps similar to those used in the Boltzmann machine derivations
but replacing sums with integrals it can be shown that

&TIGx(0) 2T )= -. (Ed(Exy('r)) - Ex(r)) (11)

where Ed0 is the expected value using the desired probability distribution of
output vectors; Exy(ajaL) is the expected value of the product of the acti-
vations of the tA and jl units when the input units are fixed to pattern x,
the output units are fixed to pattern y and the hidden units are free to evolve
according to equation 4; Ex(aia,) represents the expected value of this prod-
uct when the input units are fixed to pattern x but the output and hidden
units are free, and e is the step-size for weight changes. As in the Boltzmann
machine, when the network runs with inputs fixed to x and outputs fixed to
y, it is said to be in a fixed (plus) phase. When the inputs are fixed to x but
the outputs units are not fixed, the network is said to be in a free (minus) phase.
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The learning rule for weights is often called contrastive Hebbian Learning (
Galland and Hinton, 1989; Movellan, 1990)

2
Aw,, = e-7 (E,(Exy(aa)) - Ex(ajia) (12)

2.2 Minimizing the Error of Average Activations

This rule is the SDN equivalent of the generalized delta rule (Werbos, 1974;
LeCun, 1985;Rumelhart et I., 1986) in back propagation networks, based on
minimization of the total sum of squares (TSS). This is an appropriate error
function for deterministic problems or for deterministic problems with indepen-
dent noise contamination, where we just need to learn average values of the
output units. Since the error of each output unit is combined in an additive
manner, we do not lose generality by focusing on the case where there is a unique
output unit

TSS(O) = (Ex(y) - d)2  (13)

where d is a desired real value and Ex(y) the expected value of the output unit
when the input units are fixed to x. Using the chain rule

a8
TTSS(P) = (Ex(y) - d) Ex(y) (14)

Itcan be seen that

-TSS(e) = CoVx(r; 6,) (15)

where 6y = (Ex(y) - d); Covx(r; y) is the covariance between the goodness
signal, rxhy, and the activation of the output unit y when the inputs are fixed
to x. For more than one output unit, the desired gradients can be computed
very efficiently using the following relationship

a-NTSS(O) = Cox(,r; y6l)= Covx(r;EZ6y) (16)
Y Y

The learning rul.s for gains and weights easily follow

Awi = -C- Cox(aioj; E y6,) (17)ff2 Y

A," =.2- CoVx(,,; p,,) (18)
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2.3 Simulations

We tested the learning rules on a simple exclusive-or problem. Table I shows
the median number of epochs to criterion and, in parenthesis, the percentage
of simulations where criterion was achieved in less than 4000 epochs. These
statistics where obtained with 20 runs per cell with random starting weights
chosen from a uniform (-1, 1) distribution.
Table I shows that CHL was the fastest algorithm in terms of number of epochs,
followed by the MEA rule. However, since the CHL rule requires two learning
phases, the MEA algorithm had comparable speed in terms of learning phases.
There was not a statistically significant difference between the average number
of phases, using optimal stepsises, for the CHL and for the MEA rule (t(38)=
0.19; p > 0.05).

stepsise
Learniog rule 0.1 0.01 0.001 I

CHL I 81 (90%) 172 (100%) 308.5 (100%)I
MEA 98.5 (100%) 94 (100%) 1 785.5 (10

3 CONCLUSIONS

The work presented here builds on previous work on stochastic networks (Ack-
ley, Hinton and Sejnowski 1985; Geman and Geman, 1984; Smolensky, 1986) and
extends it to the continuous case. In particular we have explored the problem of
learning in a stochastic network that works in continuous time with continuous
activation states. We have presented learning algorithms based on computa-
tions of simple covariances that are capable of learning problems that require
hidden units. One of the advantages of noise in these networks is that it pro-
vides enough information to calculate gradients with respect to weights without
explicit back-propagation of error through a network of inverted weights and
activation function derivatives. This aspect makes the learning rules attractive
for biologically oriented simulations and for hardware implementations.
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Network Reciprocity: A Simple Approach to Derive Gradient
Algorithms for Arbitrary Neural Network Structures.

Eric A. Wan* and Franoise Beaufayst

Abstract
Deriving backpropagation algorithms for time-dependent neural network structures typically

requires numerous chain rule expansions, diligent bookkeeping, and careful manipulation of terms.
In this paper, we show how to use the principle of Network Reciprocity to derive such algorithms
via a set of block diagram manipulation rules. Examples are provided that illustrate the simplicity
of the approach. Algorithms are derived for a variety of structures, including feedforward and
feedback systems.

Network Adaptation and Error Gradient Propagation
Adapting a feedforward multilayer neural network structure amounts to finding the set of vari-

able weights W that minimizes the cost function:

K
J = E e(k)e(k), (1)

k=1

where the sum is taken over K samples in a training sequence, and e(k) is the error vector.
In certain problems (e.g., time series prediction, system identification), a desired output is

specified at each time step; in others (e.g., terminal control), the desired output is defined only at
final time k = K. Therefore, we define the error vector e(k) as the difference between the desired
and the actual output vectors when a desired output is available, and as zero otherwise.

According to gradient descent, the contribution to the weight update at each time step is

AW(k) = - 8 (2)

where p controls the learning rate. Note we.evaluate 9J/OW(k) rather than the instantaneous
gradient O(eT(k)e(k))/8W(k). This is essential for the desired Network Reciprocity result.

At the architectural level, a variable weightl wii may be isolated between two points in a network
with corresponding signals ai(k) and aj(k) (i.e., aj(k) - wij ai(k)). Using the chain rule, we get

OJ OJ Oaj(k) Ja(k)
Dwvi,(k) = .aj (k)Owj(k) Oa,(k) , (3)

and the weight update becomes

Aw,,(k) = -p 6(k) a,(k), (4)

*Dept. of Electrical Engineering and Applied Physics, Oregon Graduate Institute of Science and Technology,
P.O.box 91000, Portland, OR 97291.

tDept. of Electrical Engineering, Stanford University, Stanford, CA 94305-4055. This work was sponsored by
EPRI under contract RP8010-13 and NSF under grant NSF IRI 91-12531.

IThe general case of a variable coefficient, ai(k) = f(wj, a (k)), is treated in [5,6].
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where we define the error gradient

6,(k) = oa(k)

The error gradient 6i(k) depends on the entire topology of the network. Reported methods
for deriving the delta terms rest on chain rule expansions, which must be carefully applied for the
specific network topology. In the next section, the method of Network Reciprocity is introduced as a
means for finding the delta terms without algebraic derivation. A set of simple block diagram rules
are used to construct a reciprocal network, which then directly specifies the adaptive algorithm.

Construction of a Reciprocal Network
An arbitrary multilayer network can be represented as a block diagram whose building blocks

are: summing junctions, branching points, univariate functions, multivariate functions, and delay
operators.

The reciprocal network is constructed by reversing the flow direction in the original network,
labeling all resulting signals 6,(k), and performing the following operations.

1. Summing junctions are replaced with branching points.

ai 8

+ 8 1 E>

a, 8

2. Branching points are replaced with summing junctions.

a

3. Univariate functions are replaced with their derivatives.

al(k) - a/k) =:> 8,(k) 81fk)a,(k) - /k)

Explicitly, 6i(k) = f'(ai(k)) 6,(k), where f((ai(k)) - ai(k)/O a(k). We have included the
time index k to emphasize the linear time-dependent transmittance. Special cases are:

" Weights, a3 = wij ai, in which case 6i = wij 6,.

_ _ _ _ _ _ 8.

" Activation function: a,(k) = tanh(aj(k)). In this case, f'(ai(k)) = 1 -an(k).

a/) ....ejqj... (k) =/:> ~ i3k 80()
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4. Multivariate functions are replaced with their Jacobians.

a .a' 7 , :: " o,,,,, .,-.
a~ ~ FO { :L j a.~ ~ 6k F?,sjk)

a 6.i SI

Explicitly, 6i,,(k) = F'(an(k)) 6.ut(k), where F'(an(k)) =- &at(k)/Oa.(k) corresponds to a
matrix of partial derivatives. For shorthand, F'(an(k)) will be written simply as F'(k). Note
this rule replaces a nonlinear function by a linear time-dependent transmittance. Important
cases include:

" Product junctions, ai(k) = ai(k) ai(k), in which case F' = [ai(k) ai(k)]T:

ai(k) 81(k)

a,() 
8,(k)

" Layered networks, in which case the product F(ai (k)) 6&,t(k) is found directly by
backpropagating 6,,,t through the network:

aj a. 8 8.

5. Delay operators are replaced with advance operators.

Explicitly, ai(k) = q-la(k) = ai(k - 1) is transformed into bi(k) = q+%1 (k) = 6j(k + 1). This
forces the reciprocal system to be noncausal and is crucial for maintaining the topological
equivalence between the original network and its reciprocal. Making the system causal is an
implementation issue that must be addressed for each specific examples.

These 5 rules allow direct construction of the reciprocal network from the original network.
Note there is a topological equivalence between the two networks. By reversing the signal flow,
output nodes in the original network become input nodes in the reciprocal network. These inputs
are then set at each time step to -2ei(k). The signals 6i(k) that propagate through the reciprocal
network correspond to the terms OJ/Oaj(k) necessary for gradient adaptation. The exact equations
are "read-out" directly from the reciprocal network. A formal proof that this always provides the
correct derivation may be found in (5,6].
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Examples

Backpropagation

We start be rederiving standard backpropagation [3] using the principles of Network Reciprocity.
Figure 1 shows a hidden neuron feeding other neurons and an output neuron in a multilayer network.
For consistency with traditional notation, we have labeled the summing junction signal s! rather
than ai, and added superscripts to denote the layer. In addition, since the multilayer networks are
static structures, we omit the time index k.

Figure 1: Block diagram construction of a multilayer network.+

S7S

Figure 2: Reciprocal multilayer network.

The reciprocal network shown in Figure 2 is found by applying the construction rules of the
previous section. From this figure, we may immediately write down the equations for calculating
the delta terms:

-2e, f'(sP) I = L

(s.!)- 6 +', w' 0 < I < L- 1. (6)

By Equation 4 the weight update is given by
__j b / -1

Aw~ -p 6 ah1 . (7)
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These are precisely the equations describing standard backpropagation. It should be emphasized
that this approach provided a formal derivation requiring no chain rule expansions.

Cascaded Neural Networks

Let us now turn to the more complicated example of two cascaded neural networks as illustrated
in Figure 3. The inputs to the first network are samples from a time sequence z(k). Delayed outputs
of the first network are fed to the second network. Typically, the last network represents the model
of some physical system, and the first network is used to prewarp or equalize the driving signal.

Figure 3: Cascaded neural network filters.

The cascaded networks are defined as

u(k) = Ar(W,x(k),x(k- 1),x(k-2)), (8)
y(k) = Ar2(W2, u(k), u(k - 1), u(k - 2)), (9)

where W and W 2 represent the weights parameterizing the networks, x(k) is the input, y(k) the
output, and u(k) the intermediate signal. Given a desired response for the output y of the second
network, it is a straightforward procedure to use backpropagation for adapting the second network.
It is not obvious, however, what the effective error should be for the first network. In this case, the
chain rule is simple enough to apply directly to find the instantaneous error gradient:

ae2 (k) .2 e(k)OY(k) (10)
0 w, owl

I - (k) ou( ) o(k) _u(k- 1) ay(k) Ou(k - 2)1
t)o(k) 9W, + 

1 ,(1 --1) OW1  Ou(k-2) OW J
= , .(k)OuZk + 62(k) Ou(k -1) .+ ,(k)au(k -2)

O-W) aw 1 O W- ' (11)

where we define

,i(k) =' -2e(k) Oy(k) =
Ou(k - i)

The 6, terms are found simultaneously by a single backpropagation of the error through the second
network. Each product 6,+i(k)Ou(k - i)/OW1 is then found by backpropagation applied to the first
network with 6i+ (k) acting as an error. However, since the derivatives used in backpropagation
are time-dependent, separate backpropagations are necessary for each i+1 (k). These equations, in
fact, imply backpropagation through an unfolded structure as illustrated in Figure 4. In situations
where there may be hundreds of taps in the second network, this approach leads to a very inefficient

adaptation algorithm.
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Figure 4: Cascaded neural network filters unfolded-in-time.

-2e4k)

Figure 5: Reciprocal network for cascaded neural filters.

A more efficient algorithm for finding the delta terms may be arrived at by returning to the
method of Network Reciprocity. The original cascaded networks are transformed into the reciprocal
structure shown in Figure 5. Simply by labeling the desired signals, gradient relations may be
written down directly:

6u(k) = 61 (k) + 62(k + 1) + 63 (k + 2), (12)

with
[b1(k) 62(k) 63(k)] = -2e(k) Ar2(u(k)), (13)

i.e., each 6i(k) is found by backpropagation through the output network, and the 6i's (after appro-
priate advance operations) are summed together. The weight update is given by

0W (k)' (4)
in which the product term is found by a single backpropagation with bu(k) acting as the error to
first network. Equations can be made causal by simply delaying the weight update for a few time
steps. Clearly generalization to an arbitrary number of taps is also straightforward. This new
algorithm is far more efficient than the earlier direct gradient calculation method: we completely
avoided backpropagation through a redundant unfolded network.
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Backpropagation-Through-Time

So far, we have examined only feedforward structures. Figure 6 illustrates a recurrent network
described by

y(k) = A(x(k), y(k - 1)), (15)

where x(k) are external inputs, and y(k) represents the vector of outputs that form feedback
connections. N is a multilayer neural network. If N has only one layer of neurons, every neuron
output has a feedback connection to the input of every other neuron and the structure is referred
to as a fully recurrent network [91. Typically, only a select set of the outputs have an actual desired
response. The remaining outputs have no desired response (error equals zero) and are used for
internal computation.

(-k) y> 8) 8(k) -2e(k)

q q

Figure 6: Recurrent network and backpropagation-through-time.

Calculating the gradients for such a structure can be extremely complicated. A weight pertur-
bation at a specified time step affects not only the output at future time steps, but future inputs
as well. However, applying the Network Reciprocity rules (see Figure 6) we find immediately:

6(k) = by(k)-2e(k)
= N"(k + 1)6(k + 1) - 2e(k). (16)

Note the causality constraints require these equations to be run backward in time. These are
precisely the equations describing backpropagation-through-time, which have been derived in the
past using either ordered derivatives [8] or Euler-Lagrange techniques [2]. Network Reciprocity is
by far the simplest and most direct approach.

Other examples

Backpropagation-through-time has been modified for a variety of neural control problems [1].
Suppose the state-space model of a dynamic system is given and a neural controller is to be built
to drive the plant. The overall structure is related to the recurrent network seen in the previous
section, in which y(k) is the plant state vector, and x(k) is the output of an additional neural
controller taking as inputs past states y(k - 1). Again, Network Reciprocity provides a direct
derivation of the adaptation algorithm.

A more general case is obtained by passing the state vector and the driving signal through
tapped-delay lines before entering the controller and/or plant model. Deriving the adaptation
algorithms for the resulting ARMA (AutoRegressive Moving Average) networks would be extremely
difficult without using Network Reciprocity.

Related to cascaded networks are structures that distribute time delays through the entire
network. Such architectures include FIR neural networks [6,7] (where the synaptic connections of
the traditional multilayer neural network are replaced by FIR (Finite Impulse Response) filters),
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time-delay neural networks [4] (where time-delays are introduced between the hidden layers of a
feedforward neural network), hIR (Infinite Impulse Response) structures, and lattice filters. For such
networks, direct chain rule expansions or equivalent unfolded structures are extremely complicated.
In all cases, Network Reciprocity provides a quick and easy way to derive the desired adaptation
algorithm.
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Abstract

A new algorithm has been proposed which uses cooperative efforts of several identical neural
networks for efficient gradient descent learning. In contrast to the sequential gradient descent,
in this algorithm it is easy to select learning rates suck that the number of epochs for convergence
is minimized. This algorithm is suitable for implementation on a parallel or distributed environ-
ment. It has been implemented on a network of heterogeneous workstations using P4. Results
are presented where few learners cooperate and learn much faster than if they learn individually.

1 Introduction

The goal f supervised learning from examples is generalization using some preclassified inputs
(training set). Learning in neural networks is achieved by adjusting the connection strengths
(weights) among processors, so that the outputs reflect the class of the input patterns. One pop-
ular method of adjusting the weights is gradient descent learning through back-propagation [8].
Unfortunately, in the back-propagation algorithm, a number of parameters have to be appropri-
ately specified. If parameters are not appropriate, the algorithm can take a long time to converge
or may not converge at all [7]. Due to local minimum problem, an appropriate learning rate
significantly affects the quality of the generalization and the number of epochs for convergence [2].
Selection of an appropriate learning rate is a computationally expensive experimental problem that
can be solved satisfactorily for small networks only [5].

The goal of this paper is to speed-up learning with improved accuracy using systems composed of
several neural networks of the same topology that concurrently run the standard back-propagation
algorithm. Our approach is different from the approach in [61 where each network learns a subset
of training examples. In our system, the various networks periodically communicate with each
other and cooperate in learning the entire training set. If any of the processes gets stuck in a local
minimum site, the rest of the processes help in moving it out of this predicament. The algorithm
also works well if any process gets stuck in a plateau or a ridge.

In Section 2, we propose this new cooperative learning algorithm, followed by experimental
results in Section 3 and analysis in Section 4.

2 Cooperative Learning Algorithm

In our algorithm, several processes run the standard back-propagation algorithm concurrently. All
processes work on neural networks of identical topology, each using a local copy of the training set.
These processes are called the slave processes. A master process initiates these slaves and controls
them. The slaves communicate only with the master. The master initializes its hypothesis (the
weights and the bias values of the neurons) and broadcasts it to the slaves. The slaves adjust this
hypothesis using back-propagation. Each slave uses its own learning rate that is different from the
learning rates of other slaves and hence, the adjusted hypothesis in each of the slaves is different.

Research sponsored in part by the NSF research grant NSF-IRI-9308523.
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0 00

Figure 1: Communication Network Topology for Cooperative Learning Algorithm

Periodically, the slaves cooperate by exchanging information. The period between two cooperations
is called an era.

The algorithm is suitable for implementation on a distributed platform since the communication
graph is simple and the total number of communications is small (Figure 1). Our implementation
uses p4 which supports parallel programming for both distributed environments and highly parallel
computers [1]. It helps to create the master and the slave processes and provides easy means of

communication between them. Another advantage of using p4 for neural networks implementation

is its ability to port directly from a distributed to a highly parallel platform [4].

2.1 Epoch-based Cooperation

In epoch-based cooperation, the slaves communicate their learned weights back to the master after a
specified number of epochs (one era). Since all slaves use the identical topology, the master forms

a new hypothesis after each era by averaging these weights. For each link between neurons, the
new weight is the average of the weights of that link as computed by the slaves. This hypothesis is
broadcast to the slaves and they proceed with back-propagation for the next era starting from this
new hypothesis. When any of the slaves has learned the training set to satisfaction, the hypothesis
learned by this slave is output and learning is completed.

2.2 Time-based Cooperation

One disadvantage of the epoch-based cooperation is that the slaves on faster machines finish their
era earlier but they have to wait for the slowest slave to finish its era. So, in a heterogeneous
environment, the slowest machine is a bottle-neck and one cannot take advantage of faster ma-
chines. For such heterogeneous environments, we propose another approach called the time-based
cooperation. Here, the era is specified as a duration of time rather than number of epochs. Since
all slaves run for the same duration, no machine will be idle.

2.3 Cooperation with Dynamic Learning Rates

In this approach, we start with the cooperative algorithm (epoch or time based) using initial

learning rates spread uniformly in (0,1) range. After few eras, the range of the learning rates is
reduced. New values for the learning rates are chosen uniformly around the value of the learning
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Problem: To classify 'A', 'I' and '0'.
Dimensionality: 2 Number of Classes: 3
Architecture : 2-9-3 Size of Training Set : 16
Percentage Learned : 100% Era : 50 epochs

One q 0.01 0.05 0.1 10.1251 0.151 0.175 0.2
Node Epochs 1 8708 I 1819 1295 [ 1179 14191 >10000 >10000

~Two I? , ,72 0.05, 0.15 0.1, 0.15 0.01 , 0.15 0.05 , 0.17
'N o de s  Epochs 1099 1040 1374 985

Three 171,172,113 0.05 , 0.10 ,0.15 0.01 , 0. 0
Nodes [Epochs 1 14914
Four {ii ) 112 ) 113 ,i4 10.05,0.1 0.15 ,0.2

Nodes Epochs 946

Figure 2: Epoch-based Cooperation for Pattern Classification Problem

rate of the slave which currently generalizes the best. The advantage of this approach is that the
selection of an optimal learning rate becomes completely automatic.

3 Results

Two benchmark problems are used for experimentation. The experiments are performed by varying
the number of slaves from one to four. Both the epoch-based and the time-based cooperation are
tested.

3.1 Pattern Classification Problem

The problem is to classify three patterns, 'A', T and '0', formed in a 4-by-4 grid, using a feedforward
network. Figure 2 gives the results of the epoch-based cooperation for this problem. In this figure,
One Node table gives the number of epochs required to learn the training set using sequential back-
propagation algorithm with various learning rates. The number of epochs to learn the training
set using the cooperative system of two slaves with various pairs of learning rates is given in Two
Nodes table. Here, one slave uses the learning rate 17 and the other uses 1/2. Similarly, other tables
show results for cooperative systems of three and four slaves respectively.

3.2 Two-Spirals Problem

This hard benchmark problem consists of two classes of points arranged in two interlocking spirals
that go around the origin [3]. The goal is to develop a feed forward network that classifies all
the training points correctly. The results of the epoch-based cooperative learning algorithm on a
training set of 40 points are given in Figure 3.

Figure 4 gives results of the time-based cooperative algorithm. In one experiment, the coop-
erative algorithm using two slaves is run on a homogeneous system consisting of two DEC3100

1I-392



Problem: Two-Spirals Problem.
Dimensionality: 2 Number of Classes : 2
Architecture : 2-5-1 Size of Training Set: 40
Percentage Learned: 100% Era : 100 epochs

(One I = 0.05 0.1 0.15 0.2 10.25 0.3 0.35 0.4 0.
Node Epochs >30000 8799 3683 2593 12238 1727 >30000 >30000 >30000(Two VI~7 , q2 0.05 ,0.35 0.15 ,0.35 0.25 ,0.3510.05 0.51
Nodes Epochs 2691 2122 1777 1920(Three Jq1,i72,713 (0.1 , 0.3 , 0.5 I0.15 , 0.25 , 0.35
Nodes Epochs 1775 2103

Nodes Epochs 2498

Figure 3: Epoch-based Cooperation for Two-Spirals Problem

Problem: Two-Spirals Problem.
Dimensionality: 2 Number of Classes: 2
Architecture : 2-5-1 Size of Training Set : 40
Percentage Learned : 100% Era: 400 msec

Nodes Cooperations 40 3428 27

(a)

Two i7Dj , perai7H 0.05 ,0.35 0.15 ,0.35 0.25,0.35 -0.50

(b)

TWO I 1P,'Dc 0.05 , 0.35 I0.15 ,0.35 I0.25 0.35 I0.05, 0.5
Nodes C0ooperation. 22 j 6 j 7 j 21

(c)

Figure 4: (a) Homogeneous and (b,c) Heterogeneous System for Cooperative Learning
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workstations. The slave on one of the workstations uses learning rate 17DEC 1 while the other slave
on the other workstation uses ,?DSC2. The number of cooperations required for convergence using
various pairs of learning rates are given in Figure 4 (a). In the other experiment two slaves are run
on a heterogeneous system consisting of the faster HP9000/735 and the slower DEC3100 worksta-
tion. In the pair of learning rates given in Figure 4 (b) the left value is used by the slave on the
DEC3100 and the right value by the slave on the HP9000/735.

Similar results are obtained for training set of 80 points. Here, the range of good learning rates
for the sequential algorithm is smaller than for 40 points.

4 Analysis of Experimental Results

4.1 Epoch-based experiments

Let 7,,i,, be the learning rate that minimizes the number of epochs for convergence in standard
back-propagation. From the experiments it can be observed that if the learning rates for the slaves
in the cooperative algorithm are chosen such that q < 7,.i, for some slaves, and 7 > 7,,i, for the
remaining slaves, then, in general, the cooperative algorithm needs significantly smaller number of
epochs to converge. For instance, suppose that there are two slaves using learning rates i7 and n.

In order to get a performance better than the sequential algorithm, we choose the learning rates 7h

and n2 so that rh < ti,, < 7h. For the pattern classification problem, it is easy to see from One
Node table in Figure 2 that the fastest convergence for the sequential algorithm takes 1179 epochs
with 1 = 0.125. By setting 7h = 0.05 and n2 = 0.175, the cooperative learning algorithm takes

only 985 epochs for convergence. Without any cooperation, the algorithm takes 1819 and 10000
epochs for convergence for q = 0.05 and , = 0.175 respectively. Similarly, in Figure 3, the fastest
convergence for the sequential algorithm takes 1727 epochs for q} = 0.3. With the learning rate
set to 0.25 and 0.35 the non-cooperative algorithm takes 2238 and 30000 epochs respectively. But,
with cooperation, the convergence takes 1777 epochs, which is very close to the fastest sequential
convergence.

In sequential back-propagation, learning rates less than and greater than 7i,, exist if the number
of epochs for convergence is a non-monotonic function of the learning rate, which is true for many
real-life problems. For these problems, cooperative algorithm will work better, provided appropriate
learning rates are selected. The XOR problem is an example where the number of epochs is a
monotone decreasing function of the learning rate. So, for this problem, cooperative learning does
not give a better performance.

4.2 Time-based experiments

Here, the time between two cooperations (one era is 400ms in our experiments) is fixed. So, the
total time for convergence of the time-based cooperation is proportional to the product of the
number of cooperations and the execution time of one era. From the Figure 4, it can be observed
that the time-based cooperation executed on a heterogeneous system with one fast and one slower
machine converges much faster than on a homogeneous system with two slower machines. Also, the
algorithm is more efficient if the slave with the higher learning rate is assigned to the faster machine
(see Figure 4 b,c). It is clear that the slave on the faster machine executes more epochs per era
than the slave on the slower machine. So, if the slave with the smaller learning rate is assigned to
the faster machine, the weights computed by the two slaves are not very far apart. Consequently,
averaging is nct so beneficial in this case.
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5 Conclusion

The cooperative learning algorithm proposed here has given promising results. In general, for the
back-propagation algorithm, it is very hard to find learning rates for which the algorithm converges
in minimum number of epochs. In our algorithm, we can easily select the learning rates such that
the number of epochs for convergence is close to this minimum or even better. This approach can
be used to improve any gradient descent algorithm. It can be easily implemented on a parallel
machine or a network of heterogeneous workstations using p4.

The experimentation using cooperation with dynamic learning rates is still under investigation
with promising preliminary results. We are also experimenting with a more sophisticated way of
combining slave hypotheses (instead of averaging), which might further improve the performance.
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Abstract

This paper presents a new top-down method for growing neural tree networks using a gradient search for the
best hyperplane that maximizes the information measure called AMIG (average mutual information gain). Previous
information based learning methods are limited to binary classification problem and requires square computaton
time for calculating the probabilities by using activation values of all training data for each learning epoch. Our
meto removes dtese restricions to allow learning in multicategory problems and has linear computation time for
calculating the probabilities by using the incremental estimation for each learning epoch. We give the interpretation
to the new leaming method as compared to the delta rule or LMS nule. A set of experimental results is presented so
demonstrate the performance of the proposed nemnl trw netrk.

1. Introduction

Neural tree networks are feedforward networks that perform classification in a manner similar to the traditional
decisimon tree classifiers. There are several methods for the design of neurl tree networkadecision tree classifiers
using concept of information theory ([Se.82], [Qui86], [BiS89J, [CiL9J, [Set91), [SeY93a, b]).

Infra-ion gain has been used as the object function of optimiaion to generate neural networks sequentially
([BiSS9], [CiL92]) and to prime neural networks [FaE92]. Bichsel and Seitz [BiS89] propose a method to generate
neral networks of hard nonlinearity neuron. They provide a learning algorithm which combines a structured pattern
search and a simulated annealing for the modified object function of information gain. They also suggest dhat the
gradient method using soft nonlinearity neuroes i preferable when all local minimums are close in value to the
global minimum. This suggestion has been adopted by Cios and Lin [CML92] to generate feedforward neural
networks similar to the cascade corelsa net of Falmu md Lebere (FaLg]. However, ths methods ([BiS89],
[CiL92]) are limited to binary classification problems and required to have squat computation tim for calculating
die probabilities by using activation values of all truning data for each learning epoch. In contrast, the delta rule
that minimizes die LbM(least own square) aOr has liKe compuWan time for calculating activation values for
each learning epoch. Our method removes these restrictions to allow lMrning in multicategawy problem with linear
computation time for calculating the probabilities for each learning epoch of training data presentation.

Our usage of the mutual information gain of a partition is based on the framework of the AMIG tree bduon
algorithm of Sethi and Sarvaayur [SeSS2]. The A G learning rithm based tree inductn method is capable
of generating good multicaugory, multifeature sphit neural trees irrespective of class population unbalance in the

2. Learning rule using the Information pin as the object function

Our weight adaptafion rule is based on the gradient sarch of the best hyperplane which will maximize the
AMIG information measure of partitioning. The derivation of the weight adaptation rule is fully discussed in
[Yoo93J. Given pattern fron C classes and a partitioning P that divides the pattern space into R mutually
exclusive pirtition, the AMIG information measure of partitioning, I(P). is written as:

iC

I 1P) =1 pphcj)k*
We use the sigmoid function to the gradient seach in the weight adaptation rule as

g(x) =1 / ( + exp(-2wx), (2)
wher the feature vector and the weaght vector am augmented.

We treat the sigmoid function as a continuous or fuz:y count of a frequency for the estimation of the
probability hat the given input belongs to the positive region of the hyperplane. In contrast, the sign function is a

*The Umaterial presented here is based upon the work supported by the National Science Foundation under the grant
IRI-9002087.
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binry O crisp count of a frequency for the estimation of the sane probability as suggested in [BiS89]. There is a
similar fuzzy count of a frequency in the so-called "fuzzy k-neaest neighbor classifiers" ([Joz83],[KiH92]). Using
this sisnoid function, we can esumate the appropriate probabilii as

aq

p(rz.c)= - 7 g(x) /N.w, (4)

Ar .Cj) = P(O -p{ A.C-D, (6)
P(rI) - I -Psf¢ .7

We can maximize the information measure of hyperplane partitioning (R = 2) or equivalently minimize the
conditional class entropy by using the gradient search on the continuous probability defined by the sigmoid
function. The gradient contains the following four components for each weight variable wk:

i ~ 2 C ~(]'r CD

+ wp(ri'cJ) _Lgp(cj) (8)

2 C Prc

2 Cp(r. , c) , ap(c )
,ilog. 2 p(ci) wk

The second trm amounts to zero since p(rl, cj) + p(r2, cj) =p(cj) is an invariant of the weight change. The
third term amounts to zero since both the summation of the joint probabilities p(ri, cj) and the summation of the
marginal probabilities p(r) equal one. The last term also amounts to zero since p(cj) is an invariant of the weight
change. We write the weight updating rule as:

Awk = P. 2 g(xXl- g(x)) X k O )Og ), (9)

where p, is the learning coefficient. This weight updating rule gives us the extension of Cios and Liu's formulation
(CiL921 with regard to the multicategory problem. Moreover, we can give the interpretation of the weight change
rule when compared to the nonlinear delta rule by using sigmoid function:

Awk = p 2 g(xXl- g(x)) x (T -g(x)). (10)
The desired output, T, is fixed in the delta rule for each class. However, there is no explicit desired output in the
new learning rule. Instead, the ratio of conditional probabilities, p(r2 I cj)/p(rl I cj) decides the majority region for
each class. That is, if the ratio is greate than one, region r2 will be the majority region for the class. Otherwise if
the ratio is less than one, region rl will be the majority region for the class. This ratio gives us a modification to
the usual decision of finding a majority region which is based on the ratio of joint probabilities, p(r2, cj) I p(rl, cj)
([SeY93a], [SeY93b]).

When the ratio of conditional probabilities equals one, it is necessary to break the symmetry by using the
probability estimation of the law of succession [BuB74I,. If the ratio of conditional probabilities still equals one
and the information measure nealy equals zero, we will replace the log ratio factor by a random number in (.1, 1).
If the activation function g(x) is saturated to either or I and the information measure nearly equals zero, then the
gradient will equal zero. This state corresponds to the flat region of dte energy surface discovered by Bichsel and
Seitz [BiS89. The object function can be modified to remove the flat region such that

J = J(p.) - P (11)
I(P)+e

where e has a small positive value. If the activation function g(k) is saturated to either 0 or I and the information
measure nearly equls zero, then the weight updating rule becomes:

Awk = 2p (0.5 - g(x))x .-- , (12)
(I(p) + e)

After taking limit e -> 0 with I(p) << e, we have
Awk = 2p (0.5 - g(x)) xk. (13)

We give the interpretation on this weight updating rule as compared to the delta rule. It is difficult for the delta
rule to escape the flat region of an energy surface since the activation function g(x) is saturated to either 0 or I and
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the amount of weight change is cloe to zero; whereas it is not difficult for the AMIG delta rule since the saturated
activation function gives the maximum momentum for escaping the flat region. The sign of the factor (0.5 - g(x))
of equation (13) points the direction toward the center of the data cluster of class cj in the projection of xk feature.

After adjusting the scaling factor of equation (9) to be comparable with that of the LMS rule of equation (10),
we have:

Aw P 2 g(x)(l- g(x)) Xk ljpg(Y2)

1of')N(cj) + I (Nw - N(cj) + C) pckr) (4
N(cj) + C

Here, we use the probability estimation of the law of succession to arrive at the maximum ratio (NIota - N(cj) + c)
(N(cj) + 1) / (N(cj) + C) in order to scale the LRCP factor within the interval (-1.0. 1.0). With these two weight
updating rules (equations (13) and (14)),we are able to complete the learning method by using the gradient search of
maximum information measure or minimum conditional class entropy.

The calculation of the probabilities takes O(m2) times (m is the number of the training examples ) for each
iteration. This is because of batch estimation of the probabilities using all training examples. We see that it is
more desirable to have the linear time to compute the probabilities by using the previous estimation. Applying the
recurrence relation of the estimation of a sample mean m after introducing n+1 th sample Xn+1 [DuH73I to the
class mean of sigmoid function

7, g (x)
<g(x)> = X ..iQ r, c)Nw (15)

I cj
we have

AM c) _ i(cj)Nm p(r2, c).dd + 1 p(c)g(x). (16)
p(cj)Ni.w + I p(cj)N + I

Based on the above discussion, our new learning algorithm is as follows:
Algorithm 1 The gradient search of the maximum information measure using the incremental estimation of
probabilities.
Input : Training examples (xk, Ik) where xk is an augmented vector and lk is its class label being lk G { 1, 2,
ck.
Output : A weight vector w that best divides all training examples into two groups.

1. For each class, calculate p(cj) and the max log ratio of conditional probabilities, LRCPma" (cj) = log2
((Ntotal - N(cj) + c) (N(cj) + 1)I (N(cj) + C)).

2. Initialization: Randomly initialize the current weight vector, w. Initialize the iteration counter to zero.
Calculate I(P), the information measure for the initial weight vector.

3. Do the following until the weight change (WC) is less than the tolerance or the iteration counter is over the
limit.

3.1. Set iteration count = iteration-count + 1. Set WC to zero.
3.2. Shuffle the training data.
3.3. For all training examples, do the following.

3.3.1. Calculate p(r2, cj) by using previous estimation and sigmoid function.
3.3.2. Calculate p(rl, cj), p(r2) and p(rl).
3.3.3. Calculate I(P), the information measure.
3.3.4. Calculate LRCP (the log ratio of conditional probabilities), log2(p(cj I r2) / p(cj I r1) ) by the

law of succession.
3.3.5. If I(P) = 0.0 and g(xk) (1 - g(xk)) = 0.0 then

3.3.5.1. Set dw := 2p (0.5 - g(xk)) xk.
3.3.6. Else if I(P) = 0.0 and LRCP = 0.0 then

3.3.6.1. Set LRCP := random(-1.0, 1.0).
3.3.6.2. Set dw := 2p g(xk) (1 - g(xk)) xk LRCP.

3.3.7. Else
3.3.7.1. Set dw 2p g(xk) (1 - g(xk)) xk LRCP /LRCPma,(ci).

3.3.8. Set w := w + dw.
3.3.9. Set WC = WC + norm(dw).

End of Algorithm 1.
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3. Using AMIG learning rule for neural tree networks

In this section, we describe a top-down design method for generating multifeature-split decision trees or neural
tree networks for problems having data from multiple classes. The suggested method can be considered as an
extension of the AMIG decision tree algorithm. To specify a top-down decision tree induction methd, three aspects
need to be considered: (1) a method for generating and evaluating possible multifeature splits, (2) a criterion for
detemining when to stop the tree from growing, and (3) a way for assigning a class label to each terminal partition
or node of the decision tree. The last aspect of a top-down decision tree design method is the simplest to deal with.
Invariably, the majority rule (i.e.. the class most heavily represented in a terminal partition) is used to label the
terminal nodes. Our method also follows the same majority rule. We discuss the remaining two aspects below.

Beginning with the root node, the AMIG delta learning algorithm of the previous section is used in our tree
induction method to generate the best multifeature splits successively. Each selected split gives rise to two data
subsets each of which is again handled in a similar fashion. As tree induction proceeds, the number of applicable
training vectors for the partitioning algorithm starts decreasing. With decreasing sample size, the issue of properly
estimating the information measure becomes important [BuB74]. In our method, we, therefore, use the following
expression for estimating the information measure of a partition2 C n"..j 1

I(P) = 7 Y, -'9og2 ((1+7))N
i.1 ,.1 N (row() + c) COl(C) (17)

where nij is number of examples in the partition xi with class cj, row(xi) is number of examples in the partition
Xj, col(c) is number of examples in the class cj, and N is total number of training examples.

To determine when to stop tree growing, we follow a two step approach that combines controlled tree growth
with pruming. This approach involves dividing the available training patterns into two subsets. One subset of
training patterns is used to develop the tree to the desired extent. The other subset is used to prune the grown tree.
To control the growth of the tree, we follow the procedure used in the AMIG algorithm. According to this
procedure, the minimum amount of information that must be provided by the tree is given as£

1i. - - i P() 1og2p(Q) + P092p . + (I - p.) 102 (1 - p.) -p. log2 (c -1) (18)
J-1

where Pe is the acceptable error rate. Letting !k as the amount of information associated with the weight vector of
the k-th internal node, the cumulative information given by a tree having L terminal nodes is given as

L-i
() = A Ik (19)

where sk is the fraction of training examples that pass through the k-th internal node. Thus by keeping a check on
the cumulative information measure of the tree, we determine when to stop tree growing. Once the te is grown to
the extent that it provides information exceeding tran, we prune it using the pruning subset of the training patterns
to size T. T k c with c being the number of classes, with the pruning criterion being that the pruned tree should
have least possible performance difference on ee growing and pruning subsets of the training data. We first search
the pruning point that is the first minimum after the number of categories - two way minimum - in the total tree
performance graph. If there is no such pruning point, we find the maximum jump after the number of categories -
one way minimum - of performance difference on tree growing and pruning subsets of the training data. We have
found this simple pruning to provide trees of good classification accuracy compared to more expensive pruning
methodx [BFO84], [GRD911).

Although the AMIG delta learning based algorithm has a smoother energy surface than the LMS rule as shown
in Yoo93], it is not guaranteed to find a tree having performance equal to or better than that of the single feature
split decision trees. This is due to the fact that the AMIG delta rule can be stuck to a local optimal solution.

4. Performance Evaluation

In this section, we report on two experiments that were conducted to evaluate the performance of the suggested
multiclass multifeature split neural tree procedure using the AMIG delta learning algorithm. In each experiment, the
acceptable error rate was set to zero to control tree growth. Unless stated otherwise, all the available training vectors
were used for tree growing and all available test vectors were used for tree pruning. In all experiments, the
classification performance was measured as

PC, =- 1 -,,- ." bp, (20)

C,.7i To.i
where bjk is the Boolean-valued classification score of the k-th sample of the j-th class. This equally weighted class
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average of correct classification yields a more meaningful performance measure compared to the simple correct
classification count measure because the performance of size one tree is always I/C where C is the number of
pattern classes. At each stage of tree building, the iteration count limit for AMIG delta learning was set to 10 *
max In, d) where n is the number of available training examples at a given tree stage and d is the dimension of
training vectors. To compare different trees on the basis of their size and linearity of the structure, average tree size
was calculated for each case using the following relationship

L

where L is the number of terminal nodes in a tree and d is the depth of the j-th terminal node.
To carry out the assessment of the proposed method, three methods were used for each data set. These are: (1)

The single feature split AMIG procedure, (2) The multifeature split decision tree using AMJG delta learning rule,
and (3) c- t network with one hidden layer.

The first experiment was designed to evaluate the performance of the proposed method in a problem with
highly uneven class populations. This experiment was performed using THINNING data set which was generated
by the application of step one of the thinning algorithm due to Zhang and Suen [ZhS84]. The THINNING data set
consists of 256 8-bit feature vectors that represent various possibilities of an 8-neighborhood in a binary image
with the central pixel of the neighborhood being one. The class label for each combination represents the thinning
decision whether the central point of the neighborhood should be marked for deletion or not. Of the 256
combinations, there are 222 combinations for which the central point is marked for deletion; the remaining 34
combinations correspond to maintaining the central point. The entire data set was used as the training data in this
experiment. Table 1 shows the performance of the four tree methods. The average size column in Tables 1-2
contains two entries. The first entry denotes the number of terminal nodes and the second entry denotes the value of
Tavg as defined in equation (21). The backpropagation network, BP has only one entry denoting the number of
nodes in the hidden layer. It is seen from the Table I that the proposed procedure, ADR has a comparable
performance to backpropagation network, BP. While the single feature decision tree, AMIG, provides slightly lower
performance compared to ADR, the suggested procedure, it has much higher number of terminal nodes and larger
average tree size.

The second experiment was designed to evaluate the performance of the proposed method in multicategory
problems using VOWEL data. The VOWEL data set represents a difficult classification task of speaker independent
recognition of the 11 steady state vowels [Rob89]. It consists of utterances from 15 speakers, eight males and seven
females, each repeating six times each vowel. Each utterance constitutes a pattern in the form of a 10-dimensional
vector whose components are based on log area ratios derived from linear predictive analysis. The entire set is
divided into two subsets of 528 training vectors, corresponding to four male and four female speakers, and 462 test
vectors, corresponding to remaining speakers. The nearest neighbor recognition rate for this data is 56.28% in the
original data and 49.13% in the normaized data. The results of the second experiment are summarized in Table 2 for
the VOWEL data. It is observed that the AMIG delta learning rule, ADR has better performance than that of the
single feature decision tree, AMIG. The BP net results are similar to those of Robinson's Ph.D. dissertation
[Ron891.

Summarizing the results, it can be seen that the proposed AMIG delta rule based multiclass, multifeature
decision tree induction method (ADR) gives another comparable way of neural tree network construction.

5. Conclusion

A method for growing neural trees has been described in this paper. This method is based on a modified delta
rule called the AMIG delta rule that performs the gradient ascent search on the AMIG object function in a
multiclass environment. The best two-way grouping is automatically decided by the ratio of conditional class
probabilities due to a partitioning hyperplane and updated by the incremental estimation of probabilities. It is
contrast to the conventional majority region criterion by the ratio of joint class probabilities due to a partitioning
hyperplane. The log ratio of conditional class probabilities due to a partitioning hyperplane (LRCP) replaces the
factor of (Target -Output) in the usual delta rule. The incremental estimation of probabilities make the AMIG delta
rule comparable to the delta rule in terms of the time complexity. The performance of the proposed method has
been reported using two data sets. In each case, it has been shown that the suggested method has better performance
than that of comparable medods.
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Table 1. Performance results for THINNING data.

Ava Size Acucy
AMIG 45 6.0 95.58
ADR 17 3.85 97.17

BP 12 100.00

Table 2. Performance results for VOWEL data.

_______ ______ Bfore _________ Aftr aminn

Avg Size Training Testing Avg Size Training Testing
AMIG 25, 4.96 74.81 37.88 23, 4.87 73.29 38.09
ADR 13, 3.85 84.28 50.65 12, 3.67 83.52 50.65

BP _ 22 82.95 48.26
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An Adaptive Structure Neural Network Using an Improved
Back-Propagation Learning Algorithm

K. Khorasani and H.F. Yin
Department of Electrical and Computer Engineering

Concordia University
14.55 De Maisonneuve Blvd. W., Montreal, Quebec, H3G IM8, Canada

[Abstract] An improved back-propagation algorithm is proposed in this paper. The initial weights
and learning rates are set differently for individual hidden layer units. In this algorithm the variance of
the hidden layer units are set to be different. An error analysis is given for removing the unnecessary
hidden units from the network. A procedure for dynamically adjusting the structure of the network
is proposed. Numerical examples are given to illustrate the utility of the proposed methods.

1 Introductioi,

Back-propagation (B-P) algorithm is the most commonly used neural network model [1,21. Back-
propagation allows us to train the weights in a feedforward network of arbitrary structure by following
a gradient steepest decent path in weight space, where the energy surface is usually defined by the mean
squared error between desired and actual outputs of the network. There have been many examples of
successful use of back-propagation for performing different tasks [3,4,51.

Unfortunately, back-propagation has some problems. Firstly, the energy surface may have many
local minima, so the algorithm can not always be guaranteed to converge to the optimal solution. The
second problem is that it is difficult to analyze the behavior of hidden units in a multilayered network.
Consequently it is not easy to estimate the exact number of the hidden units required for a given
problem before the network is trained. The third problem is that back-propagation algorithm is often
slow.

The weights of the network after training depend on several factors. Among them one may mention
the randomly chosen initial weights and the sequence of training examples. The hidden units have
approximately equal variance [6,7]. For some problems, such as image coding and

compression, these factors may reduce the usefulness of the B-P. This is due to the fact that the
bits must be allocated evenly among the weights of the network and noise cannot be eliminated by
removing the units with lowest variance. If the network is designed with too many hidden units then
the additional error introduced is spread evenly throughout the units and cannot be easily detected or
removed by looking at the signal to noise ratio of the individual units. If the network does not have
enough hidden units, then the learning procedure may never converge. There are algorithms in the
literature [8,9] that can add or delete hidden units from the network. However, it is not easy to decide
when and where the structure of the network should be changed. Since the variance of the hidden
units is at the same level, a large error could be introduced by removing any hidden unit from the
network.

In this paper, we give an improvement to the back-propagation algorithm(IB-P). For a three layer
network with one hidden layer, the initial variance of the weights and the learning rates are set
differently for different hidden layer units. The algorithm results in the hidden units having different
variances, therefore, the hidden layer units have different degrees of importance. A procedure for
dynamically adjusting the network architecture is also proposed. Application of the proposed methods
to solve pattern recognition and function approximation problems are demonstrated.
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2 The B-P Algorithm and its Improvements

The back-propagation learning algorithm is summarized by the following equations. The forward prop-
agation algorithm is defined as netpi = Fi wjioi, opj = fj(netpj). The back-propagation algorithm is
Apwji = qbpjopi. The error signal is given by

(tpj - opj)f(nepj) If the neuron is an output unitbpj f
I f(netpj) k bpkWkj If the neuron is not an output unit.

The B-P algorithm is improved as follows: First, we set the initial weights randomly with different
variances. For the weights that connect to the hidden layer unit k, the variance is set to Vk = V/ak
where 0 < a < 1. The weights can be produced by any random distribution. In above equations, the
learning rate q is constant. We also choose the learning rate to be different for different hidden layer
units. For a three layer network with one hidden layer, the weight adjustment for hidden neuron k
is changed into Apwji = rkbpjopi. The learning rate 77k is now given by irj = rio/ak, where f0 is a
positive constant and 0 < a < 1.

In this algorithm, the weights that connect to the first hidden units are adjusted most, i.e. the first
hidden neuron is the most important one. After the utility of the first hidden neuron is exhausted,
the second neuron becomes more significant, etc. If for instance the network needs m hidden units for
training, the hidden neurons after the mth one are adjusted with a very small variance. Therefore,
these hidden neurons can be removed from the network without affecting the performance significantly.
The last hidden neuron is the least important one.

The activation function for all the neurons is selected as f(x) 2 -1. Since f'(x) = (1 +
f(-))(1 - f(x))/2 < 1/2, it is easy to prove that If(x)l < Ix/21 and If(x + Ax) - f(x)l !5 lAx/21. For
the ith hidden neuron, we have lopil = If(netpi)l < Inetpil/2 = I Ej wjioijl/2 < Wo1/2, where W =
Ej Iwjil, I = maxjopj. The input from neuron i to output neuron k is Wikopi. If the hidden neuron i is
removed, the change of the output in neuron k is IAoi~k = If(netpk) - f(netpk - Wikopi)l < JwikopiI/2,

and IAOik1 < WikIWoII4 < (I1Wik + Wo) 21/16 = SjI/16, where Sik = (W, + lwiki) is the sum of the
absolute value of the weights from the input neurons to the hidden neuron and from hidden neuron to
the output neuron. If I = 1, IAoik < S /16. Therefore, if a hidden neuron is deleted from a trained
network, the change of the output in neuron k depends on Sik. If the network has only one output
neuron, Sik is written as Si.

For pattern classification a training set is correctly classified if the largest output error over the
entire set is less than one. Let 3 designate the maximum error between the output and target output
for the trained network over the entire sample space. The hidden neuron i is deleted from the network
if Si < 4V /-7-. If the hidden neuron i is one of the neurons that can not be removed from the
network, regardless of the learning rate and the initial weights, then we have 5i > 4V/T----.

3 An Adaptive Structure Neural Network

An adaptive structure neural network is achieved through adjusting the number of neurons in the
hidden layers dynamically. By using the IB-P learning algorithm, the hidden neurons have different
variances. If a hidden neuron has small Sik relative to the other neurons, it can be removed from the
network dynamically. For pattern classification problems, if em defined as the maximum error between
the desired output and the output of the network over the entire training set is less than 1, then the
result is considered as correct classification. The maximum error introduced by removing neuron i
from the network is eni < Si/16. After node i is removed, eTi the maximum difference between the
desired output and network output, becomes eTi _ e, + ei :_ em," + S?/16. If Si < 4Vfl , then
eri < em + (1 - em) = 1. Therefore, if Si < 4v/F- -- e,,, node i can be removed and the network can
still provide a correct classification.
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For a function approximation problem, a positive number v which is larger than the expected error
is selected. If the actual error e.. of the network is less than v and Si < 4 7--e vrI, we can remove
the hidden neuron i from the network. The maximum error introduced by removing the hidden neuron
i from the network is e7i < S2I/16 = v - e,,. After neuron i is removed, the maximum output error
is eTi !_ e,. e i !5 cm + V - em = i. So even if the hidden neuron i is removed the actual output
error remains less than v.

4 Experimental Results

4.1 XOR and Parity Problem

As a benchmark example we solve XOR problem to test our algorithm. It is well known that a
network with two hidden nodes can correctly solve the problem. To train our network we start with
4 hidden units using the improved B-P algorithm with qj = 0.5 and a = 5.0. The following results
are obtained. Figure 1 shows the change of Si. After the network is trained 5200 steps, we have
So = 14.1, S1 = 13.1, S2 = 1.47, and S3 = 0.038. According to (7), if we remove hidden unit 2 we get
IAo2I < 1.472/16 = 0.14. Similarly if we remove hidden unit 3 we get IAo3 < 0.00006. Therefore,
hidden unit 3 contributes very little to the outputs of the network. Consequently the network gives a
correct classification with hidden neuron 2 deleted.

For parity problem with 3 inputs, if the network has 3 hidden neurons we found 4 cases out of
300 cases of getting trapped in local minima by using the original B-P algorithm with random initial
weights. All 300 learning cases are convergent using improved learning algorithm with a = 5. For
parity problem with 4 inputs and with 5 hidden units after the network has been trained with a = 5.0
and Y- = 0.5, the sum of the absolute values of the weights is given in the following table for 8 learning
procedures with random initial weights. We can see that there is large difference between the variance
of the necessary hidden units and the variance of the unnecessary hidden units, while there is no big
difference among the variance of necessary hidden units.

case number So S S2 S3  S4

1 10.220725 7.2236.55 5.098019 0.294625 0.054301
2 9.609260 8.124382 5.240492 0.044274 0.041409
3 9.338788 7.360354 4.720688 0.092741 0.032782
4 9.338788 7.360354 4.720688 0.092741 0.032782
5 9.819942 8.174868 5.250357 0.132380 0.025526
6 12.271564 11.087083 7.780679 6.1.53959 0.140350
7 8.238710 7.184856 5.073183 0.089974 0.025867
8 10.716545 8.312218 5.125797 0.478817 0.046587

Figure 2 shows the change of the weights if we train a network with four hidden neurons and a - .5
for a four input parity problem using dynamic structure method. We can see that hidden neurons 3
and 4 are removed within 100 steps.

4.2 Function Approximation

A neural network can also be used to approximate a function. As an example consider the function
f(x) = sin(2rx)cos(67rx)/3 + 2 rx/9. When we use a network with 9 hidden neurons to approximate
this function after 45000 training steps with B-P algorithm the output function of the network is
shown in Figure 3(a). The sum of the absolute value of weights Si after the network is trained is given
by SO = 31.47, S1 = 3.56,S2 = 5.15, S3 = 18.11,S 4 = 4.98, Ss = 5.84, S6 = 6.00, S 7 = 5.30, S8 = 5.21.
Figures 3 (b), (c) and (d) show the outputs of network with node (1), (3) and (5) removed, respectively.
When IB-P method is used to train the network with 9 hidden neurons, with 17 = 0.5 and a = 2.0,
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the results are shown in Figure 4. The sum of the absolute value of the weights Si after the network
is trained is given by So = 8.11, S = 18.79, S2 = 27.54,S3 = 5.79,S4 = 4.07, S5 = 0.083,,S6 =

0.093, 57 = 0.0092, S8 = 0.0035. We can see that the last 4 hidden units have a very little contribution
to the output and therefore can be deleted from the network. Figure 4 (a) shows the response of the
trained network and the desired output. Figure 4(b) shows the output of the network with the last
four hidden units removed. If we use the adaptive structure algorithm that removes the hidden units
dynamically we get the following results. The network selected has 8 hidden units at the beginning
of training with v set to 0.1. Figure 5(a) shows the change of the sum of absolute value of weights.
Figure 5(b) shows the network output before the structure is changed at about 44000 steps. Figure
5(c) shows the network output immediately after the last 3 neurons are removed. Figure 5(d) is the
result of the final network with 5 hidden neurons at the end of training cycle.

5 Conclusion

The algorithm proposed in this paper improves some problems of the back-propagation algorithm.
After a network is trained, we clearly see which and how many hidden units are needed to solve the
given problem. According to the analysis given in this paper , we can remove the hidden neurons from
the network both staticly and dynamically. The algorithms proposed in the paper are applicable for
solving problems such as pattern recognition, function approximation, image compression, etc.
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Improving Model Accuracy Using

Optimal Linear Combinations of

Trained Neural Networks

Sherif Hashem* Bruce Schmeiser
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Abstract

Neural network (NN) based modeling often requires trying multiple networks with

different architectures and training parameters in order to achieve an acceptable model

accuracy. Typically, only one of the trained networks is selected as "best" and the rest

are discarded.

We propose using optimal linear combinations (OLCs) of the corresponding outputs

of a set of NNs as an alternative to using a single network. Modeling accuracy is

measured by mean squared error (MSE) with respect to the distribution of random

inputs. Optimality is defined by minimizing the MSE, with the resultant combination

referred to as MSE-OLC.
We formulate the MSE-OLC problem for trained NNs and derive two dosed-form

expressions for the optimal combination-weights. An example that illustrates signif-

icant improvement in model accuracy as a result of using MSE-OLCs of the trained

networks is included.
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Projection Learning for Multilayer Neural Networks

John Alberg

Department of Mathematics
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Abstract

We derive a simple constructive algorithm for determining hidden layer weights in a single hidden
layer neural network based on an algebraic condition necessary for the existence of the output layer
weights. The algorithm adds nodes iteratively-performing a simple optimization with the addition of
each node-until the algebraic condition is met. Consequently, the difficult problem of specifying the
number of hidden units a priori is eliminated. The optimization of each node is only as computationally
taxing as the simplest forms of the Hebb rule and hence should enable fast training of networks with this
architecture.

The Problem

Let the class of single hidden layer feedforward networks mapping all x in W' into I? be defined by

,t,(x; 0) = vu(fi)()

where n is the integer number of hidden units, w, in W+4 is the weight vector from the input units to the jth
hidden unit, vi in W is the weight from the ith hidden unit to the output node, 9 = (v, - SVI,, w I,.. ,
i = (1,x)T is the augmented input vector, and o:& --+ * is the hidden unit transfer function which is
continuous and always increasing(i.e., oa'(.) > 0). In particular, we are concerned with finding the network
parameters G and n, such that this network realizes a given input-output map. Which is to say, assume we
are given a set of input-output pairs T = {(xl, zl), (X2, Z2),..., (xy , ZN)}, typically called the training set,
then we want to find a 6 and an fi such that 4f(x;) = zt for all k = I,..., N.

To do this, one typically constructs a cost function of the form E(S) = 1 NI(zk _ (XI; 9))2, where
fi is determined a priori, and attempts to minimize it with respect to 0 using a gradient descent. This type
of optimization has been made popular by the back-propagation algorithm(see Rumelhart et a. (1986)).
Unfortunately, there are many problems associated with this technique, a few of which are: local minima
on the surface of E(9) can cause the gradient search can get "stuck"; updating the hidden layer weights
necessitates summations over the all the output units weights and is thus computationally taxing; and
determining fi a priori is a difficult problem. Hence we present an alternative approach.
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To begin, consider the N x m matrix X, whose row vectors are given by the N augmented input training
patterns il,,... ,iN, and the N x n matrix Y with column vectors

yj = 0,(Xwj), (2)

where j = 1,... ,n and gu:RN -_ *N is given by o'(a) = (u(ai),o,(a 2) .. , o(aN)) T . Notice that the k t h row
vector of Y represents the states of the hidden units on the k h training pattern. Furthermore, note that
each column vector y, is in the image of L[X] under u, where L[A] is the linear subspace spanned by the
column vectors of A. For sake of brevity, we will thus think of each yj as an element drawn from the set
E[X] = ff(L[X])/{O1 rather than specifying it by a particular wj. We have removed the zero vector from
E[X] because, as we will see latter, we want to exclude the trivial solution.

From equation 1, the output of the network tk(xt) is a linear sum of the states of the hidden units on the
kh training pattern weighted with the parameters V1 , V2,..., v,-which is to say, the N dimensional vector
of outputs over the training set is given by (40(x), (x2),... , t(XN)) T = Yv, where v is in W". Hence a
network can realize the training set when there exists a solution " such that

Yi" = z, (3)

where z = (Z, Z2... , ZN)
T . From linear algebra, v exists if and only if z is in the subspace spanned by

the column vectors of Y. Therefore we wish to choose a solution set k1, k2, - - -, n from EY[X which spans
a linear subspace containing z. An efficient method of choosing such a solution is given herein. Similar
methods are given in Barmann and Biegler-K6nig(1992) and Fujita(1992).

Projection Operators

We will begin by introducing some of the tools necessary for our construction and analysis. In particular,
we are interested in the projection operator1 .

Definition 1 An n x n real matriz P is a projection operator if and only if P is symmetric, (pT = P), and
P is idempotent, (p 2 = p).

Furthermore, the n x n projection matrix2 P projects onto a subspace S of Rn. Hence for a in Rn, Pa = a
if and only if a is in S.

Definition 2 If the n x n projection matrix P projects onto the subspace S in R", then the n x n matrix
P, = I,, - P, where In is the n x n identity matrix, projects onto the orthogonal complement S' of S.

Hence for a in W', Pea = a if and only if a is in S'.
We now define the map pn: W ---+ W x Rn such that pn(a) = a(aTa)-aT, for all a in ". Since pn(a)

is both symmetric and idempotent it is a projection matrix. We also note that if some vector b in W" is a
scalar multiple of a, i.e., b = aa for some a E W, then p(a)b = ap(a)a = aa(aTa)-laTa = aa = b, and
hence pn(a) projects onto the one dimensional subspace spanned by the vector a. Now suppose we are given
an n x n matrix P which projects onto the subspace spanned by the vectors al,a,... ,am ii fRn. Then,

1A thorough treatment of projection operators is given in S. Roman 1992.
2 We will use the terms projection operator and projection matrix interchangeably.
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for any vector b in V, the augmented projection matrix P' which projects onto the space spanned by the
vectors a1 ,a 2 , .. ,an, b is given by

" = P + pn(Pb)- (4)

This result is proven in the appendix of (. Fujita 1992. We now use this relation to define a projection
operator recursively based on some initial "reference vector". Which is to say, given a sequence of vectors
{aia 2, ...} in Rn and a reference vector r in NO, let the recursive sequence { pl, p 2,. .. I of n x n projection
matrices be defined by the relation pj+1 = P. + pn(Pjaj), where P1 = pn(r). Using equation 4, one can
easily verify by induction that pi+1 projects onto the subspace spanned by the vector r, a,, a 2 .... , ai.

A Construction

We now construct the set of linearly independent vectors '1, S2, -.. , k, where n < N, which span a subspace
that includes z. As above, define the recursive sequence {p 1 , p 2 ...} of N x N projection matrices by the
relation pi+l = P' + PN(Pkj), where z is our reference vector(i.e., P' = PN(Z)), yj is drawn from the
set E[X] such that it is not in the subspace spanned by the vectors ',S'2, ... ,Y- 1, and z is defined as in
equation 3. We then have that Pj+1 projects onto the subspace spanned by the vectors z, .,. ., y for all
j= 1,2,....

Theorem 1 There exists a positive integern < N such that tnkn = *n, where P" is given by the recurrence
relation above. Furthermore, z is in the space spanned by the vectors k142,. -,Y,

Proof. Since PJ projects onto the space spanned by the vectors z,y, .... ,#j-1, if Pi.,j i y,' then, by
induction on j, the vectors z,J*1 ,...,:kj are linearly independent. Now suppose that for all i = 1,2,..., N,
Pij $ $i4j. Then the set of N+1 vectors z, 1,. . . , yN in RN are linearly independent. Yet the largest number
of linearly independent vectors in RN is N and hence there must be some n < N such that Pnyn = kn .
Furthermore, this implies that *n is in the subspace spanned by the vectors z, Y1, ... , Yn-I and thus there
must exist scalars aj, j = 0,1 ... ,n- 1 such that -,n = az +"l ajyj. If ao = 0 then obviously Yn
is in the subspace spanned by the vectors Y1, Y2,.-. , -y,- which contradicts our assumption. Hence letting
On = -1, we have

z=E"i j ̂.

j=1

and thus z is the space spanned by the vectors k1, k2,.. -, n -

0

We now need a method of choosing each y'i so that the following conditions hold:

1. J.j is not in the subspace spanned by , k2, .-. . ,Yj-l.

2. Pi Sr = y'i if such a y'i in E[X] exists.

Condition 1 ensures that theorem 1 holds and condition 2 ensures a minimal n in the sense that if there
is a vector in E[X] which satisfies the theorem then it will be chosen over any other vector. Note that if
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The Subspace Projection Algorithm.

Given a set (X1, zl), (X2, Z2) ... Y(xN , ZN), of training patterns, let the
k ' row vector of the N x m matrix X be (1,XT), k =,...,N. Fur-
thermore let x = (zl,z 2 ,...,zN) T andyj=a(Xwj)forallj=1,2,...,
where wj is in Re+ and u is defined as in equation 2. Let the N x N
projection matrices PI and P,' be defined as pN(Z) and IN - P1 respec-
tively, where pN(a) = a(aTa)-laT for all a in WN.

For j = 1, 2,...:
Let wi = Plxi for all i= 1,.,n.
While -11PjyjJ12 is not minimum:

Fori = 1,...m:
Awi'j = -qyT Ii.

wi) = wij + Aw8,.
End For.

End While.
Let pi+l = pi +pN(Pjyj).
Let P'+ = IN - Pj+'.

End For when Pjyi = yj.

Figure 1: An algorithm for finding the hidden layer weights in a single hidden layer neural network.

P "n = *,, for some n then P'Ykn = 0 and hence condition 2 holds if for each j = 1,2,..., we choose r

such that

IIPmi {IIPjy} - (5)
YEE(XI j j 5

This condition can be approximated by a gradient descent algorithm. To this end, consider the cost function

2
E(wi) = IlIP jyjII2, (6)

where wi is the weight vector of the j'h hidden unit and yj is defined in equation 2. Equation 6 can be
optimized by iteratively changing the components of wj towards the direction of the negative gradient of
E(w3 ). To do this, we change wii for all i = 1,..., m by I£wij according to

Awj = 1 (7)

where 9 in * + is the step size, wij = PIxi, and xi is the t h column vector of X.
It should be noted that equation 7 is, as learning rules go, very simple-i.e., it is no more complicated

than the simplest forms of the Hebb rule. To see this, note that wii is constant with respect to wj and hence
for each wvi the rule involves only a linear sum of the states of the hidden units on each training pattern
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weighted with the elements of iri. The only computationally taxing part of the construction are done when
a new hidden unit is added. The complete algorithm is given in figure 1. Unfortunately, this optimization
does not ensure that condition I holds. Yet simulations have shown that if we initialize the weights to large
random values and let o(.) = tanh(.), then the gradient der-ent defined in equation 7 will find a yj which
"fills out" the subspace defined by Pi. Hence y i should lwt be completely contained in any subspace of
span{s, ', ..... *j',-I)--or equivently, not in the subspace spanned by the vectors y, y2. ,
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Abstract

Although several new learning rules have been proposed, the space and time complexities of these two
bottlenecks remain. The bottlenecks occur because all the existing learning techniques are based on a single
large neural structure. In this paper, we approach the solution to this problem by analyzing the input vector
space and, then, partition this space into subspaces. Each subspace will be learned by a small neural network
with a simple learning rule. We also speed up the learning process by reducing the number of training vectors
down to O(mn) instead of 2", where m is the number of vectors having output targets equal to ones and n
is the number of input bits. The reduction is based on the concept of guard ring vectors. The experimental
results show that our learning can be speeded up by 2-30 times over the non-partition process. However the
number of neurons used in our approach is uncontrollable. In some cases, the number is reduced but in some
cases it is increased.

1 Introduction

In any supervised neural network model such as backpropagation [2], there are two major bottleneck prob-
lems: perfect recognition and convergence rate. The perfect recognition problem concerns two main factors.
One factor is the generalization of the training set. The training set and the actual data set must be very
similar within a small variance range. If the variance between these sets is high the chance that an input
vector will be misrecognized is also high. Currently, for a binary space, the size of a training is in the order
of 2" where n is the size of each input vector. For a training set, it composes of two subsets. The first subset
consists of all vectors whose target outputs are equal to ones while the second subset consists of all vectors
whose target outputs are equal to zeros. The training time complexity will possibly be exponential in some
cases. In this paper we reduce this time complexity down to polynomial time by using guard ring concept.
Another factor concerning the perfect recognition is the structure of the network. Generally, a network is
composed of layers of neurons. The recognition capability of a network depends upon this structure and the
number of neurons in each layer (5]. The convergence rate problem concerns the learning rule of the network.
Several learning rules have been proposed. All the classical rules are summarized in [6]. Estimation of the
feasible required number of neurons in the hidden layer are in [3,5]. If the number of the hidden neurons
is too few the network can partially recognize the input vectors. On the contrary, if the number of the
hidden neurons is over the actual requirement, it will create redundancy problem. These redundant neurons
when implemented on a chip will consume power. To overcome these bottleneck problems the whole network
should be partitioned into subnetworks by analyzing the input vector space. For each subnetworks only a
simple learning rule is employed. The contributions of this paper are: 1. concept of 0-1 surface projection, 2.
input space slicing algorithm, 3. guard ring pattern concept, and 4. maximum subnetwork sharing concept.

The paper consists of eight sections. Section 2 discusses the analysis concept of parallel training. Section
3 discusses the input vector slicing algorithm. Section 4 discusses and provides the bound on the number of

'This work is partially supported by Department of Mathematics, Chulalongkorn University, Bangkok, Thailand and by
National Science Foundation, USA under grant NSF-ADP-04
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guard ring patterns. The technique to combine all the subnetworks is given in Section 5. Section 6 discusses
the multiple output case. Section 7 gives the experimental results. Section 8 concludes the paper.

2 Analysis Concept of Parallel Training

One solution to these bottleneck problems previously mentioned is by analyzing the inpet vector space
and, then, slicing this space into many subspaces. Then, each subspace will be learned by each separated
subnetwork concurrently. The space that we study in this paper will be a binary space. The definition of
these two spaces and the distance metrices are as follows.

Definition 1 A binary space of dimension m is a space consisting of a set of vectors. Each vector V z
(VU, V .... ,VM) and for each bit vi E {0,1}.

Definition 2 A bit distance B(V,Vj) between binary vectors Vi and V is equal to the number of bit pairs
such that the ash bit pairs vi,a 0 vi,a, for all a's and vi,a E Vi and via E Vi.

Definition 3 Binary vectors V and W are adjacent if B(V, W) = 1.

Definition 4 A Eucledian distance D(,V) between real vectors 1i and V is equal to f Vi - V i"

The size of the binary space is equal to 2m and all possible vectors in the space form a hyperspace cube.
Each V is located at the corner of this cube. The bit distance between any two adjacent vectors is equal to
one and it is also equal to the Eucledian distance.

2.1 Separability in Binary Space

We consider this situation. Given a binary space S wlhose vectors belong to either class A or class B. We
want to find the conditions that guarantee the separability of S into two classes A and B in n dimensions
by a hyperplane. n can be any value. The problem of separability has been reported in [1,7,8]. The PAC
learning model and developed an algorithm to learn n input vectors under given k hidden threshold units
is considered in [1]. These n vectors are learned by a single network consisting of k hidden threshold units.
The time complexity of this technique is O(kn3 + nk2 C- 1 + 2 - 3 ). A sufficient condition that a set of
regions can be separated by a 2-layer feed forward network using threshold units is shown in [7]. The
relation among the number of hidden layer nodes, the complexity of a multiclass discrimination problem,
and the number of input vector needed for a good learning are summarized in [8]. They did not consider the
location distribution of each vector. Unlike these proposed concepts and algorithms we analyze the grouping
characteristics of the input vectors and slice them into minimum number of subgroups. Each subgroup must
be perfectly separated from the others. To achieve the minimum number of subgroups, some subgroups must
be combined into one subgroup to preserve the condition that the new group is separable from the others.
Before discussing the technique for slicing a group into subgroups we will consider the conditions when two
groups in n dimensional space can be separated. These conditions which are different from those in [9] are
summarized as follows.

Lemma 1 Given a space S consists of two groups, A and B. The membei of these two groups are randomly
scattered. If there exists a hyperplane, H, passing through S and the projection of the vectors in S onto this
hyperplane creates a group vector of either ABA or BAB pattern then A and B cannot be separated by any
hyperplane.

Definition 5 P'(V) : B" - B" is a surface-I projection on the i"h dimension of a vector V = (vI, v2 ,. . ., vn)
if Vi =1.
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Definition 6 P°0(V) : B" -- Bn is a surface-O projection on the i' h dimension of a vector V = (vi,V2 ..... v,)
if vi = 0.

From the definitions of projections above, it is obvious that P°(V) is adjacent to V if the i' bit of V is
1 and Pl(V) is adjacent to V if the i&' bit of V is 0. Given a binary space S. Let {V,' be a set of vectors
in group A and the rest in group S- A. Suppose P i{Vj} and P4{V) are applied to every V in A. P,'{ VI}
and PO}Vj) may produce some new vectors not originally in A which implies that these new vectors must
be in S - A. We conclude following results.

Theorem 1 In the i' h dimension, if both Pi'fVi) and P{V'}, where V E A, produce some new vectors not
originally in A then A is inseparable from S - A by a hyperplane in the it5 dimension.

Proof Consider PilfV,) first. If it generates some new vectors in -A it means that there must be some
vectors in S - A adjacent to those vectors in A whose bits are changed from 0 to I by projection. Similarly,
P°0{f V} implies that there must be some vectors in S - A adjacent to those vectors in A whose bits are

changed from 1 to 0 by projection. Therefore A is sandwiched by some vectors in S - A. By Lemma 1, A
and S - A are inseparable by a hyperplane. 0.

Theorem 2 It the th dimension, if only either P{ v}) or PO{)}, where V E A, produces some new
vectors not originally in A then A is separable from S - A by a hyperplane in the ith dimension.

Proof If either P { 1',} or Pi4 V } produces some vectors in A and S-A it implies that A is not sandwiched
by any vectors in S - A. Thus A and S - A are separable in the ihdirrension. 0

Theorem 3 A is separable from S - A by a hyperplane if for every i t h dimension only either P{ V or
ilf{V/), where Vi E A, produces some new vectors not originally in A.

Proof The result follows directly from Theorems 1 and 2. If in some dimension i some vectors of A are
sandwiched by some vectors of S - A then it is obvious that these vectors of A are inseparable from S - A
by a hyperplane. 03

Theorem 4 (Generalized exclusive-OR). If every pair Vi and Vj of class A has B(Vi, V') > 2 then class A
is inseparable from class B.

Proof If every pair V ad Vj has B(V, V) > 2 it means that all paths that connect V and Vj of class A
must pass some adjacent vectors Vki and Vk2 in S - A on different paths. When V and V are projected on
both surfaces are executed it will create a sandwich situation. Therefore i and V cannot be in the same
group and cannot be separated from S - A by a hyperplane. 0

The following table illustrates how the surface-0 and surface-1 projections are performed. We designate
symbols s - 0 and s - 1 to represent surface-0 and surface-1 projections, respectively. The bold vectors are
vectors not in the given set. Let 4101, 100, 110, 010, 011} be a given vector set. In the first dimension,
the projection creates a new vector 41111 only on surface-1. In the second dimension the projection creates
two new vector pairs, namely 4111,000) and 1111,001} and in the third dimension the projection creates
two new vector pairs, {001,111} and {111,111}. By applying the above Theorems we can conclude that this
given vector set cannot be separated from the other vectors 4111,000,001,001} in this 3-dimensional space
by using a hyperplane.

Given Dimension 1 Dimension 2 Dimension 3
patterns s-O s-i s-O s-I s-0 s-

101 100 101 101 111 000 100
100 100 101 100 110 000 100
110 110 111 100 110 010 110
010 010 011 000 010 010 110
011 010 011 001 011 011 111
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3 Input Vector Set Slicing Concept

If class A cannot be separated by from class S - A we need to slice class A into subclasses furth-- such
that each subclass, Ai, is separable from S - A, by a hyperplane. The previous Theorems can be applied
to test the separability of Ai from S - Ai. Class A is sliced into many subclasses by conditionally gi uping
each vector in A into subclasses. There are two conditions that must be considered during the slicing and
grouping process. The first condition occurs after 0/1 surface projection. In class A, two vectors Vi and Vj
cannot be grouped in the same subclass if there exists a sandwich condition that is P°(Vi) V A and P , )
V A or Pt(Vi) V A and PA(V) V A exist. The second condition concerns the transformation of the given
vector set after the 0/1 surface projection. To group any vectors, V and V together, Vi must be able to
transform to itself of to Vj. To prevent the first condition to occur each vector must be able to transform
to the other vectors within the same group. For example, let A ={101, 111, 110, 001, 000 ,010). We name
a=101, b=111, c=110, d=001, e=000, f-010. It can be seen that if vectors b, d, and f are in the same group
vector b cannot be transformed to vectors d and f. Similarly, vector d cannot be transformed to vectors b
and f and vector f cannot be transformed to vectors b and d. We call the first condition conflicting and
the second condition transformable.

A valid group occurs if there are transformable and non - conflicting conditions for any pair of vectors
in that group. Let {vi, V21 ... I vm} be a set of given input vectors. The transformability between any two
vectors Vi and V occurs when B(V, 1') = 1.

Slicing Algorithm

1. For all input vectors, perform surface-0 and surface-i projections in all dimensions.
2. Select v1 . Let g be the group index. Set g = 1.
3. Select all vi's such that B(vi, v1 ) = 1 and there is no conflict between any vi and v1. Assign vi in the
same group as vi.
4. Set g = g+1. Select a new vi not grouped in any group as the first vector of a new group g.
5. Select all vk not grouped in any group such that B(vk, vi) = 1 and there is no conflict between any vk
and vi. Assign vk in the same group as vi.
6. Repeat steps 4 and 5 until all vectors are grouped.

From the above example {101, 111, 110, 001, 000, 010), after the slicing algorithm the valid groups are
{101, 111, 1101 and {001, 000, 0101.

Theorem 5 The time complexity of the slicing algorithm is O(m 2), where m is the number of given input
vectors.

Proof Consider the worst case. For any vector, Vi, being considered, we must compare this vector with the
other given vector, Vj, if B(V, Vi) do not conflict. The maximum number of Vi's that must be considered
is equal to m. Therefore the maximum number of comparison is less than or equal to m2 which means that
the time complexity is O(m

2 ). 0

4 Minimal Number of Guard Ring Vectors

It is necessary to use both vectors in class A and class B to train any subnetwork. If we use both classes
the number of training vectors will be equal to 2' where n is the number of input vector bits. The essential
number of additional vectors used to train with the vectors in class A is O(mn) where m. is the number of
vectors with respect to nucleus p and n is the number of input bits is given in [10]. The additional vectors
act as guards protecting all vectors in class A from those in class B. These additional vectors are taken from
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class B. The concept of guard ring vectors can be applied to our case. The difference between our case and
[10] is there is no nucleus vectors for grouping other vectors whose bit distances are equal to one in our case.
In our case all vectors are grouped in the same group if they generate only surface-0 projection vectors or
surface-1 projection vectors. Our approach is more general than theirs. Let m be the number of vectors in a
separable group, n the number of bit in each vector, d the number of vector pairs having bit distance of one,
and b the number of vectors having bit distance of two. The number of guard ring vectors is summarized as
follows.

Theorem 6 The number of guard ring vectors is equal to mn - 2d - b

5 Combining Subnetworks

All subnetworks must be combined to form one network. The combining technique is based on the fact
that each subnetwork generates a single output one at a time. These outputs from subnetworks must be
combined in such a way that when one of the subnetworks generates an output the output will appear at the
output layer of the combined subnetworks. Let's consider the case when the combined subnetworks has only
one output one output at the output layer. Suppose that there are m subnetworks. At any time only one
subnetwork generates an output. Thus the possible output vectors of m bits generated by these subnetworks
are {100...000, 010...000, -.. , 000...001). We need one neuron to learn these outputs and generate an l's
when one of them appears. To train the output neuron to recognize these vectors may take many epochs.
The easier approach to this training is by considering the complement of this situation. Instead of Jetting
the output neuron generate an I's when it recognizes these output vectors we let it generate an O's and
let it generate an l's when it recognizes vectors {000...000}. The output vectors {100...000, 010...000,
000...001} will become the guard ring vectors for vector {000 ...000}.

6 Multiple Outputs

The slicing technique previously discussed can be extended to multiple output case. The objective of multiple
output case is to obtain the minimum number of subnetworks or the maximum sharing of subnetworks for
all outputs. For an output, the way to group the input vectors with respect to this output is not unique.
This fact can be applied to obtain the maximum sharing of subnetworks. Therefore the solution to achieve
the maximum sharing is to generate all possible slicing group and find those common subgroups.

7 Experimental Results

The comparison is performed by using the classical backpropagation learning rule proposed in [2]. The
reason that we did not use any recent complex learning techniques such as the one in [4] because we want
to emphasize on the slicing algorithm and projection testing technique rather than the learning algorithm
itself. We want to signify the point that another approach to speed up the learning time besides improving
the learning rule is by slicing the the input vectors and using a simple learning rule to learn these in parallel.
We compare two critical factors, the learning speed and the area saved between the unsliced and sliced input
vector approaches. The total sum square error lays inbetween 0.001 to 0.007. On the speed comparison
between sliced and unsliced network cases, we try to use the minimum number of neurons in both cases.
For the sliced network case, by the above Theorems, the minimum number of neurons is always achieved.
On the other hand, for the unsliced network case, the fewer the number of neurons are used the longer the
training time is achieved. The meaning of each symbol in the comparison table is as follows: Ns symbolizes
the total minimum number of neurons; Is symbolizes the size of each input vector; Os symbolizes the size
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of each output vector; Es symbolizes the number of epochs; SNs symbolizes the number of subnetworks;
NsS symbolizes the number of neurons in each subnetworks; E - range symbolizes the range of epochs of all
subnetworks; %Sp symbolizes the speedup ratio which is equal to the number of epochs by unsliced network
and the number of epochs of sliced network; %N change symbolizes the percent of number of neurons change
between sliced and unsliced approaches. The plus sign means the number of neurons is increased while the
minus sign means the number of neurons is decreased.

SEx Unsliced Sliced
Ns Is Os Es SNs NsS E-range %Sp %N change

i 17 5 1 2288 3 12 686-1037 2.21 -29.411
2] 9 3] 1 988 2 8 628-748 1.32 -11.11
3[ 9[ 3 3 25260 I  5 13 474-772 36.61 +44.44

8 Conclusion

We presented another approach to speed up the learning process. Based on the experiments, the learning
process is speeded up by 2-30 times. Although the partitioning algorithm has a polynomial time the area
complexity is varied from case to case which is difficult to predict. Generally, it can be deduced from the
experiments that the higher the speed the more the neurons are required. The comparison speed in the
above table may be varied depending on several parameters such as learning rate, initial weight vectors, and
the steepness of the sigmoidal function.
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ABSTRACT Recently, some fast and flexible neural networks have been proposed to attempt to solve
efficiently hard optimization problems. With the intent to represent more closely the major features of
biological neural systems and to mimic their behavior, a neural network model, called the Random Neural
Network (RNN), has been introduced by Gelenbe and has been used in solution of optimization and recognition
problems. Lately, a supervised learning procedure which is mainly based on the minimization of a quadratic
error function, is proposed for the recurrent RNN model. In this paper we explore the relationship between the
RNN model applied to optimization and the network learning, specifically for acyclic graph partitioning
problem. This new approach links these two domains known as learning and optimization.

1. INTRODUCTION

Many optimization problems become intractable when the number of suboptimal solutions grows
exponentially with the size of the problem. Such problems belong to the class of NP-complete problems, i.e.,
no algorithm is know which provides an exact solution to the problem in a computational time which is a
polynomial in the size of the problem input. In the past, researchers have developed heuristic methods that
provided suboptimal solutions in a time that is proportional to a polynomial in the size of the problem. But the
solutions provided by heuristic methods are often unacceptable for problems involving large size graphs which
are unfortunately the most frequent in practical applications.

Recently, some fast and flexible neural networks have been proposed to attempt to solve efficiently hard
optimization problems. With the intent to represent more closely the major features of biological neural
systems and to mimic their behavior, a neural network model, called the Random Neural Network (RNN), has
been introduced by Gelenbe [2, 6] and has been used in solution optimization [7] and recognition problems.
Lately, a supervised learning procedure which is mainly based on the minimization of a quadratic error function,
is proposed for the recurrent RNN model [9]. In this paper we explore the relationship between the RNN model
applied to optimization and the network learning, specifically for acyclic graph partitioning problem. This new
approach links these two domains known as learning and optimization. The general idea is that the network
learns to minimize the cost.

This work is organized as follows. In section 2, we present the partitioning graph problem. Section 3
presents the RNN of Gelenbe, the basic learning algorithm and their application to optimization problem.
Section 4 compares the recurrent RNN model with other methods. Remarks concerning the future works and
concluding are provided in section 5.

2. DEFINITION OF GRAPH PARTITIONING PROBLEM

The problem consists in dividing a graph in several subgraphs, so as to minimize the costs of connection
between them. The idea is to divide the nodes of the graph in several distinct subsets so as to minimize the
links between the subsets, that is the sum of the arcs whose joined nodes are in different subset is minimal. The
graphs are acyclic and directed. We can complicate the problem with a weight for the arcs. In this case, we must
minimize the sum of the weights between the subsets. Also, we can add a weight to the nodes and define again
what we want to minimize according to the particular characteristics of problem in study. We have an example
of a particular definition of graph in [71, for the problem of parallel program partitioning.

In a very general way, to place the problem on a mathematical formulation, the following definition is
necessary: the graphs are sets of nodes joined by arcs. It can be defined as follows:

H7=(N,A) where, l is a directed graph,
N is a set of n nodes on which we can associate a weight function Q : N -> R. In

ours studies Q(i)=l for i=l,... a,
A = aij, are node pairs that define the arcs. It's known as adjacency matrix, and it

defines the arc weight of n.
The problem consists in dividing the graph in K different subgraphs H={H 1. .- , according to certain

constraints. The classic constraints are:
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- The subgraphs must have a specify size Nn 1, .... N'k, or must have a weight sum of nodes less than a

given value V NlIk < given value where, Nlik = l Q(i) for k=I...K

Ilk ie lk
- The arcs with extremities in different subgraphs must be minimal, or the weight sum of arcs which join nodes
which are in different subgraphs must be mimimized

I aij <must be mimimized D={ie H'k&je 'l & l*k)
ije D

The cost function associates a real value to every subgraph configuration. It permits to calculate the cost of a
subgraphs configuration, according to the constraints defined in the cost function. To study this problem as a
graph partitioning optimization problem, we use the cost function:

K _ / KF aij+b( (Nk- )2 )IK(
i,j e D k=l

This cost function was defined in [10] as the minimization of the interconnection and imbalance costs. This
later constraint consists on minimizing the node variance between the subgraphs.

The balance factor (b) defines the importance of the interconnection cost with respect to imbalance cost, and
NIlk is the tasks number in 1'k V k=l .. K.

The graph partitioning problem is reduced to find a subgraph configuration with minimum value for the cost
function: Fl = MIN(F) (2)

3. THE RANDOM NEURAL NETWORK

A. Random Network Model

The Random Network (RNN) model has been introduced by Gelenbe [2, 6] in 1989. Signals in this model
take the form of impulses which mimic what is presently known of inter-neural signals in biophysical neural
networks.

We shall recall here the principal characteristics of the RNN. The model consists of a network of n neurons in
which positive and negative signals circulate. Each neuron accumulates signals as they arrive, and can fire if its
total signal count at a given instant of time is positive. Firing then occurs at random according to an
exponential distribution of constant rate, and signals are sent out to other neurons or to the outside of the
network. Each neuron i of the network is represented at any time t by its input signal potential ki(t).

Positive and negative signals have different roles in the network. A negative signal reduces by I the potential
of the neuron to which it arrives (inhibition) or has no effect on the signal potential if it is already zero; while
an arriving positive signal adds 1 to the neuron potential. Signals can either arrive to a neuron from the outside
of the network or from other neurons. Each time a neuron fires, a signal leaves it depleting the total input

potential of the neuron. A signal which leaves neuron i heads for neuron j with probability p+(ij) as a positive
signal, or as negative signal with probability p-(ij), or it departs from the network with probability d(i).

Clearly we shall have: ,n j 1 [p+(ij)+p(ij)] + d(i) = 1 for l in.

Positive signals arrive to the ith neuron according to a Poisson process of rate A(i). Negative signals arrive to
the ith neuron according to a Poisson process of rate X(i). The rate at which neuron i fires is r(i).

The main property of this model is the excitation probability of a neuron i, q(i). It is defined Es:
q(i) = +(iY(r(i)+X'(i)) (3)

where, %+(i) = yn.=lq6)r(j)p+(j,i)+A(i) A(i)= arrival rate of external positive signals,iI
V'(i) = jnj=lq0)r(j)p(j,i)+4(i) A(i)= arrival rate of external negative signals.

If a unique non-negative solution exists to equation (3) such that each q(i) <_ 1, then the stationary probability

distribution is p(k) = 1ni_, (l-q(i))q(i)k(i) k(t) : vector of signal potentials at time t.
To guarantee the stability of the RNN, the following is a sufficient condition for the existence and uniqueness

of the solution in the equation (3) A(i) + jlr(j)p+(0,i) < r(i) + X(i)

B. Relation between the RNN Model and the Network Learning to Optimization Problems

i) Learning in the recurrent RNN model:
In the RNN model, the weight parameter w+(ij) and w'(ij) are defined as:
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w+(ij) = r(i)p+(ij) w-(ij) = r(i)p'(ij)
and r(i) = 5.= [w+(ij) + w'(ij)]

They represent rates at which positive and negative signals are sent out from any neuron i to neuron j.
Gelenbe has proposed an algorithm in [9] for choosing the set of network parameters W in order to learn a given
set of m input-output pairs (0l, 8) where the set of successive inputs is denoted:

a= (il, ..... Qm} where i m  (Am , ;m}
and Am = (Am(l) ... , Am(n)) ) m = (Xm(l) ... , Xn(n))

The successive desired outputs are the vector B = {81. 8 m), where Bm = (Bm( 1 ) ... , Bm(n)) and Bm(i)e
[0,1] correspond to the desired output vectors. The network approximates the set of desired output vectors in a
manner which minimizes a cost function Em:

Em= -~ I ai(q(i) -Bm(i)) aj 202m i a= I

The algorithm lets the network learn both n by n weights matrices Wm+={Wm+(ij)) and Wm=(wm-(ij)) by

computing for each input Q., a new value win + and win, using gradient descent. The rule to update the
weights may be written as:

wm4u, v) = wml(u, v)- j ai (qm(i) - Bm(i)) [a ] (4)i~l / [w(u, v)]
i=1n m

where, V > 0 is some constant qm(i) is calculated using Qm and wm(uv) = wml (u,v) in (3)
[aq(i) / aw(u,v)]m is evaluated of the values q(i) = qm(i) and w(u,v) = wm_1(u,v) in (4)

The complete learning algorithm for the network is:
- Initiate the matrices W0+ and W0 - in some appropriate manner. Choose a value of I in (4).
- For each successive value of m:

- Set the input-output pair (iln, 8 m)
- Repeat

- Solve the equation (3) with these values
- Using (4) and the previous results, update the matrices Wm+ and Wm "

Until the change in the new values of the weights is smaller than some predetermined valued.

ii) Optimization using RNN model:
In the RNN model, q(i) depends on A(i), X(i), p+(j,i), p(j,i), r(i) and the other q(j)s. The weight between

neurons is characterized by p+(j,i), p0j,i) and r(i). The update of these parameters is logical in the learning
phase. In the optimization, of every iteration we redefine the network without a change in the weights. By this
way, p+(j,i), p'j,i) and r(i) are fixed and depend on the nature of combinatorial problem. Besides, in the
optimization problem the relationship between two neurons is competitive or cooperative, that is either p+(j,i)
or p0j,i) is null. Of course, if there are not interaction between them, both p+(,i) and p'(j,i) are null. On the
other hand, emission of external signals is not interesting to optimization, it is better to employ the signals to
inhibit or to excite the neighbor neurons, that is d(i) is null. The fire rate r(i) is obtained by the reciprocity of
effect between neurons. When two neurons i and j are excited and i emits signals to j, the excitation or
inhibition that i exerts over j must be the same as excitation or inhibition that i receives.

If the weights are fixed, the only way to lead the network from one stationary state to another one is to act
over the inputs. This state of the RNN model is defined by (q(i) ... , q(n)). The use of two externals flows to
every neuron permits a complex scaling of an external positive flow to an external negative flow [8]. In
optimization, the use of two flows is not interesting. We consider X(i) as null so that the neurons only receive
external positive signals, representing the preference that the neuron belongs to the solution. By this way, q(i)
and A(i) become the variables of the RNN model.

We define a dynamic of external positive signals in RNN model, in order to find the state that gives the
minimal energy in the network. Using the technique of gradient descent, the dynamic of external excitation
signal is defined as: A(u) m+l= A(u) m - i [aE/A(u) ]m in the m-th iteration (5)

where E is the energy function of the system state.
This equation describes the control that is necessary to apply to the system to minimize the energy function.

The optimization with RNN model is the same as problem al control. This method uses a technique of
learning, where the network learns to minimize the energy f(

The general algorithm for the RNN model in optimization 1 - with learning is:
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- Initialize A(i) in some appropriate manner
-Repeat

- Solve the equation (3)
- Using (5) and the previous results, update A(i).

If A(i) is outside of [0, r(i)], replace for the nearest bounds
Until the change in the new value of q(i) is smaller than some predetermined valued.

iii) Application of the RNN model in partitioning problem:
We use the two solutions presented in [71 for this problem. We like study in this work the capability of the

RNN model as dynamic method using gradient descent. The two solutions in (71 are defined as following:
In the first solution (RNNI), we study the space of possible solutions. To model this, we use nK+K neurons

of two types. There are nK neurons of type Nl(ik) that represent one element of the solution space, where i is
the node Ti and k the partition Hk; and K neurons of the type N2 (k), which represent the load regulator of
partition flk.
a) For N1, if ql(i,k) - I this solution is admitted. There are negative links between: N1 (i,k) and Nl(i,z) where

k * z (with incompatibles solutions, with probability p l'((i,k),(i,z))), NI (i,k) and N 1 (i,z) where k * z and air I

(successor nodes which are in different partitions, with pl-((i,k),(j,z)) probability) and, Nl(i,k) and N2 (k) (the
node i belongs to partition k with regulator k, with probability pI'((i,k),k)). There are excitation links between
Nl(i,k) and Nl(J,k) where ajj=l (the successor nodes which are in the same partition, with probability
pl+((i,k),(j,k))).

b) For N2 (k), if q2 (k)- 0 the partition has arrived to its maximal capacity. There are only positive links
between: N2 (k) and Nl(i,k) for i= 1 ... n (the regulator k with the nodes belonging to partition k, with

probability p2+k,(ik))) and, N2 (k) and N2 (z) where k * z (the other load regulator, with probability p2+(k,z)).
The equations of the system are:

ql(i,k)=Xl/Y1 and Xl=Yz klj &aji=l qlj,z)rl(J,z)pl+((,z),(ik)) + q2 (k)r2 (k)P2+(k,(i,k))

Yl-rl(ik) + Yzklnj=l&(aji= I or j-i) ql(Jz)rl(Jz)pl((Jz),(ik)) (6)

q2 (k) = X2/Y2 and X2 = A2 (k) + X., q2 (z)r 2(z)p2 +(z'k)

Y2 = r2 (k) + jni=1 ql(i,k)rl(i,k)pl((i,k),k)

And, the model parameters:
di(i,k)=d2 (k)=1 (i,k)=X2(k)=A1 (i,k)=O A2 (k)= n/K

r1 (j,z) pl+((,z),(ik)) = rlo,z) pl-(j,z),(i,k)) = rl(i,k) plf((i,k),k) =1

r2 (k) p2 +(k,(i,k)) = r2 (z) p2 +(zk) = 1

In the secot ton (RNN2), we start with an initial solution that we will try to improve. To model this,
we use n+K ne .f two types: n neurons, Nl(i,k), represent the k partition to which the node i belongs; and
K neurons, N2 (k), represent the load regulator for every partition.
a) For N1, if qI(i,k)=l the task i is accepted in the k partition. There are positive links between NI(i,k) and

N1(J,k) where aij=1 (the successor nodes if are in the same partition with probability p1 +((i,k),(j,k))). There are
negative links between: N1 (i,k) and Nlfj,z) where k~z and aij=l (the successor nodes if are in different

partitions, with probability pl'((i,k),(j,z))) and, Nl(i,k) and N2 (k) (the node i belongs to partition k with

regulator k, with probability pl'((i,k),k)).
b) For N2 (k), if q2 (k)- 0, the partition has arrived to its maximal capacity. There are only positive links
between: N2 (k) and Nl(i,k) for i= I ... n (the regulator k with the nodes belonging to partition k, with

probability p2+(k,(ik))) and, N2 (k) and N2 (z) where k * z (the other load regulator, with probability p2+(k,z)).
The equations of the system are:

ql(i,k)=X3/Y3 and X3=7=kji&aji=1 ql(j,z)rl(j,z)pl+((j,z),(i,k))+q 2 (k)r2(k)p2+(k,(i,k))

Y3= r1(i,k) + lz*kYj*i&aji=1 q1 O(,z)r 1(J,z)p l((,z),(i,k)) (7)

q2 (k) = X4/Y4 and X4 = A2 (k) + EzY k q2(z)r 2(z)P2 +(zk)
Y4 = r2 (k) + li e k ql(i,k)rl(ik)pl "((ik),k)
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And the model parameters.
dl (ik)=d2{k)= ,l {Lk)42 AI (ik)=0 A2(k)= n/K

rlj,z)pl (0,z),(ik)) = rff,z)plf(,z),(ik)) = rl(i,k)pl'((ik),k) = I

r2 (k)p2 +(k,(i,k)) = r2 (z)p2+(zk) = I

iv) Application of the recurrent RNN model in the partitioning problem:
In this article, we use a method where the neural network learns to optimize based in an improves to RNN

model. To define the dynamic of external positive signals in RNN model, in order to find the state that gives the
minimal energy in the model, we introduce AI(i,k) as control parameter in the system equations (6) and (7), and
use the cost function (1) as energy function (E). The new system equations for RNNI is

ql(i,k)=Xl/YI and X1=Al(i,k) + :_ 1yqj 1i&aji=IqlQ,z)rl(J,z)pl+((j,z),(i,k)) + q2 (k)r2 (k)P2+(k,(ik))
YI is identical to YI in the system equation (6) (8)

q2(k) is identical to q2 (k) in the system equation (6)

and, for RNN2 is

ql(i,k)=C3/Y3 and X3=Al(ik) +z=kj.i&aji=l ql(jr,z)r1 jz)pl+((j,z),(ik))+q2 (k)r2 (k)P2+(k,(ik))
Y3 is identical to Y3 in the system equation (7) (9)

q2(k) is identical to q2 (k) in the system equation (7)
To search value optimal to Al(i,k) and A2 (k), starting with an initial value A1

0 (i,k) and A2
0 (k), we use the

gradient decent A1 m(u,v) = Al m l (u,v)- It [E/aA1 (u,v)]m (10)

ad A2 m(v) = A2 rn-1 (v)- IL [aE/aA2 (v)] m  (11)
which guarantee that Em < Em- I

The energy function (E) for the graph partitioning problem, according to the equation (1) is
K

E = I aij ql(ik) q 1(jl) + b ( £ (Nfkq2(k) - /) 2 )/ K (12)
ij E D k=-I

whereD=-fie 'lk&je 1l&lk}
To determine aE/aA1 (uv) and aE/aA2 (v) we use the equations (8), (9), (10), (11) and (12)

aE/oAl (uv) = [7 (aijl[i>j] + ajil[i<j] ) ql(ik)] il(i,k)/aAl(u,v)
iej

aE/aA2 (v) = (b/K) [2Y Kk=I(Nk 2 q2 (k) - Nnlk(n/K)) I aq2(k)/aA2 (v)

where aql(ik)/aAl(uv) 1/Ykl [1-Cl]- 1

q2(k)/aA2(v ) = l/Yk2 [1-C 2 ]1

and Cl=[z=k ji&aji=lrl(j,z)pl+((j,z),(ik))I/Ykl[Xkl .=njl&(ajil orj=i)rl(Jz)pl(,z),(ik))]/Ykl 2

C2 = 1zk q2(z)r2(z) / Yk 2  for RNN1 kl = 1 and k2 = 2 or, KI = 3 and K2 = 4 for RNN2.

4. PERFORMANCE EVALUATION

We compare the random neural model with the approximate methods studied in (10]: genetic algorithm (GA),
simulated annealing (SA) and kernighan's heuristic (H). We have used the parameters that give the better
performance in every method, according to the results of the work [10]. We have used a SUN SPARCstation
IPC with 16M of memory and a matrix as data structure. The graphs used are defined for the number of nodes
(N) and the average degrees of the nodes (D). The execution time is in seconds.

For graph of little size (< 15 nodes) simulated annealing and recurrent RNN model gives the optimal solution
(table 1). In general, the result quality and the execution time are approximately the same. The difference
between the exact solution and the results of the approximate methods is little and the execution time similar.
For graph of 50 or more nodes the approximate methods are more interesting, because they have a reasonable
execution time to find a suboptimal solution. Recurrent RNN model that starts with an initial solution gives
the best results. In general, the qualities of the results of recurrent RNN model and simulated annealing method
are similar, but recurrent RNN models execution times are a lot less.

Recurrent RNN model gives better results than RNN model that not uses gradient descent, because in the first
model the network learns to optimize. The improve of the results is very important. The RNN model that starts
with an initial solution gives better results than the RNN model that uses all solution space.



Gra h Type Method

EXAC H SA GA RNNI RNN2 RNNI-rec RNN2-recN K D Tim Cos Tim Cos Time Cost Time Cost Time Cost Time Cos Time Cos Time Cos

0 10 2 2 7 0 6 2 13 0 6 2 11 0 7 0 6 0 4 0
1 10 2 2 3 2.5 4 2.5 8 3.5 3 2.5 6 2.5 6 4 5 2.5 4 2.5

1 15 2 2 85 2.5 5 5.5 7 3.5 4 4.5 11 5.5 6 6.5 5 5 5 4

1 50 5 5 10 15 148 9.5 48 15 10 11 8 18 7 10.5 7 7.5

0100 5 50 22 66 6983 17 399 0 37 0 43 0 63 0 52 0

1 1nn5 5 15 66.8 6610 35.8 356 58.8 33 63.5 47 65 65 52.8 54 32.5

TABLE 1. Results of the simulations

5. CONCLUSIONS

The experiments we have run show that the results obtained by each approximate method vary widely
depending on the type and size of the graphs considered. In our study all the methods give good results, but
recurrent RNN model gives the best results for large graph with short execution time. In RNN model, the
approaches that start with an initial solution give the better results.

The use of learning algorithm for optimization problem in RNN networks, improves the previous results
obtained with this model. The news results are better or same as the results of simulated annealing (this method
gave the best results in [10]), and the execution time is similar to RNN network without feedback control. The
problem in recurrent RNN networks, is the number of variables (., threshold) that are necessary to control.

The execution time for the Genetic Algorithm and Simulated Annealing are very large. For Genetic
Algorithm, the reason is that generation calculations take relatively much more time. It is necessary to
determine the better combination of genetics operators, to decrease the number of necessary generations to reach
the suboptimal solution. For Simulated Annealing, since it is not possible determine coherent movements of
nodes in every temperature level that decrease the energy, the solution is evaluated in a relatively longer time.
The Genetic Algorithm and the Random Neural Model are easy to implement on a parallel machine, and this can
considerably improve the speed obtained with these methods.

Future research will apply these algorithms in the optimization of the parallel program speedup; will
examine other combinatorial optimization methods for the solution of design problems in distributed systems
(tasks assignment, files allocation, ...); will consider a combination of the Random Neural Model and Genetic
Algorithms; and will implement these algorithms on parallel machines.
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ABSTRACT

The LMS energy function becomes less useful for the class of bistable ambiguity figures, because the
desired output is ambiguous. A revised back error propagation network based on Haken Synergetic Computer's
polynomial energy function, e.g., ?'field, isproposedfor the recognition of bistable reversible figures. The training
of the network follows a modified supervised delta learning rule of interconnected weights. The test of "reversible
figures" is subsequently controlled by the double well potential phase transition tuning parameter given test image
data The effects of the tuning parameter changing potential from a sing well into a double well are illustrated. We
demonstrate that the networks trained with the new energy function generally have better performance in training
speed and classification of patterns than the standard back error propagation networks trained by the least mean
square energy.

Keywodh: Reversible figures, bistable, neural networks, phase transition.

1. INTRODUCION

Recent advances in top down design of artificial neural networks have yielded improvement in recognition
of objects belonging to identifiable and therefore labelled classes. The reversible figure, vase/face (Figure 1. pattern
1), problem represents a different challenge, where the date can not be a prior defined. One picture can belong
equally to two different classes depending on the perception environmental conditions. We could classify it as either
a vase or two old men facing each other. Since both interpretations are correct, a network is forced to either
converge on a single pattern or separate the pattern into two unrelated classes. A single minimum energy function
such as LMS, must merge these two interpretations into one class or several classes. We adapt the single order
parameter double well potential function of Haken's Synergetic Computer[l1[41 as the Artificial Neural Network
energy function, with Haken's attention parameter as the phase tuning parameter to resolve reversible figures. The
energy function could evolve into a double potential well with appropriate attention parameters. The separate
minimums could be used to represent the two feature patterns of the bistable figures. We assume a standard back
error propagation network using three layers of signioidal nodes. Connections are made from the bottom layer to
the hidden layer and then from the hidden layer to the output layer with no local recurrent or intralayer connections.
We test our network using reversible figure input patterns and patterns with small symmetry-breaking perturbations
and noises.

2. GENIRIC BPN TRAINING RULE

We begin with a standard feed-forward back error propagation network architecture with the uplink W,
between the output layer neurons (inout) = (u,v) and the hidden layer neurons (inout) = (u',v) and lower link W,'
between the hidden layer neurons and the input layer neurons (inout) = (u",v"). From the gradient descending
learning rule, we could derive the following BPN weights update rule by keeping the energy function E until the
last step of its substitution.

For general E, the weights between output layer and hidden layer are given as:
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wi"l) = WQ) + AW9 (1)

A W1 • 6,u'At (2)

where 6s a -A = -AVXI - ,) (3)
at, v,

For the weights between hidden layer and input layer:

W(t+1)- woo) + An, (4)

A = (6Xvj)XAt) (5)

where 6d O ; .- W 1 (6)

These are the generic delta training rule based on an unspecified energy function. It could be seen that the 61

is the key element of the six equations. It has been shown that the least mean square energy function, minimum
misclassification error functions, and minimax energy functions are all valid for backpropagation type networks.
All these different functions have limitations. The least mean square technique is most common and deeply rooted
in our thinking because it is most general. This technique has earned its place in history for its ability to find best

fit for a wide variety of data sets. The MME technique helps to separate overlapping features that cause confusion
between two distinct classes of objects and are generally more appropriate for automatic target recognition problems

[8]. The development of minimax gives us another tool for determination of unknown feature vectors necessary for

class separation.

3. QUARTIC POTENTIAL ENERGY FUNCTION TRAINING RULE

The general quartic energy function in terms of Haken's order parameters 4 has the following forms,

V = ' + B C + + E (7)

Using the case of Hopf bifurcation (A=1/4, B=O, C=-J2, D=O, E=0) when X < 0 the potential energy V has a single

minimum at the origin = 0. When X > 0 a double well exists with the minimum located at = and a

minimum value of - 2/4. We are now left with

V. - 2 + 1C4

2 4 (8)
This energy function is of the same form as the single order parameter potential function of Haken's Synergetic
computers. By adapting Haken's potential function as our networks training energy function, we can derive our
specific weights update rules. We will use the attention parameter X as the phase tuning parameter to see its effects
on the network performance.

For X> 0, we set

4 * -, V rl(9)
Where Ti is the target output value of output neuron i, V i is the actual output value of the output neuron.

When Ti = Vi, 4 = :kA are the two attractor positions representing face and vase respectively. Substituting both
definition (9) and the new energy function (8) into the arbitrary energy function delta training rule formula (3), we
have

at*= m *JJXr -V,)Vp -V, (10)

where 4 = 4,

For X <0, we set = - so
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The substitution of these specific 6, into the general weights update rule Eqs.(3,6) yields the corresponding
training rule.

4. SIMULATIONS

To test our energy function we break down the reversible figure of face/vase into a two-dimensional binary
array. Using a 30 X 30 pixels picture gives us sufficient resolution to identify both figures in the pattern. All the
training pattern and testing pattern are listed in Figure 1. We use pattern I and pattern 2 as the training patterns for
face and vase respectively. Pattern 3 through pattern 8 are the perturbed test pattern, pattern 9 through pattern 14
are used to test the connectivity performance of the trained networks. The face and vase figures each have 450
pixels, while the perturbation figure apple and earrings each have 60 pixels. To train on this pattern, we use 900
input neurons. We vary the number of hidden layer nodes to ensure generality, but limit ourselves to no more than
one percent of the input. Our output layer consists of two nodes, each representing the presence of one attractor.
Weights are allowed to train until convergence and test patterns are then identified. The performance are then
compared to the non-modified LMS networks. We add momentum term in the training algorithm of both network
to accelerate the training speed, with the learning coefficient set to 0. 15 and momentum coefficient set to 0.075 the
general form of our learning formula is

Wt 1)=W,()+0.1558,v,+0.075AW$-1) (12)

Initial weights are random values between +0.015. The network stopping training condition is

E,= Fv 0.01

23W PAT7JW

Figume I. Training and testing patterns. Pattern I & 2
are the two training patterns for the memory networks.

We test the typical LMS energy neural network converging speed while varying the number of hidden units,
The result is shown in Figure 2. When hidden unit number equals to 1, 2, 3, 5, there is no convergence. When
hidden unit number equals to 4, the network converges after 25 iteration, with 6 hidden units, number of iterations
drops to 19. But because each iteration takes more time with 6 hidden units than with 4 hidden units, so the actual
speed may not improve much. As we will see later that all the network trained poorly when there are 5 hidden units.
This suggests that the number of the hidden units should be kept as symmetry with input units number and output
units number. Since we have even numbers of input and output units, the hidden units should be even number too.

We then test the training speed of the double well potential energy(? > 0) neural network( Figure 3 ).
Comparing with Figure 2, now we can have networks convergence with 3, 4, 5 and 6 hidden units by choosing
proper X. values. This reveals better converge ability of the double well neural networks. The best overall
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performance is at 4 hidden units and . equals to 14 and 16, where the networks converged only after 10 iterations,
that is about 150% faster than the LMS network. Generally, by increasing X value, we could have faster
convergence. But there is a limit on the increase. After certain value of X the network can not converge. We believe
this is because of the general gradient descend training method... with bigger X, we have steeper gradient, bigger
correction of weights after each iteration. So the network will be faster to reach the energy landscape minimum. But
when the step becomes too big, it leads oscillation within the potential well, the system will be trapped in a middle
state and never converge to the minimum. This explanation could I,, fItrther confirmed by observing the evolution
of the E, value after each iteration during the training. For the normal ;oiverged training, we observe that the change
of the E, value AE, is quite big initially. It becomes smaller and smaller after each iteration. We can see a clear
trend moving toward zero until that F, reaches a preset stopping condition. In the case of big X, we observed a very
big E, value changes initially and then drops abruptly to a very small values. The trend did not converge toward
zero but an intermediate value, i.e. the system was trapped in a spurious intermediate state.

400

1430

1 45 
35 - heddm untg-

Figuit 2. The effect of different hidden layer neuron Flgwue 3. The effect of different phase tuning
numbers on the training speed of a typical MSback parameter X, values and hidden layer unit numbers on
error propagation network. Training pass equaling the converging speed of double potential well energy
sixty means non-converged training, trained memory networks.
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ligum 4. The effect of different phase tuning gtm S. The comparison of the output standard deviation
parameter X values and hidden layer unit numbers on of four different networks: a LMS with four hidden units,

the converging speed ofra single potential well energy. a LMS with six hidden units, a single potential well with
four hidden units and f 10, a double potential well with
0hidden units and = 10. it shows that these two LMS

networks have much bigger standard deviation errors for all
ts patterns.
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Figure 4. shows the training speed of the single well potential neural network (% < 0). Compare with the
double potential well network, we have pretty much the same date structure, but a bigger range of the converging
X value. This is due to that the double potential well is separated by a middle point at V--0, such that only one side
of the double well become rather shallow. With a bigger X value, the training step could easily jump over the
middle point and get stuck in the opposite well. Since the single potential well has no such tendency, it can accept
a much bigger X values. Another interesting aspect of this single well network is that we now can have two hidden
unit that still converge.

To test the ability of recognition ability among these three networks, we run all fourteen test patterns
through these three networks, the result is showed in Figure 5. It is clear that the network trained by using Haken's
4" potential energy has much better performance in recognizing the symmetry-breaking perturbed patterns. The

standard deviation (/(T - v)I 2W) of all fourteen test patterns is less than 0.06. This is because the first two

patterns are the actual training patterns while the standard deviation value of all the other test pattern should use
this value as the reference, keeping this in mind, we can see that all twelve perturbed patterns are perfectly
recognized. The recognition ability of the LMS neural networks is quite different. In case of four hidden units, the
LMS NN has a very big error in recognizing pattern #5,7,13 and 14. However for six hidden units, it improves a
little, but still has a fairly big error in recognizing pattern # 12, 13 and 14. Also we notice that the poor performance
occurs at different patterns for different cases of 4 hidden units and 6 hidden units. These tests show that large
fluctuation occur at the phase transition critical point known as the critical fluctuations. I I

=007 . ..f0.06 Pnm-
0.05 12,nhd=4

0.04 - -OPWnmd=12.n

0.03 hd ___

002
0.01- _
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Figuie 6. The performance of the networks under noise input conditions. The
single potential well and the double potential well trained networks both did
well for up to forty percent noise level input.

To test the ability of fault tolerance in this quartic potential energy networks, we add noise to the binary
input pattern by randomly reversing the input pixel value and then we look at the output error standard deviation
errors. We tested a single potential well with four hidden units and %=-12. Also, we tested a double potential well
with four hidden units and X'-12. In both cases the test pattern is the face pattern (pattern 1). Both cases exhibit a
pretty good performance in recognizing noise patterns. For up to 40 percent noise, the output standard deviation is
under 0.07, which is very gc -d for Haken's energy function.

6. CONCLUSION

Adapting Haken's single order parameter potential function as the training energy on the back error
propagation neural network, we get much improved performance both in the training speed and recognition of
symmetry-breaking and noisy patterns. We can manipulate tuning parameters to move double well attractors further
apart or closer together depending on our model of the environment. Moving the tuning parameter t ward zero, we
will see an increased fluctuation, this is believed to be due to the phase transition phenomena. Since the LMS energy
function is very close to the phase transition point, we observe an increased fluctuation as expected. This leads us
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to believe that although the LMS energy is the most common used training energy function, it is less desirable to
be used to recognize perturbed and noisy patterns. Also by using the LMS training energy, the network becomes
slow and difficult to converge. When X > 0, we succeed in training the network to converge to both attractors with
each representing a pattern, the double well model shows a slightly better accuracy in recognizing perturbed patterns
than single well t" energy model, though have much better performance than LMS energy model. When k < 0, we
get a single potential well that is much steeper than the LMS single well. To train a network toward its minimum
energy point, it is desirable to have big jumps initially, but while the system moves close to the minimum point,
the jump steps become smaller and smaller until it converges. This cannot be done by adjusting learning rates,
because it is fixed along the training. But by using this ' single potential well, the step size becomes proportional
to the slope naturally, through the 8i Eqs(3,6) where the energy slope varies more than those of LMS. Therefore,
the gradient descent is very big initially, and then becomes smaller and smaller when it closes to the minimum. The
LMS potential well has a much flatter basin than the " single well, so its average gradient descent is much smaller
than 4 single well. Therefore we observe much improved performance in the training speed and the pattern
recognitions. Current interests[ 11-141 in vision ambiguity figures have been led to the present investigation using
the standard neural network approach to test the ability to resolve the ambiguity under symmetry-breaking
perturbation as well as partial & noisy imagery input. We believe that the double well potential energy by liaken's
synergetic computing is a performer when coupled with neural networks.
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ABSTRACT : In this paper, we present an optimized backpropagation algorithm for
multilayer perceptrons in order to increase speed learning by improving the adaptability to
different problems. Thus, we introduced a new parameter allowing us to tune the slope of
neuron sigmoid function. Two algorithms result: the first one has a common slope, set
before the network begins to learn, the other one considers all the slopes as variables of the
system and learns them like weights. Comparisons between these algorithms and Fahlman
quickprop are performed on an encoder/decoder benchmark and then, on a base provided
by a texture analysis on sonar images in order to recognize sea-bed nature. Slope learning
algorithm seems to be more efficient in application where there is a sensible evolution of the
slope value during the training phase.

I. INTRODUCTION

Multilayer perceptrons (MLP) associated with backpropagation algorithms are used in
many applications such as classification or data compression because of their ability in matching
to the problems by a supervised training, and their adaptability to generalize from partial
information. Although this model is efficient in a running phase, the time consumed by such a
learning algorithm often grows with the complexity of the problem. Thus, our approach has two
goals in optimizing backpropagation algorithm: increasing learning speed while using an
adaptive method, whose settings do not depend on the learning data. We obtain good results by a
slope learning of the last layer neuron sigmoid function.

In order to validate our algorithm whose theory and development are given in [1], we
compare its performances with two other backpropagation algorithms (Rumelhart's basic
one [2] with optimum parameters and optimized one called "quickprop" from Fahlman [3]) when
running on two kinds of problem. The first one, benchmark proposed by Fahlman, belongs to the
encoder/decoder family problem with a man-made database, while the second one uses a learning
base resulting from texture analysis computations on sea-bed sonar images.

II. SYNTHETIC VISION OF THE ALGORITHMS

Updates occurred on a variable x during the training phase may be summarized with the

next general formula

Ax(t) = -1. E + a.Ax(t-1) (1)

where
nb..PW1e NK.l-

p=1 i=O
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aE is the error derivative for x(t),x(0)

* and %i, a, the learning rate and momentum.

We also use an extended definition of the neuron sigmoid function f by adding a

parameter X that tunes the slope of f at the origin (for standard neuron, X = 1).
f(t) = 1.1.0 + e-Xt  (2)

I.1. Rumelhart algorithm [2] :

Only the weights between neurons are considered as variables of the system, and

modified according to equation (1) with 1j as learning rate and a as momentum. Each neuron

uses the same slope X. With notations of figure 1, we obtain:
Aw 'l'k)(t) = -Ti.' w+. a0t E.Awi .lk)(t. 1) (3)

where E .
C-wW~k'I&)(t)

* 6 k)= X?).(I-xj(")).(SjX.(k)) if layer k is the output layer

• Sj~t x (I(l-x ). W 1 8,+l).,jp otherwise
p=l

11.2. Fahlman quickprop algorithm [3]:

Various optimizations are introduced in order to prevent some neurons from getting stuck

in the zero state (for instance, when x~k) is close to 0.0 or 1.0 so is &j : "flat spot") but the major

one consists in reducing the cost of Aw(t) computation by using only the local second order
information.

Aw(t) = S(W .Aw(t-1) (4)S(t-1)-S(t)

where S(t) and S(t-1) are the current and previous values of-wE

As Fahlman says, the new value of Aw is only a crude approximation to the optimum
value for the weight, but when applied iteratively, this method is surprisingly effective.

I.3. Learning slope algorithm [1] :

In addition to the weights, our algorithm introduces the slope of each neuron sigmoid
function as a variable of the network, allowing the slope to be updated in relation to the network
evolution, and preventing the user from setting the slopes manually. Thus, we obtain for the
slopes updates:

(k) DE Mk3i0t -V. -) + KAXi0(t- 1) (5)
E-43t)
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weeaE =W0 (k)where .net,
)4k)(t)

_ = .1)).(si (k)  if layer k is the output layer

•(.(X)). j ' -" otherwise
p=t

LI. EXPERiMENTS AND RESULTS

Stochastic gradient is effectively employed in basic and learning slope algorithms (i.e.
network variables are updated after each pattern presentation, using an approximation Ep of the
global energy E, to calculate the errors).

i=0
Two experiments are achieved to compare the results brought by our algorithm, with

basic and quickprop algorithm. The first one based on an encoder/decoder problem completely
defined, is used by Fahlman in his paper [3] by way of benchmark. The second one resulting of a
less artificial approach, applies all these algorithms on patterns provided by a texture analysis on
sonar images.

Many computations are needed to compare the performances of these algorithms for a
given problem. First, we prepared 10 different weight initializations in order to make a series of
learning with the same initial states. Then for each algorithm, we go over all its coarsely
discretized parameter space in order to find the optimum combination that provides the fastest
series of learning.

I.1. FahIman benchmark: M-N-M encoder (10-5-10 encoder)

A neural network encoder consists in a 3-layer network for which output results are the
same as input patterns. Then the encoded information is recovered by looking at the values of the
hidden layer (bottleneck of the network). The artificial training base is realized by a set of M
patterns 'u':

{ie[O,M-1] , uieRM / ui=(xo,.....1XM.)), XO...-X.l-fXi+l=...-XM---O.O, Xi=1.0)

We implemented quickprop algorithm and what we obtained corroborate Fahlman results.
The hyperbolic arctangent error function was not used in this algorithm but the standard sum-of-
squares one. End criterion based on a minimal distance (here 0.3) between network outputs and
wished results is preserved and applied to the other algorithms.

Basic Rumelhart Al orithm

Ii a Initial X Max Min Ave S.D.

0.6 0.75 2.0 36 17 24.3 7.27

Quickprop Algorithm

11 a Range Max Min Ave S.D.

1.5 1.75 2.0 72 13 22.1 8.9
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Slope Learning Al orithm

0.75 0C IInitial X Max Min Ave S.D.
1.0 0.75 0.4 0.75 0.75 50 27 37.6 7.29

We observe that a classical MLP with optimum parameters including a fixed slope
obtains quite the same results as the quickprop algorithm. The impact of setting the slope is
obvious since its optimum value is 2.0.

In this case, our algorithm is slower than the other ones because it has not enough time to
learn the slope. This phenomenon is due to the weak slope variation during the learning phase as
it is shown in figure 2.a (slope range in [2.4,3.01). Therefore for this specific problem, the initial
slope setting correspond to the problem constant optimum slope so much so that learning slope
do not really improve the speed training phase. Even if crude performances are not so high as
other ones, we observe a quite good homogeneity of the training speeds that may highlight a
better endurance stability. All that remarks must be confirmed by an application on more
complex and realistic problems.

1I.2. Learning sea-bed natures according to texture analysis parameters

In order to validate more efficiently our algorithm, we used a database constituted by
patterns stemmed from parameters that characterize the sea-bed natures by a texture analysis
applied to sonar images. Practically, we extract 290 sub-images from data collected by sonar [41,
each image representing only one kind of bottom among four classes: dunes, ripples, sand and
stones (figure 3). Many methods allow us to discover structural information on the texture of
these images [5]. Cooccurrence matrices are well known concentrating spatial organization of
pairs of pixels in a texture, according to a polar shifting vector (distance, angle). Thus, we
calculate 9 matrices on each sub-image, each matrix corresponding with a value for the distance
of the shifting vector (from 1 to 9) in four privileged directions [6]. To characterize the properties
of a matrix, we compute 6 parameters such as homogeneity, entropy, correlation, ... which allow
quite good discrimination between textures.

Finally, the 3-layer network used for this application, has 54 neurons for the input layer (a
learning pattern is a 54-dimensional vector), 25 neurons for the hidden layer and 4 for the output
layer (4 classes must be learned). The training is realized with 10 patterns of each class (on the
whole 40 patterns), randomly chosen among the base.

Basic Rumelhart Alorithm

11 (X X Max Min Ave S.D.

0.4 0.75 1.25 99 72 85.4 8.38

Slope Learning Al orithm

1i 1t v 1 C, Max Min Ave 1 S.D.

1.0 0.75 0.6 0.0 1.0 88 77 82.0 4.05

Unfortunately, we were not able to obtain any results for the quickprop algorithm because
its state did not satisfy the end criterion after 200 epochs, despite several runs for each parameter
combination. Optimum slope for Basic Rumelhart Algorithm is still different from 1.0; it
emphasizes the usefulness of such a parameter. The major interest of this application comes from
the wide evolution of the slope values during training phase (between 0.35 and 1.5). The
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figure 2.b shows a training phase where slopes were initialized to 1.8 in order to present the
impact of such a learning (see the fall of the global error when slopes begin to be learnt).

IV. CONCLUSION

The stability of this algorithm for a series of training (weak standard deviation value),
constitutes an interesting characteristic provided by the slope learning, and proves its better
adaptability to different pattern distributions.

Figure 2.b obviously shows that each neuron requires a different slope variable. Learning
these slope variables allows us to set only two parameters (learning rate & momentum) instead of
one initial slope value per last layer neuron. The profit is peculiarly appreciable when the number
of output classes increases. We also observe that learning slope do not need a very fine tuning of
its two parameters.

Resulting in training speed optimization, this algorithm offers an other approach to a
more adaptive learning strategy.
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VI. FIGURES

K hidden layers (0, 1, ..., K, K+1).
U wNk : Number of neurons in layer k

k pnkti : Neuron i of the layer k
S" ) si : Wished output for ni,K+ I

Wk+1) : Weight of neuron between nik and njXI+l

Couche Couche Couche
(k-i) k (k+i)

Figure I : Notations for algorithms
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Abstract

Gradient based techniques are suited to optimisation problems but existing techniques using gradient descent
surfaces for neural networks are slow and do not scale up well as the problem size increases.

We argue that in the case where descent surfaces are used, slowness arises due to the weight transitions having
weakly controlled directional prperties. We present here an approach for feedforward networks which does not
use descent surfaces. Instead, tangent hyperplanes are used with subgoals to provide strongly controlled
directions for weight transitions. The extra control comes from best-fit approximations to a set of local solution
manifolds which are computed directly using a linear solution system. The technique is fully automated with no
citical problem dependent parameters.

Results on the benchmarks of XOR and the 2-spirals problem show substantial improvements in feasibility,
robustness, and training speed when compared to descent techniques such as back-propagation and conjugate
gradi descit.

1. Introduction

Gradient descent techniques are commonly used to train feedforward networks. However, these techniques have
been found to be slow and sometimes unreliable especially for larger problems [1].

With these techniques, a goal weight state is typically viewed as a minimum of an error-weight surface. In order
to be effective, gradient descent methods require their travel surfaces to be regular to various degrees in directions
towards such states. For a steepest descent method such as standard back-propagation [2]. the regularity takes
the form of circular bowls or linear troughs. More sophisicated descent methods can rely on less regularity to
make for a benign surface. When momentum is used with back-propagation for example, oscillatory directions
may be suppressed (21, though only to a limited extent. Another technique, Conjugate Gradient Descent,
assumes the tra.el surface is an approximation to a quadratic surface. While there are clear improvements in
training speed for this technique [31, the improvements in general have not been substantial enough for the
method to be seen as overcoming the problem of slow or infeasible training for large training sets.

We would argue that the reason for hostile surfaces occurring lies in the way the surfaces are generated for
feedfoward nets. For each 1-0 pattern there is a gradient vector pointing in the direction of steepest descent for
the respective error-weight surface. These vectors are summed to produce an overall vector for an overall error-
weight surface. Although we have found empirically that each component vector provides an accurate direction
to a surface minimum, the vector sum is not nearly as precise.

In fact, there is no theoretical geometric basis for a vector sum to point at the goal. That is, the number and
direction of the component vectors are arbitrary as a set in relation to what is required for their sum to point
correctly. Consequently, we suppose that a weak point in gradient descent methods is the way the individual
vectors are combined. We provide instead a method of combining individual gradient information that is not
based on the vector sum and has a geometrically grounded ability to point towards desired goals.

111-438



2. Tangemtlal Solution

In the introduction, a goal weight state was viewed as a minimum of an overall error-weight surface. Figure
l(a) provides an example of this view for a linear net with a single minimum. A different perspective will be
taken here. For each individual 1-0 pattern theie is a set of weight states that will have zero error. We will call
such a set a solution manifold. Ibis suggests another view of a goal weight state as a point which has least
error in the sense of being closest to all the solution manifolds. If there is a common intersection of all the
solution manifolds then the solution will be exact, i.e. the set of 1-0 patterns will have no error at the
intersection. Figure 1(b) illustrates this for a linear netL Otherwise the solution will be inexact. The goal states
from the manifold and surface views are the same if the error is measured as the distance away from the solution
manifolds.

WI Wl

W2 W2
a) b)

Figure 1.
Two views of a goal weight state for a linear 2.1 net (without bias) that has an exact solution.
a) The contours of an error-weight surface with the goal indicated by G.
b) The individual solution mnifolds with the goal at their intersection.

The approach taken here has to deal with a set of non-linea rather than linear solution manifolds for non-linear
feedforward networks with hidden units. Ibis will be done by taking a linear approximation to the non-linear
manifolds for sufficient iterations. We will restrict ourselves to providing the simplest general method for
feedforwasd networks. A single hidden layer is sufficient for any 1-0 mapping [4] and we adopt this architecture.

A further restriction will be to confine the methodology to networks with a single output unit initially before
considering multiple output units. Each solution manifold for this type of network has dimension (N-I) in an
N-D weight space. The linear approximation to the manifold at some point on it is then the tangent hyperplane
at that point. The set of such hyperplanes constitutes a linear approximation to the set of solution manifolds. A
point which is closest to the set of hyperplanes in terms of the total distance away from the hyperplanes is
therefore this set's approximation to a goal weight state. This approximation will be accurate if the initial
weight state is close enough to the goal. The degree of closeness required is directly related to the degree of
curvature of the solution manifolds. The more non-linear they are, the closer the goal has to be for a good
approximation to be expecL

In order to guarantee a good approximation then, a desired state needs to be nearby. Yet the goal which is the
solution to the user problem may only have states which are far away. Consequently, a nearby subgoal is
attempted with the chain of subgoals used leading to the Mal goal. In this way, a good initial approximation to
the goal weight state is not needed by the method. A subgoal weight state is similar to the final goal weight
state in that although it has a known desired output state, its position in weight space is unknown until it is
achieved. It differs from the final goal in that it may be set to be closer to the current state than any goal weight
state. T7he requirements for a subgoal are that it must be close enough to the present weight state in order to
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generate a good linear approximation to the subgoal and yet also far enough away to allow significant progress
to be achieved towards the goal.

2.1 Subgoal aiming

As mentioned in the introduction, the gradient vector for an individual 1-0 pattern provides an accurate direction
to a minimum in the pattern's surface. A point WSGp on the solution manifold for a subgoal 1-0 pattern P is
therefore found using line search in the direction of the individual 1-0 pattern's gradient vector from the current
weight state Wc (Figure 2(a)). The aim is to use such points to approximate WSG (Figure 3).

W 
efamo-weight

GP w contours

V~ 
angent yperplane

WC WC4~r adient vectori ) direction

W2 W2 W2 Current state

a) Finding a subgoal solution b) bisection of the subgoal W Subgoal tangency
matifold aiming distance SGP point

Figure 2.
In a) the subgoal contour or solution manifoldfound is thickened.
In b) a contour at half the distance relative to the existing subgoal contour is selected as being the next subgL
solution manifold

The tangent hyperplane approximating the soluion manifold at WSGP is then determined. The set of such
hyperplanes for all the patterns' solution manifolds constitutes a linear approximation to the latter. The line
equations corresponding to the set of hyperplanes may be solved using Singular Value Decomposition [5]. SVDprovdes a candidate solution weight state WSVD in both the exact and the inexact cases (Figure 3). In the
inexact case, SVD yields an optimal solution in Least Mean Square terms. That is, the solution has the Least
Mean Square arm where error is measured as the total distance away from the tangent hyperplanes.

WIW

W1 WsGPI Solution Manifods

Linear Approximations

WC Current weight state

SSVD WSGPi Subgoal tangency points
WSG Subgoal weight state

WW2 Linear Approximation toWG

Figure 3.
Subgoal aing.
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2.2 Subgoai testing, setting, and chalning

The weight state WSVD has data associated with it that is used in testing whether the subgoal it is aimed at is
close enough to WC. Besides the weight state itself, there is the actual output produced by WSVD in response
to the training inputs. There is also the subgoal output being targetted. This subgoal output is the output
produced by each WSGP in response to the training inputs for each pattern P. The aim is to see if such output
can be found in a single weight state nearby with WSVD being the candidate. The data is tsted using three
heuristic criteria. The first two criteria need to be satisfied for WSG to deemed to be close enough. We have:

Vi:Iw , - WSDI < L, (1)

where wi is the ith component of a weight state, and Lw is a constant real value, and also

VP- PC, - Os.pI < L. (2)

where OCP and OSGP are the current and subgoal output values respectively for a pattern P, and Lo is a
constant real value.

If the first two criteria are satisfied, the third criterion tests the closeness achieved by a candidate weight
transition for progress. There we two alternatives for satisfaction.

S(O)(t) - 0> (+ )- osP(t))2  (3)
p p

I (Ocp(t + l)osGP(t + W)2 < M (4)
P

where the times t and t+ refer to the beginning and end of the weight transition respectively, and M is a small
constant set a priori by the user.

The first alternative, (3), is a test for progress achieved towards the goal. If this alternative is satisfied, the
candidate subgoal is acceptable and is set as the subgoal. When progress has not been achieved. the candidate
subgoal is failed. There then remains the decision as to whether to seek a new candidate for the existing
subgoal. If the second altenative fails, this signals that there is still potential progress to be bad and so a new
candidate is sought. If the alternative is satisfied. the potential progress is too small to be worth pursuing
further. The candidate is set as the subgoal, and a weight transition is triggered to move the process on and seek
a new subgoal.

The first candidate subgoal for being set is the goal itself in case it is close enough. Ie subgoal aiming
procedure described above is invoked and a candidate solution weight state attempting the candidate subgoal is
found. This subgoal is tested using the data from the attempt on it, and the three heuristic criteria, for being
close enough.

When the subgoal is not close enough and is failed, we halve the distances involved in the subgoal aiming. In
the first instance, the distances between WC and the solution manifolds are halved and the target output reset
according to the outputs found at this distance (Figure 2(b). This resetting provides a new candidate subgoal in
output terms.

The distance bisection process is repeated until a candidate subgoal and solution weight state are found that
satisfy the heuristic criteria. A subgoal is then deemed to have been set. Also, the solution state is taken to be
the single attempt made on this subgoal. One iteration in our method has then been completed. A new subgoal
is now set using the goal as a starting candidate again and the process repeated until the resultant subgoal chain
converges the weight state to be sufficiently close to the goal in output terms.
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In the description of the method above, each time a new candidae subgoal is aimed at during the setting of the
next subgoal, we theoretically have to compute a compleely new set of tangent hyperplanes to determine a new
WSVD. in practice though, we compute only one set of hyperplanes from scratch for this stage.

When the subgoal is close enough, there is not only a good match between the linear and non-linear solution
but also a good degree of parallelism in the contours. Consequently, we may suppose the tangent byperplanes
at the candidate subgoal solution manifolds to be parallel in the direction of the gradient vector for an 1-0 pattern
without loss. The hyperplane which is orthogonal to the gradient direction at WC is computed once and then
uanslated to each candidate subgoal solution manifold as required.

This simplification also gives us another major benefit. Since we set the subgoals for each pattern at the same
fractional distance from their solution manifolds, ail candidate subgoal attempts lie on the line connecting WC
and WSVD (see Figure 3) where WSVD is the state found by taking the goal as the candidate subgoal. Therefore
we only need to use SVD once per iteration to compute the direction in which the subgoal attempts lie. The
fractional distance being used then completes the determination of the position of each attempt.

3. Experiments

We present results comparing our technique with standard back-propagation (using momentum) for the common
benchmarks of the XOR problem and the 2 spirals problem (1,61. We suggest that the results reflect an ability
to find a good goal direction not present in gradient descent methods. The low number of iterations needed for
each problem together with an insignificant failure rate indicate the robustness of the technique.

The 2 spirals problem represents a bridge between our version of the minimal problem of XOR and real world
problems. In particular, it can be used to give an indication of how the method will scale up. We successfully
attempted this problem with a fixed 2-50-1 architecture. This architecture is unsuited to deal with such a non-
linear problem, at least as far as gradient descent is concerned. We could not find a solution weight state for this
single layer architecture using standard back-propagation.

The same failure to train is reported by Baum & Lang. They were in fact unable to find a solution using either
standard back-propagation or conjugate gradient methods even when they used a larger 2-60-1 architecture. Lang
& Witbrock managed to solve the problem using a jumped 2-5-5-5-1 architecture, but also reported failure when
training with architectures with fewer hidden layers.

These failures for the 2-spirals problem with conventional gradient descent methods and our zero failure rate lead
us to the conclusion that our method scales up relatively better. We see the significance of our results in
showing the method to be powerful in finding directions in networks not especip' suited to deal with a
problem.

The tolerance mentioned in the parameters for standard back-propagation represents the maximum acceptable
difference between output and target for terminating training. The parameter settings for heuristics are shown to
not be critically problem dependent here by choosing a common setting for both the XOR and the 2-spirals
problems. We set Lw to 1.0, Lo to 0.1, and M to 0.001. The iterations indicate the number of direction
changes made and are not otherwise comparable to those of standard back-propagation as computations.

Table 1. XOR Problem

Method Learning training iterations failure
rae aveare std. deviation rate

SBP 1.00 188 102 131
TP - 10 3 2

Parameters
Trials: 1000; Output tolerance: 0.01; Targets: 0.8, 0.2; Initial weight range: [-1, +11; momentum (for SBP):
0.9
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Table 2. 2-Spirals Problem

Method Lening tinint iterations IFailure Av. Real
reate I std. deviation re mtune

TP 445 209 0 253.69

Parmeters
Trials: 10; Output tolerance: 0.35; Targets: 0.95, 0.05; Initial weight range: (-, +11.

4. Multiple Output Units

The method described as the basis for the demonstrator experiments is suited to networks with single output
units. In particular, it is based on the solution manifolds having a dimensionality (N-I) in an N-D weight
space. The solution manifold for networks with multiple output units is (N-r)-D though, with r being the
number of output units. The method may be extended to cope with this difficulty relatively straightforwardly,
since such a solution manifold may be seen as the intersection of r (N-I)-D solution manifolds derived from the
r combinations of an I/O pair and each output unit. Consequently. a tangent hyperplane may be computed for
each of the r output units. These sets of hyperplanes constitute the linear approximation to the non-linear
system of equations requimd by the apprwh.

S. Conclusion

A geometrical basis for finding an optimum combination of gradient vectors has been given using tangent
hyperplanes and subgoals. The method is seen to provide strongly controlled directioning resulting in a lower
number of direction changes during training and lower failure rates. The method has also indicated a good
scaling up through its solutions to the 2-spirals problem.

The approach provides a training algorithm for feedforward networks with single hidden layers and hence is
capable of providing any 1-0 mapping. Nevertheless, some problems may be better solved using networks
having more than one hidden layer and this extension is currendy under further investigation.
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Abstract

It is well known that the least mean square error function ant the entropy error function are
Bayes optimal. Satisfying Bayes optimality criteria does not give any information about con-
vergence properties, trajectories in weight space (e.g., if training often leads to local minima or
flat regions in weight space), or generalization ability when trained on smaller sets of data. The
problem with these error functions is that they are not monotonic with respect to classification,
i.e., minimiation of the error functions does not imply minimization of misclassifications.

This paper proposes two new error functions, that exhibits a form of soft-monotonicity,
where the monotonic behavior is dependent on the values of certain parameters associated
with the functions. Through several experiments, it is shown that these functions can improve
convergence and generalization.

I Introduction

Error functions like least mean square and cross-entropy, are known to be Bayes optimal in the sense
that minimization with these functions produce solutions that approach the greatest lower bound
on generalization error as the training set approaches infinity. But when the training set is small
this approximation can be poor [Buntine 91], and it is sparse it is necessary to impose constraints
on the network solutions. This is in a Bayesian perspective the same as choosing appropriate priors
which is strongly related to penalty terms or regularizers in statistical literature.

The problem with the least mean square error function can be illustrated by the following
simple figure [Hampshire 92]. Consider a network with two output units having output between 0
and 1. The outputs are mapped onto the z- and y-axis respectively. If the desired target pattern
is (1 0) then all outputs to the right of the line y = x can be considered correct. If and only if
the contours of equal error are straight lines parallel to y = z, then there exist no regions with
misclassification and lower error than other regions with correct classification. Hampshire defines
error functions that satisfy such a condition to be monotonic. Hampshire strongly suggests that
non-monotonic behavior in training can be the cause for the often seen "overlearning", i.e., where
the recognition performance on a disjoint test set peaks and then degrades, while training set
performance continues to improve.

The problem with suboptimal solutions exists in the form of local minima, which in practice
often are very fiat regions in error space. Suboptimal solutions in fiat regions are often characterized
by having a few patterns classified very wrong and many correct. The regions are fiat because the
network gradient. are small for extreme wrong outputs. Minimization of the least mean square
error function might very well converge to such regions because the training algorithms are greedy
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Figure 1: Illustration of non-monotonicity. The x-axis is the output from the first unit and the
y-axis is the output from the second. The curves corresponds to regions with equal least mean
square error on target pattern (1 0). Clearly, there are regions where the network misclassifies, but
where the error is lower than in other regions where the network classifies correctly. For example,
the error in the point z is lower than the error in X2. For a monotonic error function, the contours
would have to be straight lines.

algorithms, updating weights in the direction of fastest error decrease, and no mechanism in the
error function prevents the update of weights into these regions.

This paper defines two new error functions that satisfies a soft-monotonic condition in the sense
that the functions are asymptotically monotonic in the limit for certain parameters associated with
the functions.

2 Imposing constraints on network solutions

Instead of insisting on strict monotonicity, we can define error functions that satisfy a soft-
monotonic condition, where a certain parameter controls the degree of monotonicity. The main
idea is to incorporate appropriate constraints into the error function, so that the weights are con-
strained away from bad regions in weight space.

A way to avoid suboptimal solutions is to strictly minimize the number of misclassifications.
Hampshire defines such an approach that works for binary classification problems [Hampshire 921.
We present a more general approach that involves a soft minimization of misclassifications.

Since good solutions are characterized not only by low average error but also by having as many
patterns with low error as possible, a good idea would be to include both terms in the error function.
One possible approach is to define an error function that penalizes errors of large magnitude.

E(fv) = I12 Lf e -0(oP,-t, +P)(tP,+#-o,,)(1

where a and 0 are positive parameters. The derivative to (1) with respect to a given Opi is

dE(ib) = -a(t, - oPj)e-(P-tj+)(tP+'-P) (2)
dop,
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Figure 2: The function of the a and 3 parameter.

It is easy to see that the global minimum for (1) is when tpj = opi, Vp, j. The function of a and/i
is illustrated through figure 2. 0 defines the width of the acceptable error around the desired target
and a controls the steepness of the exponentially growin_ error in the penalized regions outside the
interval. If a is small equation (2) resembles the derivative of the least square function. But the
higher a gets the more active is the constraint imposed on the penalized regions. When no errors
are in the penalized regions # is decreased, so that the outputs are pulled towards the targets. A
high a value gives large partial error derivatives inside the penalized regions and small partial error
derivatives when outside the regions. So the higher the a value the more the errors will tend to
arrange themselves inside the region around the target. This gives a sort of balanced distribution
of the errors. For regression problems it is well known in statistics that a balanced set of errors can
yield better generalization, this is often referred to as variance heterogeneity [Seber and Wild 89].
It is an open question whether this is true also for classification problems.

In the limit when a increases to infinity, the exponential error function is monotonic. Surely,
for a fixed number of patterns in the training set, we can select a large enough a so that the
error function is monotonic. The problem is how large a should be to ensure monotonicity in a
given problem. Selecting too high a a slows down the convergence, because of too hard constraints
imposed on the acceptable paths down to the minimum. On the other hand, too small a a results
in non-monotonic behavior of the error function. One promising approach would be to adapt a
similarly to the penalty parameters in constrained optimization, starting with a small a and then
successively increasing a during training. This approach has not been tried yet. It seems that just
setting a to a "reasonable" size yields good results.

Notice that the exponential error function also works for non-classification problems and that
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the soft-monotonicity condition can be obtained for any accuracy required by adjustment of the /
parameter.

A more direct way of balancing errors is to minimize the variance of the magnitude of the errors.
This can be done by adding the variance as a penalty term to an existing error function like least
square.

E )=IN P 1 NJVP

2 mp,( E-+(t+, - Oqi )2)2 (3)
i P j P

where q1 is a positive penalty parameter, N the number of output units and P the number of
patterns. The derivative to (3) is

dELtb) =...LI.(tpj - opj)(2 + 4 1 PN-1j)2 _ - EqP(tqi oq,)2) (4)

From (4) we observe, that while the exponential error function can be used in both online and
offiine training mode, the minimum variance error function can only be applied in offline mode.

3 Experiments

In this section, we compare the least mean square error function, the exponential error function
and the minimum variance error function.

To be able to see how the different error functions compare on problems with varying input
dimensions some artificial data were generated. For dimension N a set of 4N centerpoints, each a
N-bit string, was randomly chosen. Around each centerpoint a set of 9 distortions was generated
using a Gaussian distribution to determine whether to flip a bit or not. This gives a total of 40N
patterns. Each centerpoint and its distortions were then randomly assigned to one out of two
possible classes.

It is widely recognized that the class of conjugate gradient algorithms are well suited for learning
algorithms because of their ability to gain second order information without too much calculation
work [Battiti 92]. One, the Scaled Conjugate Gradient algorithm [Moller 92a], has especially low
calculation costs, and has for that reason been used in the experiments to follow.

3.1 Training

The three error functions were tested on dimension 8,10,12,14,16 and 18 running 5 different runs on
each dimension using a 3 layer network with N hidden units. The training was first terminated when
all patterns were classified correctly or until a resonable limit was reached. Table 1 summarizes the
average results obtained. a was set to 1. The initial / was set to 0.9 and then halfed every time
no errors were inside the penalized regions. The penalty parameter 77 was set to 1-2.

In the runs with the least mean square error function only a few global solutions was found with
a 100% correct classification. Training on the other two error functions, however, yielded optimal
solutions in all runs. The exponential error function seems to give the fastest convergence, but this
might be because of the actual values of a, P and q.
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Dim Least Mean Square Exponential Error Variance Error
Epoch Correct Epoch Correct Epoch Correct

0A a A 10, AL Ua, PA 0Gp /A 0

8 487 73 .984 .004 76 3 1 0 82 13 1 0
10 493 15 .983 .008 112 19 1 0 147 23 1 0
12 413 54 .988 .000 109 10 1 0 111 10 1 0
14 478 37 .993 .002 77 12 1 0 81 5 1 0
16 490 24 .994 .001 75 1 1 0 94 13 1 0
18 447 46 .996 .004 78 7 1 0 89 4 1 0

Table 1: Average results on artificial data. u - mean and a - standard deviation.

3.2 Generalization

In this section we investigate the generalization ability of network solutions found by minimization
of the different error functions. Again some artificial data were generated, this time with continuous
input constrained between 0 and 1. We chose dimension 10 with 20 centerpoints, 50 distortions per
centerpoint and 4 possible output classes. The average overlap between the centerpoints was 4%,
meaning that 4% of the distortions were nearer other centerpoints than the one they were generated
from. The set of patterns was then split in to a training set, validation set and a test set of equal
size. When applying the k-nearest neighbor technique on the data we got a max performance of
94.26% on the validation set giving 93.69% on the test set (k=5). Because of the way the data
is generated we would not expect the neural network solution to do much better than that. We
ran the following experiments. SCG was tested on the least square error function, the exponential
error function and the minimimum variance error function. 5 different runs were made for each
test. When the classification rate of the validation set was at it highest the number of iterations
run and the classification rate of the test set were recorded.

The results are illustrated in figure 4. We observe the same trend for both the exponential error
function and the minimum variance error function. The higher the a and 7 values the better the
generalization. For q equal to 30 there is a decrease in generalization. At this point the constraint
towards low variance was too strong. Unfortunatly, this gain in generalization is done at the
expense of the convergence rate as the figure also show. This is, however, not surprising since high
a and il values impose a tougher constraint on the acceptable path down to the minimum. The
minimum variance- and the exponential error function gives approximately the same maximum
generalization performance as the k-nearest neighbor. At this maximum generalization point the
convergence rate of the minimum variance error funtion is slightly higher than the convergence rate
of the exponential error function.

4 Conclusion

This paper has shown that imposing appropriate constraints on network solutions can improve
convergence and generalization. We have proposed two new error functions that impose such
constraints. We do not claim that these functions are in any way optimal, but we do believe that
our results illustrates the neccesity of adding such constraints. Minimization with the new error
functions produce in average better solutions with respect to generalization than the least mean
square error function.

The quality of the solutions found with the new error functions depends heavily on the values
of the constraint parameters a and ri. We have not addressed the problem of choosing optimal
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Figure 3: Results on the test set using the exponential error function and the minimum variance
error function with different a and il values.

values of a and il. Several heuristic methods could be applied, like starting with a small value and
then slowly increase. More sophisticated techniques, like the ones used to estimate appropriate
regularization parameters, might also be usuable in this context.

It would be interesting to know how the distribution of the errors on the training set influence the
generalization ability. Our results indicate that the more balanced the distribution is, i.e, the more
equal the errors are in magnitude, the better generalization one can expect. It remains to future
work to actually prove the relationship between expected generalization and error distribution.
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In the past several years, feedforward neural networks were developed rapidly, espec-

ially a number of papers improved the Back Propagation algorithms. However, gener-

ally speaking, they used gradient descent techniques on the error hypersurface. In this
talk, we mainly discuss the methods of digging tunnels into the error hypersurface.

Two digging methods are presented: one is digging horizontally, another is digging

down into the error hypersurface. Both methods use structure variation idea. Since

multilayer perceptron (MLP) training intrinsically solves a nonlinear problem, and

MLPs are white boxes in which the weights and thresholds can be added, deleted and

renewed purposely, it is unnecessary to always use the traditional gradient descent

techniques.

Our idea is as follows: (1) An MLP is trained with a relatively small number of
hidden neurons using traditional gradient descent techniques until the algorithm is

trapped in local minima. (2) A tunnel is digged horizontally to move the MLP to an-

other isohypse position on the error hypersurface and use gradient descent techniques

again. This digging method can be called rotation transformation, in which a hidden

neuron is added by certain rules and the Perceptron Convergence Theorem is used,

then an original hidden neuron is removed according to the correlation of the outputs

in the hidden layer. Hence the number of hidden neurons will not increase. (3) Or a

tunnel is digged down into the error hypersurface. This digging method is also called

the compensation method, in which hidden neurons are also added. But whenever a

hidden neuron is added, its input and output weights and threshold are calculated

definitely rather than iterated. Thus, it ensures the global convergence.
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Hardware Supervised Learning for Cellular and Hopfield Neural Networks
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Abstract - Hardware implementation of learning algorithms for recurrent neural networks is considered.
Recurrent back-propagation and diffusion optimization are modified so as to work on-line, and circuit realization
scheme is proposed. A new error function is defined, specifically suitable for continuous input - discrete output
mapping tasks. Simulation results are presented for a simple cellular neural network problem.

1. Introduction

Supervised learning for Neural Networks (NNs) is a very complex optimization problem, that is generally
solved by lengthy computations on digital (conventional or parallel) computers. For this reason, large computing
resources (time and/or power) are required, so that in many cases real-time problems are hardly accessible.

Therefore, it is desirable to realize fully parallel hardware implementation of NNs that include learning
in the same system, which would also allow for real-time on-line adaptability of the net.

Several authors have studied implementation of learning algorithms; however, only few results have been
published concerning supervised learning for feedforward networks. Back-Propagation (BP) was implemented by
H. Eguchi et al. (1991) by using pulse frequency encoding for signals. In this technique, multiplication and
addition/nonlinear squashing are performed by very simple circuitry (AND and OR gates, respectively).
Concerning fully analog implementations, M. Hasler (1993) proposed a continuous-time realization of BP by use
of a resistive circuit (the adjoint of the NN).

In this paper, the problem of hardware learning for recurrent NNs is addressed. The author in aware of
no feasible solution proposed to date. Application of Recurrent Back-Propagation (RBP), and of Diffusion
Optimization is considered. The main advantages of these algorithms, in view of hardware realization, are:
continuous time operation; calculation of weight corrections performed locally; no memory required (no batch
operation). Possible circuit implementations are proposed, and results of simulations performed on Cellular
Neural Networks reported.

2. Definitions and Notations

2.1 ofield and Celunlar Neural Networks
In order to fix notations, define a Hopfield Neural Network (HNN - Hopfield, 1984) as follows:

Tx dri =-xi + EWijyj +uide

X-4±@Q
Vector x will be called state of the network, y is output, u is input, or threshold, and matrix W is the weight
matrix. Function f is a sigmoidal, or squashing function.

Define Cellular Neural Network (CNN - Chua and Yang, 1988) as a HNN in which neurons are only
connected to neighbors, and weights are defined in a uniform way over the network. Without loss of generality, we
consider a CNN in which neurons are arranged on a planar square grid, and indexed by double indices. Neurons
are connected, whose indices do not differ more than r. Relevant equations are written as follows:

On leave from: Dipartimento di Ingegneria Elettronica, Universitk "La Sapienza" di Roma, via Eudossiana, 18 -
00184 Roma Italy. E-mail: mb@tce.ing.uniromal.it
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'TX--=-x + _,W.-i.;I..-jykJ + _,B-i;L-juk +1

Yi=Axy; f(x)='(Ix+q-jXlf)
In this case, input vector u, weighted by control matrix B, is considered distinct from bias i. Nr(ij) is a

function yielding the set of indices of neighbors of neuron ij, which is a square of side (2r+1) centred on ij.
It is apparent that in this case there are only a small number of independent weights, which can be

arranged into (2r+l)x(2r+l) matrices W and B, plus a scalar bias 1. If, on the contrary, weights are allowed to
vary independently over the network, the corresponding network will be called a General CNN (GCNN).2.2 Learnig 9mlem

We shall consider use of HNNs and CNNs as mappers from the continuous space XxU of initial states

and inputs into the space Y -=-([l,-l+ e]u[l e,l])N (where N is the number of neurons) of saturated

outputs; E is a small positive number, and when f is piece-wise linear, Y- = {-,I}N. Define

X =[(-**,-Xst]Utxsat,+**)]N, where x,., is a positive number, so that y Y when x r X (for

CNNs, xmi=l).
Under suitable conditions on weights and derivative of f (Hopfield, 1984; Chua and Yang, 1988), the

network is asymptotically stable, and equilibria belong to Y-. We shall assume that such conditions are enforced.

The learning task considered consists of realizing a given mapping M: X 0 x U -+ Y**, given a set of

learning examples (training set) .A={x , t, ug =,2,...,M1cxOxUx{-1,i}N (i.e. a set of triplets

formed by initial state, input, and desired output). We are not addressing here the problem of generalization,
however we note that in the case of CNNs a single learning example (M=I) may be enough to define a task,
because, due to the space-invariant property of the cloning template, it is in some sense equivalent to as many
independent examples as there are neighborhood-sized subsets contained in it.

The training set is the only information given to the algorithm, besides network topology. In fact,
external control and data communication should be minimized, in order to exploit the full speed of parallel analog
computation. For the same reason, emphasis is put on simplicity of realization, rather than on computing time; all
calculations are to be done locally, and if memory is required, it should also be local, and preferably analog.
2.3 Recurent Back-n on and Diffusion eaming

RBP, defined by F. Pineda (1987), is analogous to BP for recurrent networks. Unlike BP, it is defined in
continuous time, and does not need separate forward- and back-propagation phases, which simplifies circuit
timing issues. It can be realized by adding to the network an adjoint net that has the same topological properties.
RBP changes weights dynamically by making their time derivatives proportional to the opposite of the derivative
of error function with respect to the weight considered:

o dWj - M
dt

Relevant equations for RBP for HNNs are as follows (Pineda, 1987; Balsi, 1993):
dW#

zrw ±-~,( = I AL-

The first equation describes weight dynamics, while the second represents the adjoint BP network, which
appears to be a resistive net, with the same connection topology as the forward net, except for direction reversal of

connections, as seen from weight matrix transposition. Symbol VL denotes equilibrium state reached by applying
initial state and input of example L E is error function, to be defined below.
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Diffusion optimization (Geman and Hwang, 1986) can be seen as a gradient descent method with added
noise, which decreases slowly, so that parameters converge in probability to global minimizers of the error
function. Continuous annealing (a discrete-time version of diffusion, or, from another point of view, a continuous-
space version of simulated annealing) has been used by a few authors (Hoptroff and Hall, 1989) for NN learning;
Wong (1991) used diffusion learning for stochastic HNNs both as a means of obtaining global convergence during
operation and for learning, also hinting at hardware realization. His method, however, is not immediately
translated to deterministic networks, as those considered here.

Diffusion learning can be defined for the HNN as follows:
'TW My = _ W. + rw

aw#

where wt) is a white noise, which is (in a weak sense) the time derivative of a Wiener process (Pugachev and
Sinitsyn, 1987). It is apparent, that the diffusion algorithm may be obtained by adding a noise term to RBP
learning equations.

3. Error Function - Realization Issues - Modified Equations

For the learning problem stated in section 2.2, we chose to use a new "tailor-cut" error function. In fact,
when a traditional output-based function is used, shallow error surfaces arise, especially when output function is
piece-wise linear, as is the case with CNNs. However, using a state-based function, while effectively improving
from this point of view (Schuler, 1993), adds unwanted additional constraints to the output, which may even
prevent a working solution from being reached.

In order to have the advantages of both approaches, without their disadvantages, the new error function is
defined as follows:

Error is written as a sum of errors over individual neurons (indexed by i) and examples (indexed by gL).

8(-') is the third integral of the Dirac pulse, e.g.:
10 if X < 0

2= x2 e0

1 + Pmin xsat is minimum acceptable magnitude of equilibrium state value, while I + p. is its maximum. The
second term, involving maximum state, may be omitted, but it has the advantage of preventing weights from
drifting towards bigger and bigger values, especially when the algorithm is implemented in such a way as to be
sensible to the time integral of error, which is reduced when outputs are saturated earlier.
The quadratic form has the advantage of causing error
derivatives to be piece-wise linear, simplifying
implementation. In fact, relevant function to be
implemented is the following:

1+ P1

A generic error component Ei1 (solid line), and

function fE, are plotted in figure I for C= 1. Figure 1 - error function and inverted derivative

Learning equations, as written in section 2.3, imply batch processing of examples, which would mean
memorizing corrections and separating forward and backward propagation phases. Simplified operation is
obtained by exploiting integration over time, while presenting examples in a (deterministic or stochastic)
succession, keeping each example steady for a prescribed period.

At the same time, instead of using equilibrium states, transient states are used. Period of example
presentation should be long enough for the network to relax, and to stay steady at equilibrium for a time long
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enough to make negligible wrong contribution to weight correction due to transient. In this functioning mode, the
algorithm is actually sensible to the integral of error over time, so that faster solutions are preferred. With a little
addition to the system, effect of transient may be masked by interrupting learning for a suitable time after a new
example is presented. This may be obtained by fixing error signals at zero.

With these considerations in mind, learning equations will be written as follows for diffusion (RBP is
obtained in the same form for T=O):

dW_
TW d =Zi y j + Tw

zi Wjif '(x i)zj = fE(Ci,xi)

The following equations define diffusion learning (and, for T=O, RBP) for CNNs. In this case, parameters
to be learned are not only state weights, but also input (control) weights and bias.

dW = ZklYk+i;l+j + Tw
di ki

U- Y, Wj-k;j.qf (Xj)zkl = fE (Cj, xj)
kICNr(ij)

dB i fE(Cij,xij )Uk+i;t+j + Tw
d t kI ±=l7 f (Cj, xij) + w

d i

4. Proposed Hardware Realization

In figure 2, realization of a HNN with hardware learning is presented schematically, by making use of
transconductance amplifiers. One neuron is considered, with only one connection represented. Output function is
here supposed to be piece-wise linear, so that a controlled switch is sufficient to realize multiplication by its
derivative, whose only possible values are 0 and 1 (figure 3(b)). In weight adaptation section, a controlled source
is driven by resistor noise, to produce the stochastic term for the diffusion algorithm. This is obviously just a way
of representing the necessary operation, while its actual realization should be considered at a stage where
technology is chosen.

ftx) Rx T %'R + 7 j yj (a) neuron dynamics

z f (xi)

i ,xi) Wj zj (b) gradient evaluation

WYj

CW -zi$ Yj Tw RN (c) weight adaptation

Figure 2 - hardware inplementalion
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5. Simulation Results

Simulations were performed on CNNs. In a previous paper (Balsi, 1993), 1 reported results concerning
application of RBP to GCNNs. In that case, individual weights are not subject to as many constraints as for CNNs.
For the latter, in fact, global functioning is only governed by a few parameters, forming the cloning template. This
is reflected in learning equations, where a global connection pattern arises (summations over all neurons are
present), that is not present in the case of GCNNs or HNNs, where learning equations are local.

When applied to CNN learning, RBP proved very prone to get stuck into local minima, so that learning
was successful only when starting weights were very close to a valid solution. In fact, correct functioning was
obtained only when starting weights guaranteed correct sign of equilibrium points.

For this reason, I tried using random presentation of examples as a way of climbing out of the said local
minima, as proposed by many authors for BP (Heskes et al., 1992). In this way, the CNN can correctly learn what
is generally called "noise filtering" cloning template. This functionality consists of bringing to negative final
output all those neurons that have positive initial state, but are surrounded by negative output neurons, while
leaving everything else as it is. The name is due to the fact, that by associating light intensity of pixels of an image
with the outputs of neurons of a planar CNN, isolated lighted pixels are removed, and the image smoothed.

6 - 2-S (i 1,8,

4- W(O) I1,6-
S----- w() 1,4

2- 1,2,

0OS
S6 0,6

-2 0,4
0,2

-3 0______

0 2000000 4000000 6000000

Figure 3
(a) weight evolution -RBP (b) maximum error - RBP

Figure 3 shows evolution of weight values (a) and maximum error as a function of time, measured in neuron time

constants t X, obtained in a simulation of a one-dimensional 5-neuron CNN, performed by integrating equations
with a modified Runge-Kutta-Merson algorithm, with 32 examples. Simulation was interrupted after error had
stayed at zero for a while; weights would have actually settled at larger values because of parameters chosen (large

Pmax), but representing them would make the figure less readable.
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Figure 4
(a) weight Lvolution - diffusion (b) learning error - diffusion

As it is said above, a CNN task may also be specified by a single example, which simplifies control and
communication very much. As in this case random motion cannot be obtained from the data, it is necessary to use
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diffusion learning, which provides built-in, controlled stochasticity. In fact, by using the diffusion algorithm. an
1 1-neuron CNN was taught the same noise filtering task with a single example. Figure 4(a) shows weight
evolution during learning, while figure 4(b) shows learning error E. Computed cloniong templete works correctly
in all cases.

In both cases, it is apparent that the role of gradient force is keeping steady those correct weight patterns
that are actually found by random motion.

6. Conclusions, Open Problems, Perspectives.

Supervised learning algorithms for recurrent networks were adapted for hardware realizability, and tested
by simulation. The case presented is very simple, because of complexity of simulation; however, it proves
feasibility of the methods presented. In fact, results were obtained under realistic constraints: in particular, limited
range and bandwidth of electronic circuits. These preliminary results, therefore, encourage further research
towards realization of a completely analog network, capable of real-time on-line learning.

One of the main open problems is caused by limitation of weight and state values, due to supply voltage
constraints, that, in some cases, causes the algorithm to get stuck, for a possibly long time, on wrong solutions.
Methods to avoid such failures should still be investigated. Further investigation should also explore practical
circuit implementation. In relation to this issue, some aspects of the algorithms (e.g. pattern presentation schemes,
noise exploitation) might be adapted to physical constraints.

A particular issue concerns CNNs. In fact, as noted above, cloning template learning involves global
evaluation of the problem being solved, while the network only has local information flowing. This issue poses
serious difficulties to learning in cases characterized by diffusion of information over the whole network. Solution
to such problems goes beyond the scope of this paper.

Continuation of the work will aim at designing a practical system. The purpose is twofold: making a
complete adaptive neural machine, to be applied to real-time problems, and realizing a learning system to be used
in development of special-purpose networks. This last case might be of interest in particular in the case of CNNs,
where uniformity of the system makes solutions found on small nets immediately scalable to large problems.
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Abstract
There have been numerous proposed algorithms to speed up the learning time of backpropagation.

However, most of them do not take into consideration the amount of hardware required to implement the algorithm.
Without suitable hardware implementation, the real promise of neural network applications will be difficult to
achieve. There is a need for special purpose hardware, particularly in specialized integrated circuits to serve in high
performance real-time applications. This paper proposes an adapted backpropagation algorithm to be judged by the
measure of speed and area if it is implemented with digital VLSI. Since multiply dominates computation and is
expensive in hardware, the approach is to reduce the number of multiplies in the backward path of
backpropagation algorithm by setting some neuron errors to zero. This paper proves the convergence theorem
by the general Robbins-Monro process, a stochastic approximation process. It is valid if neuron errors are set to
zero randomly and the learning rate decreases with time. However, setting the neuron errors to zero randomly is slow
compared to the standard algorithm. So, this paper proposes why neuron errors should be set to zero according to
their magnitudes. The theory is confirmed with simulation results of a character recognition problem by minimizing
errors only and a function approximation problem with testing patterns to monitor generalization performance.
Finally, hardware implementation is discussed and the area comparison is shown. The conclusion is that the reduced
operation algorithm performance in terms of speed and area is superior to a standard backpropagation algorithm.

Introduction

Layer I-1 Layer L-1 ,L
Figure 1: Data flow diagram of backpropagation

A data flow diagram of backpropagation [1] algorithm is shown in figure 1. It was first shown in [2]. In
the diagram, data are expressed as vectors and matrices so that afl operations can be written as vector-vector and

u (Q I ] (

matrix-vector products. sun4'" and yp1 is a vector where each component sumoj' and ypj' is an input and an output of
neuron j in I ,' i with pattern p, respectively. d4 is a desired output vector with similar definition. w° and Aw ')
is a weight: . a change of weight matrix where each component w " and Awl" is a weight and a change of weight
connection between neuron i in layer !-1 to neuron j in layer l, respectively. ep( is a neuron error vector where each

nt . .".F

component e s an error term associated with neuron j in layer I with pattern p. The matrix-vector multiplication is
represented by .. KP is a Kronecker product or a term by term multiplication of two equal length vectors. OP is an
outer product of a column and a row vector to expand a matrix. i is a sigmoid function and f' is its derivative. T
represents a transpose and r is the learning rate.The data flow diagram can be used to estimate the number of multiplications required which is a good
indication of the complexity of the hardware needed to implement the algorithm because multiplication is expensive
and dominates the whole computation. For simplicity, assume that all layers have e tsame number of neurons, N.
In the forward path, between each layer, there are N2 mutiplies represented by,. In the backward path,• takes N2

multiplies, the same as the forward path. KP needs N multiplies and OP needs 2N 2 multiplies (including the
multiplies of the learning rate, r, and assuming the weights are updated after each pattern). Except for the last layer
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which has 2N2 + N multiplies, there are 3N 2 + N multiplies for the backward computation between layer I-1 and 1.
Consequently, the number of multiplications in the backward path is about three times that in the forward path.

Since the backward path requires considerably more multiplications, we propose an approach to reduce
them. In figure 1, if we set some elements of e 1) in each layer to zero, the number of multiplies is reduced. Since
ep is computed recursively for each layer, the number of multiplications is reduced for all layers. Again, assume
that all layers have N neurons and that K of them are kept. N-K out of N components of e1E are set to zero. In the
backward path, - now requires KN multiplies. KP still needs N multiplies and OP needs 2KN multiplies. The
total number is reduced from 3N2 + N to 3KN + N, about a factor of N/k. Undoubtedly, this reduction changes the
normal backpropagation algorithm. The proof is presented next.

General Robbins-Monro Process
The general Robbins-Monro process with exogenous noise [3] will be used to prove the reduced operation

backpropagation. For the proof, the process is given by
wn+1 = w. + ah(wn,zn) (1)

where w. is the state of the process at the nth estimate of the optimal value of w. The sequence I Wn I is assumed to
be bounded w.p.l. z is a random variable which is independent of the state w, and its past values. The sequence
1z ) is called exogenous noise.

There are three conditions (CI.1, CI.2, and C1.3) to be satisfied for a convergence w.p.l of the sequence
Iw). They are
Cl.1 his a bounded measurable Rr-valued function. It is continuous in w, uniformly in z on bounded w sets.
C 1.2 For each e > 0 and each w

m

lim Plsup I ai(h(w,zi) - h(w)) > E = 0
n.-4 mn i=n

n

CI.3 1a is a sequence of positive real numbers such that a -- 0and ai = ooas n -. ,o.
With the three required conditions satisfied, the sequence I wn I (if bounded w.p. 1) will be interpolated into a

continuous parameter process and have the same asymptotic properties as those of the solution to an ordinary
differential equation d__t h(wv) (2)

dt

Application To Reduced Operation Algorithm
The general Robbins-Monro process can now be applied to prove the convergence of the reduced operation

proposal. Equation (1) is the equation to update all the weights in the weight space. That is if we define Wn to be a
state of the neural network at the nth update. The formula used to update weights per state Wn is

h~wzi) (1),z) (1) (L) T
h(wzi) = (h(w.'zi)... h(wjk,z) .... h(wNLNL-I,zi)) (3)

where each component is used to update each weight. We define the random variable zi as
. (l ) (I) Vi,l 5 i.2. . ,N L , 0 (4)

where s'i; is a selection variable. For the ith update, sj,," is 1 if the corresponding error ej' is selected. It is 0,
otherwise. The selection is random and pattern independent. Each error in the same layer has an equal chance of
being selected. Another random variable is pi which is the index for pattern p in the ith update. We choose at
random (uniformly) an integer Pi e 11,2, ..., PI where P is the total number of patterns in the training set. From
now on, we will use pi in place of p to emphasize randomness of pattern selections.

Now, we can write the formula to update a weight in term of a modified error term. That is
h(w( 1 ) - v O-l) (5)

where the modified error term is derived in the same recursive manner as e 'j of normal backpropagation
algorithm. It is always multiplied by ... For the output layer L

v d = e d s = (dptj - y(t f(sump) si.) (6)
and for a hidden layer I

(I) /ii 0+ +
v i = v"jh whj f/(sum 1 )_ s (7)

We will write h(w(),z) for a few layers explicitly in terms of all s!'. it depends on so that later proofs will
be easier to understand. For the output layer L

hw A) =(d - f- (sum ) y('-(8
"PO pi-4(88
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for layer L- I
hN( ,,Li(Lj (Lp L I). (L 2

I Zj W sumh; ts), yph 9
and for layer L-2 s2 i) NL- I . ( ) (L) S (L- (L.I)w(L-I)V(S Um (L-2k (L-2)((L-

The next step is to show that CI.l, CI.2, and CI.3 are satisfied. CI.I is satisfied if we we assume that
each weight is bounded. C1.3 can be satisfied by choosing the learning rate appropriately such as a, = c/n where c is
a positive real number. The most difficult one is C1.2. First, we define

h(w) = Eth(wzi)] (11)
where E is expectation. We also define

Yi = h(w,zi) - h(w) (12)
So we have to show that

lim P1sup l7 aiYl > E I = 0 (13)
n --. mm i~n

n 2 n

[31 shows, by using the martingale inequality of Doob, that (13) holds if E I I aiYi I < as n -- co, and if -aY i
is a martingale sequence. Also, assume that a4 2 < - as n . cc.

n 2 1n
Ei ajYj I < - as n - cc since h(w,zi) is bounded as in CI.I. We need to prove that ; aY, is a

martingale sequence which is to show that
n n-I n-I

E[ aI a~ Y, I ij aiYij av (14)

From (11) and (12), we have

E[Y¥ = E[h(w,z) - h(w)] = Efh(w,z)] - h(w) = 0 (15)
We use (14), (15), and the fact that Yi are i.i.d. random variables w.r.t. i from the definition of zi to write

n n-I n-a n-1 n-I

%II aX I I a,]= E[jX aiY I I ai] + n-I

= aiYi+anE[Yn] =

This shows that (14) holds and completes the proof that ' aYi is a martingale sequence. If we choose a, such that
, 2 < -o as n -- -,, C1.2 is satisfied. Note that a, = c/n as in C1.3 works here.

The last step is to solve the ODE (2), but first we have to derive h(w) or E[h(wA)] where each component
E[h(wi),zi)] can be derived as follows. For the output layer L from (8)

E[h(w ,zi)] = E[(dpij - yp!) P(sump ) Iy%')] E[s')J (16)

The term inside the first expectation on the right hand side of (16) is the negative error gradient of the weight in the
last layer with pattern p. Since we select a pattern randomly with a uniform distribution the expectation becomes
-1/PaET/iwj ' where ET is the total error. The expectation on s~j is by its definition the probability that the error e )
is selected. The probability must be the same for all neurons within the same layer. We define the probability as
q0 . Consequently, (16) becomes

E[h(wL),z)] = - q q (17)

Applying the same procedure for the output layer L to the hidden layer L- 1 of (9) yields
NL ) (L) '

E[h(W(L',zO) - E[X e, Whl t(sumpi) Ypik E[Swh p )1)- (L-2 L-
E4 E yiI Efs [i E[s , (18)

In deriving (18), for simplicity, we assume, w.l.o.g., that s,1 is layer independent, i.e. errors are set to zero
independently from each layer. Again the term inside the expectation on the right hand side of (18) is the negative
error gradient of the weight in the hidden layer L- I with pattern p. Hence,

E[h(wk- '))] = -J ET q(L)q -l (19)
p -(L-

1)
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E[h(w' 2 z)] can be derived in the same way. Once we take the expectation of all si" the rest of the expectation is
just the negative error gradient of the weight in the hidden layer L-2 with pattern p. from (10), the result is

E[h(w( 2 ),zi)] = - I dET q(L q1,1[: (20)
p i)(L-2)

In fact, from the recursive nature of (7), for any layer 1, we can conclude that
Efh(w*,zi)J = Lq(L (L...q (21)0".v j ( !.-q 2

Notice that output layer L has the highest expected value (in absolute value) with a factor of only q()
whereas the lower the hidden layer (less 1), the lower the expected value because of more factors of q(1. It should be
as expected since some neuron errors are set to 0 in each layer. They are propagated back and become less accurate.

Now we can solve (2). wt is a column vector with each component a weight. Let's index it from I to D
where D is the total number of weights in the network, i.e. w, = (wI,.  k, ... , WD) T . We have

dwt = (g. ... dwL. d___) T  (22)
at dt &t dt

From (21), define c1 as (l/P) q(Ll(L- 1'...q(,. Furthermore, define ck c for all corresponding weights wk of layer I.
For example, ci = = c 0 if wi and w2 are both in layer 1. From (11) and (21), we can now write

h(W) = ('Ci _ ..ET a-CET "-CD-) (23)

From (2), (22) equals (23), we have
dwk =-Ck aET ( 4dW -c-- (24)

dk awk
Let's examine dET/dt, the change of total error with time. Using the chain rule, we write

=D ET dwk (25)dt I Of dt
Substitute (24) into (25) yields D ()

dt D Oa ; T-

The differential equation (2) has the name of autonomous functional-differential equation. [4] covers it in
great detail. For our case, a simplified explanation is as follows.

Since c is greater than zero by its definition, dET/dt in (26) is negative. Hence, ET decreases in t and
because ET is always greater than or equal to zero, it has a limit- Moreover, ET is differentiable, so we can conclude
that dET/dt --- 0. From (23) and (26), dET/dt = 0 if and only if h(w,) = 0. That means dwddt = 0 or wt is at a fixed
point. Consequently, we can conclude that wt reaches a local minimum w* if there exists one, the same condition
for a normal backpropagation algorithm. This completes the convergence proof of the reduced operation
backpropagation algorithm.

Largest K Algorithm
In the last section, setting some of the errors to zero randomly has been shown to converge, but the rate of

convergence is not known. In this section, we propose that the largest K errors in absolute value in each layer are
kept and the rest are set to zero. K can vary from layer to layer. This is intended to reduce the number of iterations.
The reasons can be briefly explained as follows.

The vector used in a stochastic update of the backpropagation algorithm is the instantaneous negative
gradient of a particular pattern. Let's call it gp. The sum over all the patterns is g which points in the direction of a
negative gradient of the total error in the weight space. For a batch update, g is used as the vector. In the reduced
operation method, the vector in the update is h(wzi). Let's call it hp. If we use a batch update, it is h instead and
the convergence proof is still valid, but there will be no 1/P factor in (21) since pattern p is not random. We update
the weights after all patterns have been presented. Batch update will be discussed first since it is easier to understand.
At a particular point on the error surface, g and h can be calculated. If we want a descent direction to guarantee that
ET can be reduced after the update from that point, the directional derivative of ET must be negative, i.e. the dot
product of the gradient, which is -g, and h is negative or equivalently, the inner product gTh > 0. This has a
maximum when h = g. That is what happens in normal backpropagation even though it does not guarantee to reach
the local minimum faster since normally g does not point to the local minimum. Nevertheless, we want the angle
between g and h to be less than 900 so that, at least, we will be able to reduce ET with appropriate learning rate.
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In the reduced operation method by selecting the errors randomly, gTh is sometimes less than zero, but on
the average over a long period of time, descent directions are achieved. The same is true for a stochastic update of
normal backpropagation where we use g in stead of h. To understand why the errors should be chosen according to
their magnitudes instead of chosen randomly, consider a case for a batch update with only one pattern (P- 1) and one
layer (output layer. gTh is bounded to be non-negative since b is just g with some components set to zero. If we
select K errors, g b is maximized when the largest K errors in magnitude are chosen. With L>I and P>1, it is less
obvious to see, but choosing the errors according to their magnitudes will maximize the chance of moving in the
descent directions. For a stochastic update, the idea is similar. We try to make bp as close to gp as possible, i.e. to
maximize gpThp. so that ET is reduced faster. This can be achieved by selecting the largest K errors.

Simulation Results Discussion
Due to limited space, two simulation results will be summarized. In both problems, a small constant

learning rate is used in place of a decreasing learning rate as the theory suggests because the latter is very slow to
converge in practice. The network has two hidden layers (L=3) and is fully connected. The first simulation is a
classification problem where we train the network to recognize English characters. The objective is to minimize
total error ET only, i.e. we look at the problem as a non-linear optimization problem. In most runs (different initial
weights), selecting the largest K errors reduces ET faster than selecting the errors randomly. The smaller K becomes
(selecting fewer errors), the bigger the convergent speed difference between the two selection methods is. For
selecting K errors randomly, the larger K is, the faster the network converges in m ses. Normal
backpropagation is the fastest (requires minimum number of iterations). However, for selectin :gest K errors,
normal backpropagation is not necessarily the fastest. In may runs, K=N/2 is sometimes the fa. For stochastic
update, with 50 different initial weights and the stopping criteria that ET reaches the point when the average error for
each output is 10%, we have that, on the average, selecting the largest K=N/2 indeed requires 75% of the total
number of iterations compared to that of normal backpropagation. Obviously, K=N/2 requires less number of - and
OP operations in the backward path for each iteration. So, it actually takes less than 75% of the time in real chip
(for this particular problem). This is possible since in normal backpropagation moving in the negative gradient
direction with a finite step length is not guaranteed to reduce total error the most.

The second simulation is a continuous function approximation problem. Testing patterns a used to
monitor the network generalization performance instead of training patterns only as in the first one. Noise is also
injected to increase the network ability to generalize. The performance is measured by the number of iterations it
takes to have overtraining, i.e. when testing errors go up, and by the total error at the time. Selecting the largest K
errors (K=N/2) performs very well against the normal algorithm in term of generalization with and without noise
injection. On the average, the plots are very similar. Again, selecting the largest K errors requires less number of •
and OP operations for each iteration.

Hardware Implementation and Comparison
We proposed a detailed efficient hardware implementation [5]. The proposed architecture resembles the data

flow diagram in figure 1. Basically, each operation becomes a unit, all working simultaneously. The pipelined chip
has parallel MACs (Multiply-Accumulators) in the MAC unit to handle matrix-vector multiplications (- operations).
The Manchester carry chain based largest K unit was also proposed. It comprises of many cells. Each cell executes
two phases of operations during each cycle: compare and shift. The number stored in each cell is compared to the
input which enters the unit serially each cycle. Shifting and storing will occur according to the comparison result.
The largest K unit with N cells, in Y cycles, can output the largest X out of Y numbers as long as Y-X <= N. By
adding the largest K unit to the chip, the number of. operations can be reduced. Each cell takes about one-tenth of
an area of a multiply-accumulator since we only need a carry out to compare two numbers. We performed SPICE
simulations to show its feasibility for use in a high speed neural network processor chip such as the Stanford
Boltzmann machine [61, a 125 MHz deeply pipelined digital CMOS processor.

The actual number of cycles to train a network depends on the architecture of the hardware, i.e. how we
allocate resources for the chip. For comparison purpose, the assumption is that the chip is very large, to handle a
real world problem, so that memory and processor area dominate the total area. If the number of parallel MACs (M)
in the MAC unit is large, the assumption is valid since many operations in figure 1 do not scale up with M. Only
memory unit (to store weights and their changes) and the following units, which are counted as processor, scale up
with-M: multipliers for the OP operations in the OP unit, multipliers and adders for the weight update unit, and the
largest K unit. The actual area ratio of memory to processor depends on many factors such as the number of
patterns/second that we want the chip to process. The Stanford Boltzmann machine has about equal area for memor 2,

and processor. Higher ratio means that the chip can handle bigger problem, but it takes longer time to finish.
For normal backpropagation algorithm, there are M MACs in the MAC unit. We choose to have M

multipliers for the OP unit, M multipliers and M adders for the weight update unit to multiply each weight by the
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learning rate and update it. The number is reasonable since the OP unit and the weight update unit must keep up
with the MAC unit particularly the weight update unit. It must be fast to update all the weights in a stochastic
update. Otherwise, the MAC unit can stall. Assume that each pattern presentation takes I unit of time for the
forward path to complete all the - operations and produce outputs. The backward path will also require about I unit
of time to complete all the - operations. Assume that weight update takes an additional I unit of time after the
backward path finishes to access the weight memory and update all the weights before new pattern can be presented.
The total time for normal backpropagation is 3 units of time for each pattern presentation in the learning mode. The
XI architecture by Adaptive Solutions [71, one of the most powerful neural network processors, requires 6 units of
time for learning relative to feedforward computations. Since our proposed hardware is for the backpropagation
algorithm only, 3 units of time should be reasonable to assume.

For the reduced operation algorithm in the case of selecting half the errors, we can trade off between speed
and area. Let's consider the case where there are M MACS. In this case, the OP unit has M/2 multipliers, and the
weight update unit has M/2 multipliers and M/2 adders. The largest K unit needs M/2 cells to select the largest
M/2 out of M errors. In terms of the unit of time, it is clear that this scheme takes I unit of time for the forward
path, but only takes 0.5 units of time for the backward path. With M/2 multipliers for the OP unit, it requires the
same amount of time as the normal case with M multipliers since only half the weight matrix is expanded in the
OP operations. The same reason applies for calculating new weight values, i.e. M/2 multipliers and M/2 adders in
the weight update unit are sufficient. However, it will take an additional 0.5 instead of I unit of time to update the
weights since only half the weight memory is accessed. Consequently, the total time to learn one pattern is 2 units
of time. That means it takes 2/3 of the time of normal algorithm for each iteration. The total number of iterations
is shown to be less than or about the same as that of a normal algorithm. The speed up could be done in many ways
without increasing the hardware complexity and area such as varying the learning rate dynamically.

We can now compare the area of both methods. The area is estimated by the number of transistors since
all, counted as processor, can be considered logic and have the same area density per transistor. The weight,
activation, and learning rate values are assumed to be 8 bits. Also, assume that the accumulator can accumulate
additional 8 bits beyond the MSB of a 17-bit product between a weight and an activation value with no overflow.
The number of transistors for each resource is estimated in detail in [5]. An 8x8-bit multiply-accumulator has 2240
transistors. An 8x8-bit multiplier has 1910 transistors. An 8-bit adder has 290 transistors. One cell of an 8-bit
largest K unit has 200 transistors (including the control.) For normal algorithm, the total number of transistors is
thus (2240 + 1910 + 1910 + 210)M = 6350M. For the reduced operation algorithm, the total number of transistors
is 2240M + (1910 + 1910 + 210 + 200)M/2 = 4395M.

Now, the area saving can be computed. Since the memory area assumption is the same for both methods,
the area saving comes from the processor part only. The saving ranges from 6% to 20% when the memory to
processor area decreases from 4 to 0.5. In fact, we can also trade off the speed and area by varying M. In conclusion,
the reduced operation algorithm is indeed better than the normal backpropagation by speed and area comparison. The
saving in the area can be allocated for the weight memory or other resources. Or it can be used to reduce the size of
the chip to increase yield and reduce power consumption.
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Abstract

This paper investigates the incorporation of fault tolerance at the learning stage into Radial
Basis Function (RBF) networks. The approach is particularly attractive since the cost of
fault detection and correction in a practical VLSI implementation of such networks could
be prohibitive due to the large number of neurons and connections. The RBF networks
considered are applied to the task of analog function approximation. A fairly general fault
model is considered wherein faulty neurons are assumed to be stuck at a random value. Two
new learning methods based on regression are proposed to learn the weights and one new
regression based learning method is proposed to learn the centers. The methods explicitly
take into account the mean squared error in the objective function in the presence of faults
and use stepwise selection methods to choose the regressors. Simulation results are presented
which show that a considerable improvement in fault tolerance can be achieved over the non-
fault-tolerant learning algorithm.

1 Introduction

We consider the fault-tolerance behavior of the class of feed-forward networks known as Radial
Basis Function (RBF) networks. The RBF networks studied are utilized for the purpose of analog
function approximation. Let S = {(x(j), y(j)) c R" x R I j = 1,2,3, ... , N} be a set of data
points which is a subset of the graph of a function, f(x). By using the set S to learn, it is desired
to find an RBF network such that when given input x(j), it produces an output which is, in some
sense, dose to y(j).

The use of RBF networks for solving analog function approximation problems was analyzed
by [9] and also by [5]. RBF networks have been applied to this task in [1], [4], [7], [6] and [8]. In
[8] it is shown that RBF networks are a special case of regularization networks. Fault tolerant
training of feedforward networks with backpropagation training algorithm is considered in [10],
[11] and [12].

We study the fault tolerance of an RBF network with respect to the failures of the hidden
units. The output of a faulty unit i is assumed to be stuck at a random value Zi which is uniformly
distributed over an interval defined by the minimum and maximum values the unit can assume,
(in our case, 0 and 1, respectively). The measure of fault tolerance used is the mean squared error
of the calculated outputs of the RBF. We assume that the hidden units fail independently with
some probability p. Let Wi be a random variable indicating whether unit i has failed or not. Wi
takes the value 1 if the unit has failed and 0 otherwise. Thus, Wi is 1 with probability p and 0
with probability 1 - p. Furthermore, the Zi 's and Wi 's are assumed to be independent of each
other.

2 Fault Tolerance Learning: (FTL1)

In the following we define our notation. Let
{x(j) e Rn , j = 1,2,3,...,N} be the set of input points,
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{y(j) e R, j - 1,2,3, ..., N) be the corresponding set of output points,
c iR, i = 1,2,3,..., M be the centers for the radial basis functions,

2(i), = 1, 2,3, ..., M, be the variance corresponding to the th radial basis function,
rii be the output of the ill hidden unit for the jth data point, i.e., rli = ezp (-lix0)5!l 2 We
define roj = 1, j = 1,2,3,...,N.
Let 69, i = 0, 1,2,..., M, be the connection weight from the ill hidden unit to the output unit.
, (j), i = 1,2,3,...,N, dnotes the error between y(j) and the actual output produced by the
network. Thus,

M
y(j)--9Oirii+e(j), for j =1,2,3,...,N.

i-o

To put the above equation into matrix form, we define,
Y = [y(1), y(2),..., y(N)]T , as the desired output vector,
R = [&R, R,, ... , RM] , the regression matrix, where Ri = [ri,, ri2 , ... , riN]T represents a column
vector of the outputs of the hidden unit i for the data points y(1), y(2), ... , y(N),
( = [90,91, ... ,OMIT , the weight vector,
E = [e (1),e (2), ...,c (N)IT , the error vector. Then

Y = RE + E. (1)

The error signals E(j)'s are treated as random variables which are assumed to be uncorrelated
with the regressors and independent of each other. The least squares method minimizes the
expectation of the squared error ET E with respect to e.

In the first fault tolerant algorithm called FTL1, the elements of the regressor matrix R are
modified to take into account the possibility of failures of the hidden units. We denote this
modified regressor matrix by R 1 . The (ij)h element of R! is given by

rfo = rii (1 - W) + Wi Zi.

Note that if the ill unit is not faulty (1i = 0), then rfo = rii. On the other hand if the ith unit
is faulty (W = 1), then rfi, = Zi. The regression equation Y = R! Of + Ef is then used to
estimate 49 which minimizes the expected mean squared error, ET Ef. We get an estimate of
Of as

f= [RT R-S+(1-p)Q+Pp]-' RY.

where

RTR 0  0 0 ... 0A 0 RT Rf, *0 ... 0L~M
o... oT RM
0 TR 0 ... 0

0 R i0... 0

S ... RT Rm
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We use the following simulations framework for performance evaluation. Simulations for all
the methods are carried out for the task of approximating a sinc function, namely y = sinc (x) =
sin(2x x )/2 ir x, where the range of x is [- 1, + 1]. The set of data points is formed by choosing 41
equally spaced points over the range of x.

We run two types of simulations for measuring the immunity of the network to faults. With
the independent probability of failure, p, for each hidden unit, the network is run over all the

data points and the mean squared error is measured. This step is repeated 10,000 times and
the average mean squared error (which is a measure of fault tolerance) is evaluated. To measure
robustness, instead of assigning a probability of failure to the hidden units, the units are made
to fail one at a time. Thus one of the hidden units is made faulty (stuck at a random value Z),
and the network is run for all the data points. The mean squared error is measured. This step is
repeated till each of the hidden units is made faulty once. The average mean squared error is then
calculated which is a measure of robustness of the system to a failure of one unit. In addition,
since the probability of failure is very low in practice, we consider only one failure.

The performance of the network is plotted in Figures 1 and 2. In Figure 1 we compare the
performance of fault free learning with that of FTL1 algorithm. In FTLl learning the network
was trained for the value of p given on the horizontal axis. The performance of the network is then
evaluated for three cases: 1) when no faults occur (fault-free), 2) faults occur with probability p
(faults with p), 3) One hidden unit has failed (robustness). For fault-free training the performance
is evaluated assuming faults occur with probability p. In Figure 2, the FTL1 algorithm is used
for training assuming a fixed value of p (given in the Figure). The performance is then evaluated
for the value of p given on the axis.

From these figures we can observe the following.

* As expected, the network trained with FTLI results in a lower mean squared error than the
one trained with fault free learning for the probability of failure under consideration.
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Figure 2: Comparison of FTL1 for Different Values of p: 26 Centers.

* The response to different values of probability of failure becomes more and more flat as the
value of p for FTL1 is increased. Thus, over a range of probability of failures less than p,
the network exhibits very small deviation in the mean squared error from that in the fault
free case.

* In all the simulations we have run, FTLL always outperforms fault-free learning and tile
improvement increases as the number of centers increase. This can be attributed to the
following. We have observed that as the number of centers increases, the values of the
weights become very large in the case of fault free learning. Consequently, failure of one
hidden unit causes a large error in the computed output. On the other hand, with FTL1 the
values of the weights remain small even as the number of centers increases. This phenomenon
is similar to the weight control scheme of [12].

3 Fault Tolerance Learning: (FTL2)

In practice, we often do not have apriori knowledge of the probability of failure p. Also we are
more interested in studying performance of the network in presence of failures. Further, assuming
that failure is a very low probability event, we would be interested in failure of at most one hidden
unit.

FTL2 is a learning algorithm which concentrates on one hidden unit failure. It does not
depend on the probability of failure p of the hidden units. In FTL2, we consider all the possible
cases in which one hidden unit is faulty and the case in which none of the units is faulty. The
expectation of the sum of the mean squared errors over all these cases is minimized. The estimate
E minimizes the expectation of the total mean squared error.

Denote Rf1 as the regressor matrix representing the case in which the 1th hidden unit is faulty.
This matrix is obtained by replacing the P

h column of regressor matrix R by Z1 . Since the
columns of Rf are indexed from 0 through M, denote Rf(M+l) as the regressor matrix for the
case of no failures. Thus we have,

Y = Rft 1 +i El forI=O, 1, 2,..., M, M + 1
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The estimate of Of is found from minimizing the following expression.

M+1 M+1

ET El (Y -Rf, e)T (Y- Rfjef).
1=0 1=0

We get

M+1 T ] 1  M+1

1=01=0

where P' = P/p. The networks were trained using fault free learning as well as FTL2. The fault
tolerance and robustness simulations were run on each of the networks and the results are shown

in Figure 3. From this figure we can observe that

" In the presence of one unit failure, FTL2 shows a considerable improvement in performance
over fault free learning.

" As the number of centers increases, the robustness of fault free case can actually worsen
as there is no control over it as opposed to FTL2 which guarantees an improvement in
robustness. This is similar to the case of FTL1.

4 Choice of Centers for Improving Robustness : LSR Method

In this section, we suggest a stepwise method to choose the centers based on robustness consid-
erations. The method is called LSR since it uses an algorithm similar to Least Squares and is
designed for improving Robustness. We assume that the network is to be trained with FTL2 to

achieve an improvement in robustness.
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All the data points are possible candidates for the centers to be chosen. Let C denote the
set of data points chosen to be the centers. Initially, the set C is empty. In each step of the
algorithm one data point is added to the set C. At the kth step we calculate the value of the
objective function for FTL2 using each of the data points not in the set C as a center along with
the (k - 1) data points which are in the set C. The data point which results in the minimum
value of the objective function is added to the set C. The algorithm is terminated when the value
of the objective function is within the given acceptable limit.

The choice of the centers using the method described was compared with the OLS method [3I
for different numbers of centers. In Figure 4 we plot the mean squared error as a function of the
number of centers. It should be noted that here we are using the FTL2 algorithm for both LSR
and OLS. Therefore, the difference in performance is only due to the choice of the centers.

From this figure, it can be see that

9 The network whose centers are chosen using LSR and trained with FTL2 results in a better
performance than the one using OLS for selecting the centers both when there are no faults
as well as when one fault occurs.

5 Conclusions

From the discussions and the results presented in the previous sections we can note the following.

If the probability of failure p for hidden units is specified apriori, then the network learnt with
FTL1 performs better than the network learnt with fault-free learning in terms of fault tolerance.
This means that in the presence of failures the network trained with FTL1 will result in a lower
mean squared error than the network trained with OLS.

FTL2 which does not need the value of p can be used for achieving an improvement in robust-
ness. Also FTL2 is more practical than FTL1 since it does not consider the probabilistic nature
of faults but rather considers the performance of the network given that a fault has occurred.
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We can achieve better robustness for a given number of centers, when the centers are selected
from a set of data points by the LSR method instead of the OLS method and FTL2 is used for
learning the weights. The reason being that LSR is based upon FTL2 itself, which is a learning
method for improving robustness as opposed to OLS which is not based on fault tolerance learning.

If it is required that the mean squared error be within specified limits under fault free and
one fault cases, then using FTL2 and appropriate number of centers, this criterion can always be
met.
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Abstract

This paper presents a new neural network learning theory that is much more brain-like than classical
connectionist learning. Unlike connectionist learning, the algorithms here both design and train networks
and do so in polynomial time. They are also immune to other learning problems (local minima, oscillation,
catastrophic forgetting). This paper shows how a RBF-like net can be generated under this theory for
classification problems.

1. Introduction - A Robust and Efficient Learning Theory

The science of artificial neural networks (ANN) needs a robust theory for generating neural networks.
Lack of a robust learning theory has been a significant impediment to the field. A rigorous theory for
ANN should include learning methods that adhere to the following stringent performance criteria and
tasks: 1. Perform Network Design Task: A neural network learning method must be able to design an
appropriate network for a given problem, since it is a task performed by the brain. A pre-designed net
should not be provided to it as part of its external input, since it never is an external input to the brain.
2. Robustness in Learning: The method must be robust so as not to have the problems of local minima,
oscillation and catastrophic interference and/or similar learning difficulties. The brain does not exhibit
such problems. 3. Quickness in Learning: The method must be quick in its learning and learn rapidly
from only a few examples, much as humans do. For example, an on-line method that learns from only 10
examples is quicker than one that needs a 1,000 examples. 4. Efficiency in Learning: The method must be
computationally efficient in its learning when provided with a finite number of training examples. It must
be able to both design and train an appropriate net in polynomial time. That is, given n examples, the
learning time must be a polynomial function of n. 5. Generalization in Learning: The method must be able
to generalize reasonably well so that only a small amount of network resources is used. That is, it must try
to design the smallest possible net. This characteristic must be an explicit part of the algorithm.

This theory defines learning principles that are obviously much more brain-like than those of classical
connectionist theory. Judgig by these algorithmic characteristics, connectionist learning is not very powerful
or robust. First of all, it does not even address the issue of network design, a task that should be central to any
learning theory. It is also plagued by efficiency (lack of polynomial time complexity, need for excessive number
of teaching examples) and robustness problems (local minima, oscillation, and catastrophic interference),
problkms that are partly acquired from its attempt to learn without using memory. Classical connectionist
learning, therefore, is not very brain-like at all. Several algorithms have been previously developed for
perceptrons that satisfy these learning principles (Roy et a. [1991, 1993], Mukhopadhyay et a. [1993]). The
algorithm presented here shows RBF-type nets can also be constructed using these same learning principles.

2. Radial Basis Function (RBF) Nets - Background

RBF nets belong to the group of kernel function nets that utilize simple kernel functions whose responses
are essentially local in nature. The net has one hidden and one output layer. Each hidden node is a kernel
function. An output node computes the weighted sum of the hidden node outputs. The gaussian function
is a popular kernel function. The design and training of a RBF net consists of 1) determining how many
kernal functions to use, 2) finding their centers and widths, and 3) finding Lhe weights that connect them to
an output node.

The following notation is used. An input pattern is given by the N-dimensional vector X,z 
(X 1 , X2 ,..., XN). K denotes the total number of classes. The method is for supervised learning where
the training set X1, z2, .. . , zn is a set of sample patterns with known classification. The input F(x) to the
jt output node is given by Fj(x) = F'= hjqGq(z), G9 (x) = R(II x - Cq 1, u)q). Here, Q is the number

of hidden nodes, Gq(x) is the response function of the qth hidden node, R is a radially asymmetric kernel
function, Cq = (Ci I ... CqN) and wq = (Wql...WqN) are the center and widths of the qth kernel function, and
hjq is the weight connecting the qth hidden node to the jth output node. There is one output node for each
class. Here, an asymmetric gaussian is chosen as the kernel function: Gq(z) = exp(- .=L(Cqj -

Several RBF algorithms have been proposed recently. Significant contributions include those by Powell [1987],
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Moody and Darken [1989], Broomhead and Lowe [1988], Musavi et al. [1992], Platt [1991] and others.

3. Basic Ideas and the Algorithm
The basic idea is to cover a class region with a set of gaussians. A function F(x) is said to cover a certain

clas region if it is slightly positive (F(x) > c) for patterns in that class and zero or negative for patterns
outside that class. Let pk gaussians be required to cover a certain class k. The covering function FL(z),
being a linear combination of p, gaussians, will be Fh(z) = P hG,(x), where G.(z),q = 1,... pi. i5
the qth gaussian used to cover class k and hq the corresponding connection weight. A pattern z, therefore,
will be in class k if Fk(r) > qL and not in class k if Ft(5) < 0. Hence, the RBF net is modified to add
thresholding at the output node. Furthermore, when the effect of a gaussian unit is small, it is ignored. This
requires truncated gaussian units as follows: G (x) = G9 (z) if Gq(z) _ 0, = 0 otherwise, where G, (z) is a
truncated gaussian function and 0 a small constant. In experiments, 0 was set to 10'. Thus, the function
Fk(x) is redefined as F(z) = Ep hqG'(z). Thus the modified RBF net has truncation at the hidden
nodes and thresholding at the output nodes.

In general, let ph be the number of gaussians required to cover class k, k = 1, ... , K, Fk(z) be the
covering function (mask) and Gk(z), ... ,G (z) be the corresponding set of gaussians. Then a pattern z'
will belong to class j if and only if its mask F (z) is at least slightly positive, and the masks for all other
classes are zero or negative. Here, each mask F(z) will have its own threshold value ci as determined during
its construction. In mathematical notation, a pattern z' is in class j, if and only if Fj(z') Ej and Fk(z') < 0
for all k 6 j, k = 1, ... , K If all masks have values equal to or below zero, the input cannot be classified. If
masks from two or more classes have values above their c-thresholds, then also the input cannot be classified,
unless the maximum of the mask values is used to determine class.

Let TRC be the set of pattern vectors of any class k whose masking is desired and TRNC be the
corresponding set of non-class k vectors, where TR = TRC U TRNC is the total training set. Suppose
m(= ph) gaussians are available to cover the class. The following linear program is solved to determine the
m weights h = (hl, ... , h,) for the m gaussians that minimize the classification error:

Minimize a E d, +3 : di (1)
ieTRC iRe

subject to

Fk(z)+ d.c, i cTRc, (2)
Fk(zi) - d, <0, i C TRNC (3)

di > 0, i c TR, (4)

q. >_ a small poitive constant, h in F(Z) unrestricted in sign, (5)

where di's are external deviation variables and a and f3 are the weights for the in-class and out-of-class
deviations, respectively.

3.1 Generation of Gaussian Units

Here, gaussians are not purely local units. A variety of overlapping gaussians are created for masking.
Though both "fat" and "narrow" gaussians can be created, the "fat" ones are created first in an attempt
to generalize better using broad territorial features. Thus, the gaussians are generated incrementally and
as new gaussians are generated, the LP model (1)-(5) is solved for each class using all of the gaussians for
that class and the resulting network evaluated. Whenever incremental change in the error rate (training and
testing) becomes small or overfitting occurs on the training set, masking of a class is complete.

The gaussians for a given class k at any stage h are randomly selected in the following way. First, a
majority criteria is specified for that stage. Denote this majority criteria by Mhk for the k th class at stage
h. A Mk of 60% means that at least 60% of the patterns covered by a gaussian's core (within one standard
deviation) should belong to class k. Mh starts at 50% and can go up to 100%. To generate a gaussian,
randomly select a pattern z of class k from the training set and search for all other patterns in some
6-neighborhood of z. This 6-neighborhood is actually an ellipsoid defined by different widths in different
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directions. Let Vi be the set of patterns within the 6-neighborhood of h such initial vector z,. If the set
V satisfies the majority criteria, it can be used to create a gaussian. If a gaussian is created from V, the
centroid of its pattern vectors become the center Ci and the standard deviation of their distances from Ci
in direction j becomes wij, the width in direction j. Whether a gaussian is defined or not, the patterns in
Vi are removed from the training set. This process of randomly picking a pattern Z of class k from the
remaining training set and searching for patterns in its 6-neighborhood is then repeated. A set of gaussians
(j = 1,... ,Qh) can be found at the h'h stage by repeating this process until the remaining training set is
empty of class k vectors.

The procedure described above is embellished slightly whereby the 6-neighborhood is allowed to grow
until it reaches a certain maximum size of 6,ma or until it no longer satisfies the majority criteria. Let , be
the width of the elliptical 6-neighborhood at growth stage r, 6, = (46,. ... 6, ). So the process of generating
a gaussian starts with an initial 6, 60, and then increases 6 by a fixed increment (b, =- ,1 + A6) where
A6 = (A6 1, . . .,A6N). So, in this embellished method, the gaussians at any stage h are randomly selected
as follows. Randomly select a pattern x. of class k from the remaining training set and search for all other
patterns in the 60-neighborhood of x .g Let Vi" be the set of patterns within the 4,-neighborhood of i t ' such
initial vector x'. A neighborhood can be grown only if the current pattern set Vi" from the 4,-neighborhood
satisfies the majority criteria and if 6, # 6maz. If the current set Vi fails on the majority criteria, the
previous set Vi" -' is used to create a gaussian. The center and widths of a gaussian are determined in the
same manner as before. Once a gaussian is defined from a pattern set (V or Vi"-), that set is removed
from the remaining training set. This process of randomly picking a pattern vector z. of class k from
the remaining training set and growing the largest possible gaussian around it is then repeated. A set of
gaussians (j = 1,... ,Qh) for class k is found at the h"' stage by repeating this process until the remaining
training set is empty of class k patterns.

3.2 The Algorithm
The algorithm is summarized below. The following notation is used. I and R denote the initial and

remaining training sets, respectively. 6maz is the maximum neighborhood radius and b, is the neighborhood
width at the r t step of neighborhood growth. A6 is the 4r increment at each step. Vi" is the set of patterns
within the 4r-neighborhood of it" initial vector z4. P,(k) denotes the percentage of class k members in V,'.
Ni" denotes the number of vectors in V,'. h is the stage counter, Oh is the minimum percentage of class k
members in Vir in stage h and AO is the increment for Oh at each stage. Qj corresponds to the number of
gaussians created in stage j and Ph = -=1 Qj is the total number of gaussians till stage h. Cki and Wki are
the center and widths respective of the i" gaussian unit of class k. TREh and TSEh are the training and
testing set errors, respectively, at the hth stage for class k. P is the minimum number of points required to
form a gaussian and O = (O, .... , ON) the standard deviations of the distances from the centroid in various
directions for class k. 6 ,., is set to some multiple of a. The fixed growth step in each direction i, Abi, is
set to ru/L, where L is the desired number of growth steps. L was set to 25 for computational experiments.

The Gaussian Masking (GM) Algorithm
(1) Initialize class counter: k = 0.
(2) Increment class counter: k = k + 1. If k > K, stop. Else, initialize gaussian counter: j = 0.
(3) Initialize stage counter and constants: h = 0 ,6 na: = ae, A6i = ar/L, A6 = some constant (e.g. 10%).
(4) Increment stage counter: h = h + 1. Increase majority criteria: if h > 1,0, = 0 h-1 + AO; otherwise

Oh=50%. If Oh > 100%, go to (2).
(5) Select gaussian units for the hth stage: i = 0, R = I, Qh = 0.

(a) Set i = i + 1, r = 1,b4 = A6.
(b) Select an input pattern vector x', of class k at random from R, the remaining training set.
(c) Search for all pattern vectors in R within a 4 -neighborhood of z'. Let this set of vectors be V,.

(i) If P(k) < Oh and r > 1, set r = r - 1, go to (e); (ii) if P(k) > 0h and r > 1, go to (d) to expand
neighborhood; (iii) if Pi(k) < Oh and r = 1, go to (h); (iv) if P(k) > 6h and r = 1, go to (d).

(d) Set r = r + 1,6,- = 4-1 + A6. If 6, > 6mazset r = r - 1, go to (e). Else, go to (c).
(e) Remove the set Vir from R : R = R - Vi. If Ni" < 0, go to (g).
(f) Set j = j+ 1. Compute the center Ckj and widths wti of the j'h gaussian for class k. Qh = Qh + 1.

CA =centroid of the set Vi,', and
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w =standard deviations of the distances from their centroid of the patterns in Vr

(g) If R is not empty, go to (a), else go to (6).
(h) Remove the set Vi' from R : R = R - V". If R is not empty, go to (a), else go to (6).

(6) From the set p%, eliminate similar gaussians (i.e. those with very close centers and widths). Let h be
the new set of gaussians after this elimination.

(7) Solve LP (1)-(5) for class k mask using ph number of gaussians.
(8) Compute TSE1 and TRE for class k. (a) If TSEh < TSE&1,, go to (4); (b) If TSE > TSEh.- and

TRE > TREi.-1 , go to (4); (c) Otherwise, overfitting has occurred. Use the mask generated in the
previous stage as class k mask. Go to (2) to mask next class.

Other stopping criteria, like maximum number of gaussians used or incremental change in TSE, can also be
used. Polynomial time convergence of the GM algorithm can be proven in a manner similar to Roy et al.
[1993].

4. Computational Results

All problems were solved on a SUN Sparc2 workstation. Linear programs were solved using Roy
Marsten's OBI interior point code from Georgia Institute of Technology. The dual log barrier penalty
method of OBI was used. The weights in LP (1)-(5), t and f, were set to 1 in all cases.

Several well-known problems were solved using this method. Only a few results are reported here. A
2-class, 2-dimensional problem, described in Musavi et al. [1992], was solved where the first class has a zero
mean vector with identity covariance matrix and the second class has a mean [1,2] and a diagonal covariance
matrix with values 0.01 and 4. The estimated optimal error rate is 6%. The GM algorithm obtained an
error rate of 8.75% using only 11 gaussians (up to 80% majority gaussians). Musavi et al. [1992] achieved
an error rate of 9.26% with 86 gaussians. The GM algorithm used 200 points for training. Mangasarian et
al. [1990] describes a breast cancer diagnosis problem. The data, from University of Wisconsin Hospitals,
contains 608 cases, each case having 9 measurements with values between I and 10. Of the 608 cases, 379
were benign and the rest malignant. Of the 608, 405 were used for training and rest used for testing. An
error rate of 4.43% was obtained by the GM algorithm using 7 gaussians. Mangasarian et al. [19901 report
average error rates of 2.56% and 6.10% with their MSMI and MSM methods respectively.
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Abstract Some further results are proposed for the LA convergence rates of Kernel Regression Estimators
(KRE) and Radial Basis Function (RBF) nets given in Xu, Kryzak & Yuille (1992&93). Instead of studying the
convergence properties of the L2 error, here we study the convergence properties of the MISE (Mean Integrated
Square Error). It will be shown that the upper bounds for the convergence rate of MISE are tighter than those for
convergence rate of L2 error given in Xu, Krzyzak & Yuille (1992&93), under milder conditions.

1. Introduction
A number of theoretical results on Radial Basis Function (RBF) networks have been obtained, see Xu, Krzyzak

& Yuille (1993) for a long list of references.. It has been shown that the RBF net can be naturally derived from
the regularisation theory (Poggio & Girosi, 1989; Yuille & Grzywacz, 1989), and that RBF nets have the universal
approximation ability (Hartman, Keeler & Kowalski, 1989; Park & Sandberg, 1991&1993) as well as the so-called
best approximation ability (Girosi & Poggio, 1989). In addition, RBF nets can also be related to Parzen Windowv
estimators of probability density (it can be considered a special example of an RBF net) and probabilistic neural
networks (Specht, 1990) which are based on Parsen window estimator.

Recent theoretical studies on RBF nets gave convergence rates of approximation and generalization error in terms
of the size of RBF nets (i.e., the number of basis functions) (Xu, Krzyzak, Yuille, 1992 &93; Girosi & Anzellotti,
1992; and Corradit & White, 1992). In Xu, Krzyzak, Yuille (1992&93), the connection between RBF nets and
the Kernel Regression Estimator (KRE) has been established. It has been shown that KRE can be regarded as a
particular kind of an RBF net. Using theoretical results about KRE, a number of interesting theoretical results for
RBF nets have been obtained. First, upper bounds have been given for the pointwise and L2 convergence rates of the
approximation error with respect to the number n of basis functions; An example of such bound is (n -2a/(2a+d)) for
the L2 convergence rate on approximating function R(z) in the Lipschitz function class. , or Q(n - 2

9
/ (29+d)) for L2

convergence rate on approximating function R(z) in the class of functions which have order-q (q > 1) square integrable
derivatives t , where d is the dimension of x. Second, the learnability of RBF nets has been proved by showing the
existence of a consistent estimator for RBF nets constructively. Third, upper bounds have also been provided for
the pointwise and L2 convergence rates of the best consistent estimator for RBF nets as n and N (the number of the
learning samples, N > n) tend to co. Examples of such bounds are Q(n-2a/(2a+d)), N > n or O(n-2q/(2q+d)), N > n
for L2 convergence rates for the two function classes described above. Fourth, some theoretical results on selecting
the appropriate size of the receptive field of the radial basis function have been provided too. Nearly in the same
period, Girosi & Anzellotti (1992) and Corradit & White(1992) also proposed some results on RBF net convergence
rates of the approximation error. However, their studies differ from Xu, Krzyzak & Yuifle (1992&93) in several
aspects: (1) the unnormalized RBF net has been considered instead of the normalized RBF nets considered by Xu,
Krzyzak &. Yuille (1992&93); (2) the tools used were totally different; (2) the results of Girosi & Anzellotti (1992)
and Corradit & White(.992) concern only convergence rate of the approximation error; while Xu, Krzyzak & Yuille
(1992&93) study much more than just approximation error; (4) the conditions assumed and the detailed results are
also different, though the rates obtained in Xu, Krzyzak & Yuille (1992&93), Girosi & Anzellotti (1992), and Corradit
& White(1992) are consistent.

This paper propose some further complementary results for those obtained in Xu, Krzyzak & Yuille (1992&93)
on the L2 convergence rates of KRE and RBF nets. Given a vector-valued regression function R(z) = [r()(z), - ,
r(m)(z)JT, let network with output estimate fn,N(t) be trained by a training set DN = {XI, Y,)f, where N is the
number of training samples and n is the size of the network, e.g., the number of hidden neurons in the network.
In Xu, Krzyzak & Yuille (1992&93), we have studied the convergence properties of the L2 error e= f2 R(z) -
f,DN(z)12dp(s), where Iz(z)l = 'E , Iz(')(x)l for z(z) = [z(')(z), - .. , z(')(z)]T, and is the domain of z, and p

denotes the measure on z. This error is a random variable because the training samples are random varaibles. Thus,
the convergence properties given in Xu, Krzyzak & Yuille (1992&93) are described in terms of 'almost surell, ' in
probability?. In this paper, we study the convergence properties of the MISE error:

e2 = EDN[(R(XI) - f,.,(X))2 ], (1)

where Xi E Dj. This error is not a random variable. We will show that the upper bounds for the convergence rate
of e2 are tighter than those for the L2 convergence rate of C2 given in Xu, Krzyzak & Yuille (1992&93), under milder
conditions.

2. RBF Net, KRE and Convergence Properties
As in Xu, Krzyzak & Yuille (1992&93), we consider the RBF nets of the following normalized version (Moody
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Darken, 1989; Nowlan, 1990; Jones et al, 1991):

fM() = E. w,(fz - c,.E'lZ - c,]) (2)Eli, *([s - c, -1[Z - cl)

where 0(r2) is a prespecifled basis function satisfying certain weak conditions. The most common choice is the

Gaussian function, 0(r2 ) = e" 2 with E = (n)21, but a number of alternatives can also be used, (e.g., several
choices are listed in Poggio & Giroui, 1989). ci is called the center vector and w E R"' is a weight vector. E is a
d x d positive matrix which controls the receptive field of the basis functions #([z - ci'E-[z - c,]).

Xu, Krsysak & Yuille (1992&93) has shown that this type of RBF nets has close connections to the Kernel
Regression Estimator (KRE) studied in the statistical literature.

Let (X, Y) be a pair of random vectors in Rd x R" and R(z) = EfYjX = z) be the corresponding xegression
function. Letju denote the probability measure of X. Moreover, let D = {X,, X) ' be a set of independent identically
distributed samples drawn from (X, Y). The kernel regression estimate of R(z) is defined as follows:

E" , YK(---)
gn(x) = gn(x, I n) = En'(.) (3)

which is the weighted average of Y, for approximating the conditional mean of Y under a given X = z with weights
depending nonlinearly on X,. Here, hn is usually called a smoothness parameter and is a positive number that
depends on the number of samples n. K > 0 is a p integrable kernel on R d . When the kernel K(z) is spherical
symmetry, we can rewrite eq.(3) as:

9-(Z) = E n=,K h.x (4)

It is not difficult to see that by letting
K )= (2), E = h2.1, () 2 = h2,, n ,= ,=Xi=1.. S

eq.(4) is identical to eq.(2). That is, a spherically symmetrical kernel K(r 2) is just a special instance of radial basis
function model eq.(2) with a hyper-spherically shaped receptive field specified by the matrix E = hVI, and with the
weight vectors wi, i = 1,.n.,n being simply assigned to the specified values Yi, i = 1,... ,n. It is interesting to notice
that the assumption of hyper-spherically shaped receptive fields is commonly used in the existing studies of RBF nets
(Broomhead & Lowe, 1988; Chen, Cowan & Grant, 1991; Moody & Darken, 1989; Poggio & Girosi, 1989; Xu, Klasa
& Yuille, 1992).

With this connection, we can obtain upper bounds for the convergence rates of RBF nets via the convergence
ratesof KRE.

to make our statements more precise, we first review some mathematical terms.
Given a vector-valued function f(z) = [f(l)(z), ..- , ()(x)jT, and a sequence {f (z))}, let

ezf., ,,) = 1(z) - (C)l, PU.(, In) = le.(f, f.)12do(z), (6)

where Ij(z)l = Y , IzP)() for -(z) = (z()(s),... , z')(X)jT, U is the domain of x, and p denotes the measure on
z. For any e > 0, if there exists a specific no such that pU(f, f,) <e for any n > no, then fn is said to converge
in L 2 to f. Given a positive sequence fn which tends to zero as n - co, the convergence rate of tn is said to be of
O(r(n)), if there is an explicit positive function r(n) of n with r(n) -* 0 as n --* o (e.g., r(n) = n-",q > 0) such
that az n/r(n) - 0 as n - oco for any sequence of positive numbers {an) which satisfies an - 0 as n -- 00. Using

p j(f, fn) to replace tn, we get the deifinition for L2 convergence rate.
A Junction approximation scheme is a device of a set F of functions supported on Rd. Usually, this device consists

of a number of components so that the set " can be characterized by this number (say n), that is, we can denote it
by Fn,. Examples of such devices are multilayer networks with n hidden sigmoid units and RBF nets with n radial
basis functions. Let T u = U'= F., then the function approximation scheme is said to have the property of universal
approximab'or (Hornik, Stinchocombe & White, 1989) if 'u is dense in the space of the continuous functions C[U]
defined on .ome domain U of Rd; or in other words, if for any continuous function f(z) supported -on U, there exists
a specific fn E X. such that fn (z) converges to f(z) uniformly. Similarly, for any function f(m) of a given a function
class Ac(U) supported on U,'if there'exist a specific in E T. such that jf(s) converges to f(z) in the L 2 sense, we
say that the function approximation scheme has the property of L2 approximation for the function class Fc(U).

These properties describe the approximation ability of one set of functions to another set of functions. For a given
function f (z), the properties only say that there exists, in ,the set Fm defined by the function approximation scheme,
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a function that cam approximate f(z) well as n - co. They say nothing about how to find such a function. Usually,
F% is chmacterised by a set e of unspecified parameters. Each specified value 6 of e determines a f,(z) in F,,.
The value 6 (thus f,(z)) is obtained based on a set of observed samples VN = {X., Y.'}f of a given function f(z).
Usually then observed samples X 1 , Y1 , .. . , XN, YN are identical and independent random variables with f(z) being
their regrsmoa fuction, i.e., f(Xi) = R(X.) = E(Y.IXj). Such a 1.() is called an estimator of R(z). To explicitly
indicate its dependence on IN, we denote it by i,,,N(z). An examples of such estimators is KRE, a specific RBF net
obtained via eq.(5). Since VN are random samples, fa.N(z) is also random variable. In this case, the convergence
behavior is described by a property called statistical consistency which describes how the estimator approaches the
regression'function R(s) = E(YIX = z) as the number of samples tends to infibity. An estimator J.,N(Z) is said to
be L2 consistent in probability if it converges in L2 sense to R(z) in probability.

Although useful, the convergence properties of universal approximation, L2 approximation and statistical con-
sistency give no descriptions on the rates of Is(z), fs,N(Z) converge to f() with respect to the number n, N, i.e.,
the sise of the hidden layer and the size of training sequence. Since KRE is a particular specified RBF net and its
#,(z) belongs to the set Jr that is defined by the RBF net eq.(2), we can explore the convergence rates of RBF
nets through investigating the convergence rates of KRE. It was through this thought line, Xu, Krzyzak & Yuille
(1992&93) obtained a number of results on the convergence rates of RBF nets.

This paper will provide some complementary results. We further study the convergence properties of the following
MISE error

4 = ED,((R(X) - g,(X 1 ))2 ], for KRE.

C2' = ED [(R(Xi) - f.,N(X)) 2 ], lor REF.

where DN is the training set. By taking expectation on q £.,(R(XI) - f,.N(X,)) 2 , we see that it becomes
ED,{R XI) - f.N(X1))2 when X 1 , . . , are i.i.d random variables. In other words, This error can also be
regarded as the estimation error of'the networks on the traning set DN.

3. Main results
Theorem 1 (KRE's convergence)
Let EY2 < o, and

cIs. < K(x) _ c2IS., 0 <r < <00, C1,C2 > 0
h - 0, nhd -- o

where IA denote indicator of set A and S,.r = ly : Ily - zll :_ r). For g,(z) given by eq.(4), we have

E(R(X,) - g.(X,)) 2 
- 0 as n - 00.

The above Theorem shows that KRE estimator g,,(z) given by eq.(4) converges in the MISE sense. In comparison
with Theorem 2 of Xu, Krzyzak, Yuille (1992 & 93), we can observe that the condition EIYI2+' < 0o s > 0 has
been relaxed into EY2 < 0o. The following theorem gives the MISE convergence rate of KRE estimator g,,(z) given
by eq.(4).

Theorem 3 (KRE's convergence rate)
Let p denote the probability measure of X, with a compact support, and

c,Is..,< K(z)<5cso,, 0 <r<R<0c,c 2 >0

h -. 0, n&l(&+
2

)hd - 0o as n - o

EIYI+ < 00 s > 0
IS(z) - R(y,)1< lxz- yll* ', 0 < <, 0 >0

For g.(z) given by eq.(4), we have

E(R(XI) - gn(X 1 ))
2 = O(n - (2+.Fd2+d).

Let't = 2 + s and put it into Theorem 4, then the condition Ely12+s < 00 s > 0 becomes Ell"I' < oo I > 2..a
Correspondingly, the rate,becomes O(n-ili~4 ). Now we are ready to compare with the rate O(n- I )-the
one given in Theorem 6(B) of Xu, Krzyzak, Yuille (1992 & 93). Let t = , and noticing that 2 < 1, we have
2*ts- 2 .2 2 That is, the rate given in Theorem 2 is is tighter than the one given in Theorem 6(B) of Xu,
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Kuysak, Yajile (1992 & 93). In addition, comparing the requirements EIYI' < 00 s> 2with EIYI <cc 8 >2+
we we that the condition has also been relaxed.

From the above theorems about the KRE estimator g.(z) given by eq.(4), we can observe that that for a given
function f(s) = R(x) we can construct a specific RBF net f. E T,. by simply letting the parameters e to assume the
values provided by the samples D. = IX., Y~j* with D,, being a randomly selected subset of DN, in the same way
as it was done for the KRE eq.(4). As a result, this f,... will converge in MISE to f(x) with the sme convergence
properties as described by Theorems 1-2. Recalling that such a specific f,,, may not be the best f,N, N > n, so
the convergence rate of the best f,jv, N > a given by RBF net will be not worse than the rate provided by Theorem
2. That is, we can get upper bounds forthe convergence rates of f,.,,, N > ai. These bounds are described more
precisely in the following theorems.

Theorem 3 (RBF's convergence)
Leg Ey 2 <oo, and

C1 ISo,, :5 () :5 2l15..n, 0 <r < R < 00,C1, C2 > 0

4 -O, nhd - o.

Let f.N(z) denote the one in T,v that approximates R(x) best. We have

E(,R(X 1 ) - f,IV(X,))2 _ 0 as na - 00

where FUN denotes the set of functions defined by the RBF nets eq. (2) and trained by the training set of N samples.
Theorem 4 (RBF's convergence rate)
Let p denote the probability measure of X with a compact support, and

cils,,.:5#(z):52Is..., 0<r < R< c,cI,c3 >0

&-0, no 1 42 )h -. 00 as ai _ 00

E1Y124 0<c 0>>0

Let f.,.(x) denote the one inr7 .,N that approximates R(z) best. We have

E(,R(XI) _ f*,NV(X,))2 = 0n 2@~t:J
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Abstract General nonlinear mixed effects models for repeated measurement data have a wide range of
applications in medicine, pharmecokinetics, business and economics, but may have a complicated covariance
structure. Traditional neural network models for nonlinear regression can not be directly applied to the
nonlinear regression with fixed and random effects. In this paper, we propose a novel neural network model
with weighted sum of square error. Iterative algorithm between estimation of fixed effects parameter and
variance components is presented. A modified backpropagation scheme is investigated with encouraging
simulation results.

1 Introduction
There has been a great deal of increasing interests in general nonlinear mixed effects models for repeated
measures data in which data are generated on individuals over time or under fixed conditions. Regression
with fixed and random effects plays an important role in biomedical research including pharmacokinetics,
bioassay, and clinical trials, business and economics (Vonesh and Carter, 1992). Since individuals are assumed
to constitute a random sample from a population of interests, the observed data have nonconstant correlation
among them. Traditional neural network models for nonlinear regression can not be directly applied to the
nonlinear regression with mixed effects(Blum, 1992; Freeman, 1994).

In this paper, we propose a novel neural network model for nonlinear regression with mixed effects.
The model allows for incomplete or unbalanced data and a variance-covariance structure. The response
is expressed as a Sum of nonlinear functions of fixed effects and linear functions of random effects. The
objective function is a weighted sum of square errors. The estimates of unknown population parameters are
obtained by an iterative algorithm. A modified backpropagation scheme involving weight matrix imposed
on sum of square errors is presented. Finally, the model is applied to the growth of orange trees over time.

2 The Model

It is assumed that there are P distinct individuals (p = 1, ... , P) and whose responses can be expressed as
the following general nonlinear mixed effects model:

YP = x,,W) +zP, +ep,p = 1,...,P (1)

where Yp = [Y 1.... , ,]T is an rp x 1 vector of repeated measurements from the pth individual; Xp =
[X,,,..., Xpr,] T is an rp x k matrix of known explanatory variables; W is a vector of unknown parameters;
f(Xp, W) is a nonlinear response function; Zp is an rp x m full-rank matrix of known constants. 6p is a
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rn-vector of unobserved random regression coefficients with mean zero and covariance matrix ' ; and CP the
rp random error vector with mean zero and variance matrix o2 rp.

The nonlinear function f(Xp, W) can be approximated by a neural network. The bias units always have
an output of one and they are connected to all units on their respective layer. Units on all layers calculate
their net-input values. For the hidden-layer units:

h PJ,..,,Q + 0 (2)
t=1

and for the output-layer units

L

net; E 2 W,"OJ (3)
j=1

We assume that output function in each units takes a sigmoid function. Then the output of the j-th unit
in the hidden layer is 1

on =t h(,et"-) (4)

3 Estimation Procedure

Let

ep = ZpOP + Cp (5)
Then, equation (1) can rewritten as

YP =(X, W) + e,,, = ., P (6)

It is easy to see that the variance matrix of random vector e. is given by

V= Var(ep) = PZ TZ P+ I (7)

Let

AII-...AI,
V"= A, = ..... . (8)

(Af,'" Apr,)

Because of heteroscedasticity of random vector ep we use the weighted least square method to estimate
the weights of neural networks.

The weighted objective function is

1P

E -- -(Y= -P(_ W)) T A f(Y, -(Xp, W)), (9)

or I P r r

E = ± (, - f(X,,, W)) Ak A('(,, - f(X,&, W)). (0)
p=l 1=1 k=-1

The estimation procedure is as follows.
Step 1:
The first stage of the procedure is to obtain the nonlinear ordinary least square estimator(OLS), W(),

by minimizing the residual sum of squares
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!P

E(W, I,,) = P _( (Xp, w)) T ,(, f(XP, W)). (11)
p= 1

This stage provides an initial estimator W() and may be implemented by ordinary Backpropagation
algorithm.

Step 2:
After substituting the estimated residuals

4") = Y, - A(*P, W,<")),p = .. P. (12)

into equation (5), we obtain the following random coefficient linear equation:

P(") = Z , + EP, . P. (13)

Thus, the least square estimation ) and &pk) are given by

P (Z"1 ,- T k) (14)

and

0(k) _ 1 -(k)(1 Z (Z ZP) -"ZT)k ( ) (15)

respectively.
Step 3:
It follows from equation (13) and equation (14) that

#k) = OP + (Z; ZP) IZ ,P. (16)

Since , -p N(O, I), the least square estimator j(k) is given by
P P(k). = S 

-

#P(k) = s- + .,)( z,) -, (17)
P=1

where
P

P - # k))((k)- (k))T (18)

and

1 )(19)

p=1

Step 4.
Define

1) =[z+')Z T + (a(k))2jr]-1. (20)

The weighted least square estimation i.I(k+) of weights W of neural networks are obtained by minimizing

1 
P

E(W, Ap (1 )) - 2 (P - f(X,, W(k)))T Ak)(Y - f(XP, W(k))). (21)
P=1
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The minimization of E(W, A( k )) is implemented by modified Backpropagation, for detail, see Appendix.
If IIWk+l) - W(k) <e , a prespecified error, then stop, otherwise go to step 1.

4 An Example
The proposed neural network model is applied to fitting the data on the growth of orange trees over time
given in Draper and Smith(1981). The data are presented in Fig.1 and consist of seven measurements of the
trunk circumference on end of five orange trees. It turns out that the neural network model fits the data
very well. The marginal correlation between observations on the same individual is quite high and is greater
at the larger time points. This reflects the large variability between trees are compared to within trees.

Appendix

Suppose that the global error surface is given by
1 P(~) W, r,

E(W,A) = j ] :Ajk(y, - f(x('), W))(YPk - f(x(k), W)). (22)
p=l- 1=1 k=1

Let

Ep1k = Aak(Yp- f(X ('), W))(Ypk - f(X~k), W)), (23)

and

e= Yij - f(Xi'), W). (24)

Then

OE,,k = _I + Oj(X(k))ep,, (25)

where Oj (X')) and 0 (X (k)) are the output for unit j in the hidden layer when X(0) and X (k) are input
to the neural network respectively.

Similarly, we can find the gradient of the error surface with respect to the hidden-layer weights:
OEplk I A X(O ( O .1 ( X~k)) )e. (26)
8I' -p 1, (X,('))X( )ep1 + O Xk)()e,-~h 2 A3\(O P p i s (26)

where

j Oj(X(')(1 - Oj(X(Q), (27)

0(X(k)) = o.(X(k)(1 - o(x(})), (28)

and

OEP' = -!Atk[Oj(X(')(1 - Q,(Xp'))epk + [Oj(X(k)(1 - Oj(X(k))epl,. (29)

Hence

W,0(t + 1) = W30(t) + ?1? 1 A(Oi(X('))epk + O,(X(k))ep,, (30)
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W1
1y + 1) w t (i) + i7iAj(Oj(X,'))(1 - +QX )(-(')- p(

o(' + I) = oj(t) + 9 Ae[OX(,')(l - o((')) p + [o,(A'(&)(1 - o(x(()),, (32)
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Abstract

In the present paper, we attempt to show that the weight decay method, used
frequently to improve the generalization performance, is a method to decrease the re-
dundancy in networks. To confirm our hypothesis of the weight decay as a process
of the redundancy reduction, we performed two experiments: the inference of regular
English verbs and the inference of regular and irregular verbs with the grammatical
determination. In both cases, we could explicitly see that the redundancy was de-
creased, proportional to the generalization errors, when the weight decay term was
added. Thus, we think that the weight decay is only a special case of more general
redundancy reduction methods for the improvement of the generalization performance.

1 Introduction

Many techniques have been proposed to improve the generalization performance of neural net-
works [1], [2], [5], [9]. The weight decay method has been well known in the circle of neural
networks and widely used to improve the generalization performance. However, we have lit-
tle knowledge on the reason why the decay term can improve the generalization performance.
One possible answer was proposed by Krogh and Hertz [3]. They argued that the decay term
suppressed irrelevant parts of the weight vectors and the effects of static noises.

We think that the weight decay can decrease the redundancy in networks and thus tries to
maximize the possible information for new patterns. In other words, networks try to minimize
the information content, specific to training input patterns. Redundancy is usually defined by the
difference between maximum entropy and observed entropy:

R = - (1)

where H"I is a maximum entropy and H is an observed entropy. Thus, using this redundancy,
our objective is to show that networks try to minimize this redundancy R by using the weight
decay term for the improvement of the generalization performance. Finally, one of the difficult
problems is to define an information or redundancy for networks. We have defined an entropy for
the internal representation. Thus, to reduce the redundancy corresponds to the reduction of the
redundancy, defined for the internal representation.
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2 Theory and Computational Methods

Let us formulate an entropy function for the internal representation. Suppose that a network is
composed of three layers: input, hidden and output layers. Hidden unit activities are denoted by vi
and input terminals by 4j. Then, input-hidden connections are denoted by wij and hidden-output
connections are denoted by Wi.

A hidden unit produces an output

where f is a logistic function define by

= 1 +

and where u! is a net input to ith hidden unit and defined by

L

where f is ith element of an input pattern and L is the number of elements in the pattern. An
entropy for kth input pattern is defined by

Hk = - ptlogPt, (2)
i

where

k

where the summation is over all the hidden units. Averaging over all the input patterns, we have

1N M

H N E1 NM o p) 3
k i

where M is the number of hidden units and N is the number of input patterns. The redundancy
is defined by the difference between the maximum entropy and the observed entropy. That is,

R H.az - H(4)
H.az

NlogM + E' ZM Pi logpi

NlogM

2.1 Weight Decay as a Process of Information Minimization

Weight decay method is a very popular method, used to improve the generalization performance.
For the weight decay, the sum of the squared weights:

2i
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must be minimized. Differentiating both sides of this equation, we have,

8C

Now, let us see how the information is changed as the weight is close to zero. It is easily verified
that

lim [NlogM + Y E plogp1 ik =0 for Vij.
wis-oN log M

Thus, as the weights approaches zero, the redundancy also approaches zero. In other words, the
weight decay method is considered to be one of methods to minimize the redundancy.

3 Results

3.1 Data and Network Architectures

In experiments, we trained networks to produce correct past tense forms, given various verb stems
of artificial languages, close to English. All the artificial languages were composed of strings:
CVC, CCV, and VCC, where V is a vowel, and C is a consonant. Each string was represented
in a phonological representation with eight bits, used by Plunkett et al. [6]. The number of
training patterns was 100 for the regular verbs and 200 for the irregular verbs. The number of
validation patterns was 500 and testing patterns was also 500 patterns for all the experiments.
The number of input, hidden, and output units was 18, 30, 20 respectively for the inference of
regular verbs and 18, 30, 21 respectively for the inference of regular and irregular verbs with
grammatical determination. Networks started to learn with initial random values (-0.25, 0.25).
The parameter for the momentum term was fixed to 0.9 for all the experiments. The learning
was performed by using the so-called Batch learning, meaning that weights were updated after
processing all the input patterns. The learning was considered to be finished, only when the
epoch was 200. If the over-training was observed, the learning was stopped immediately before
the over-training (BP-stop-learning).

3.2 Redundancy and Generalization Errors

Figure 1 shows the generalization errors (an upper figure) and the redundancy (a lower figure),
computed with standard BP and weight decay for the inference of regular verbs. In this case,
only if the Hamming distance between outputs and targets was zero, the trial of networks was
considered to be a success. Generalization errors were normalized, ranging [0,1]. As you can
see from the figure, the generalization errors by standard BP remain constant, meaning that
the standard BP could not generalize at all, though the errors for the training patterns were
completely zero. On the other hand, the generalization errors by the weight decay is decreased
gradually. Let us see a lower figure. It is easy to see that in direct proportion to the generalization
errors, the redundancy is decreased, when the weight decay is used. Except the first stages of the
training epochs, the redundancy is decreased, in direct proportion to the generalization errors.

Then, we used irregular verbs in addition to regular verbs and attempted to determine the
well-formedness of obtained strings. Figure 2 shows generalization errors (an upper figure) and
the redundancy (a lower figure), computed with standard BP and with weight decay. As you can
see from the figure, by using standard BP, generalization errors remain constant. On the other
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hand, by using the weight decay method, the generalization errors are decreased significantly.
A lower figure shows the redundancy, computed with standard BP and the weight decay. The
redundancy, computed with standard BP is decreased very slowly. On the other hand, the
redundancy, computed with the weight decay, is quickly decreased. Thus, these results show that
the generalization errors are in direct proportion to the redundancy and the weight decay is a
method to decrease the redundancy.

4 Conclusion

In the present paper, we have attempted to show that the redundancy is decreased by using the
weight decay method and the weight decay method is only a method to minimize the redundancy
in neural networks. The weight decay is a popular method to improve the generalization. However,
we have observed that there are some cases in which the decay method is not so effective. In
these cases, we think that the direct redundancy reduction with the weight decay method is
effective in improving the generalization performance.
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Figure 1: Generalization errors (upper figure) and Redundancy (lower
figure), computed for the inference of regular verbs. The learning rate
and the parameter A for the weight decay were set to 0.1 and 0.005
respectively.
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set to 0.05 and 0.005 respectively.
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Abstract: Many approaches have been devised to vary the number of hidden units in a backpropagation-based
neural network in a systematic way to obtain a more effcient network This paper presents an approach that adds
hidden units and then selectively removes them to determine a more efficient network for a particular problem. The
addition phase adds hidden units one at a time until a convergence criterion is satisfied. The selective pruning process
selects the least important hidden unit to be removed based on the weights associated with the hidden units. This is
an improvement over a previous method (Hirose et. al. 1990) in which the order of hidden unit chosen for removal is
fireS Snlaons using Boolean test cases were carried out on a backpropagaton network with one hidden layer and
the results show improvements over the previous method.

1. Introduction

The bIckprpation (BP) algorithm (Rumelhart, Hinton and Williams 1986; Webos 1974) opened a new way for
training multi-layer networks. It provides a solution to some problems encountered by single layer perceptrons
(Minsky and Papert 1988) and works well in many applications.

However, the original BP algorithm does not address the issue of the construction of the optimal network
architecture necessary for the learning of the intended input-output mapping for a particular problem. In particular.
the near-optimal number of hidden units in the network is usually obtained through trial-and-error experi entation
which is ad hoc and often time-consuming. Some solutions to this problem have been proposed that involve the use
of mechanisms that permit the network to grow and shrink, ie., by creating or removing hidden unit(s) or hidden
layer(s) during the process of training (e.g., Ash 1989; Hirose et. al. 1991).

An optimal network facilitates the construction of an internal representation that is appropriate for learning
the desired mapping. This avoids both the problem of a larger than necessary network that does not generalize well
(Denker et. al. 1987) and the problem of a network that is too small and that does not possess enough power to learn
the mapping correctly.

Very often, an optimal network may be difficult to obtain, but a nearoptimal network or a more efficient
network with a smaller number of hidden units can be obtained through one of the methods that modify the number
of hidden units in a systematic maner until such a network is found. These methods (eg., Ash 1989; Hirose et. al.
1991; Sietma and Dow 1988) employ three ways to modify the number of hidden units:

i) strt with fewer units and add some mre (pure adding),

ii) start with too many units and take some away (pure puning), or

iii) start wilh fewer units and after adding, take the redundant muits away.

A pure adding approach, such as the Dynamic Node Creation method (Ash 1989), adds hidden units one at a
time to the netwok. A certain desired accuracy of the network is specified and addition of a node is carried out when
the accuracy is not reached and further training does not bring about any further improvement of the accuracy. This is
repeated until the desired accuracy is achieved. Conversely, a pure pning technique starts with a network that is
larger than appropriate and removes redundant nodes (e.g., Siema and Dow 1988).

Methods such as that of Hiroe, Yamashita and Hijiya (Hirose et. al. 1991, henceforth referred to as the
Hirose algorithm) combine addition and removal of hidden units. First, addition is carried out until the network has
learnt a set of weights for the correct mapping. Any redundant units can then be pnmed off to achieve a more
efficient size. The most recently added hidden unit is chosen for removal first.
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In a method diot uses addition of hidden nodes followed by pruning of the network, an effective pruning
technique is essential to ensare det no added hidden units ae removed wrongly. This prevents extra effirt that would
be needed to noin the network if important hidden mits were wrongly prnied.11is paper describes such - effective
p appr ouuach in the context of an addition cum removal method dt rersents an improvement ove the pruming
method m in die Himee algorithm.

We use te same method as that of the Hiram algorithm (described in Section 2) for the addition of hidden
units. However, in the priming phase, instead of using a fixed removal order for the hidden units (i.e.. removing the
most recently added hidden unit first) like in the Hirose algorithm, which could result in somie problems as dscribed
in Section 3, our method selectively removes the hidden units boed oan their importince. This method is described in
Section 4. Simulations with Boolean tet cases were cared out in a network with one hidden layer and the results
am presented in Sections 5 and 6.

2. The Hirsme Algorithm

In the addition phase, the algorithm starts with one hidden uniL Weight coretons are the same as om ein te BP
algorithm. E, the total mo between the target and the actual output is expressed asE = I I I (ti__o .)2

2 p j ri ri
where tpj is die desired output of an output unit j for pattern pOpj is the actual output of output unit j for pattern p,
and he m is taken over the set of output units for die set of training patterns.

E is checked after every 100 weight corrections. If it decreases by less than 1% of its previous value (i.e.,
the eirr 100 weight corrections ago), a new hidden unit is added. However, if E decreases by more than 1%, no
hidden unit is added and the weights are corrected another 100 times. Th criterion for convergence is when E is less
than 0.01.

When a new hidden uiit is adde die initial weighs between die added hidden unit and die other urts in the
input and output layers ar assigned random valus

The algorithm enters the reduction phase as soon as die network convages. Tbe most recently added lidden
unit is removed. Training continues with the pnmd network. If the hidden network converges again. moter hidden
unit is removed. This procedure is repeated until die network no longer converges, whereby the algorithm judge the
present newt to be incapable of leuning die mapping. Hence die required number of hidden units is one plus the
present number of hidden units.

3. Effects of Order of Removal im Hirose Algorithm

In the Hiroe algorithm, the most recently added hidden unit is removed first. A question arises as to how die
networks performance will be affected if another hidden unit is removed first insaead.To mwer that, we investigated
the effect of changing the order of removal of hidden units using die PAR2 problem (panty problem with an input
pattern of size 2, or XOR). The simulation resulted in 4 hidden units at the end of the addition phase. TU weights of
the network before die reduction phase ae shown in Figure 1.

Hidden Qum

W4 a940

Figure 1. Weights between the hidden and output layer of a PAR2 simulation before reduction phase.

In one trial, the most recendy added hidden unit was removed first and in aiother, die initial hidden unit dth
the network started with was removed first. The behaviors of the networ are graphed in Figure 2 and Figure 3
respectively.

Both removals resulted in 2 hidden units. However, when the initial hidden unit was removed first (Figure
3), the network took moe tha twice as Jng a time than in the case of the other to converge before the next hidden
unit could be removed. Also, the eor after the removal of the first hidden unit rises to a much higher level compared
to that in the case where the most recently added hidden unit was die first to be removed.
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example. the most mecendy added unit happened to be tdo least important unit. In general, this my not be the cose.
Howae, using a fhed removal order gives rise to the possibility of removing an important unit which contributes
sipificenty to the inuotu mapn. Thiis results in the Ionae time needed for convergence. Theme is also the
posisbf't do the removal of the wrong node would result in a less optimal network - i.e., one with more nodes
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4. Selective Prumlg

We inwinace a modified method cled selecdi prming that improves on the fixed removal order method by taking
into omidearon the magitdes of the weights bwem the hidden and output layer before pruning.

The in of selective pruning is to rnove the hidden unit that contributes the smallest total weight to the
output imts. Mist is, the hidden unit coresponding to

H
rain ( IwjiI)
i j

is pinmed, when wji is the weight associated with the connection between a hidden unit i and the output unit j, and
H is de tMal umber of hidden unit.

The absolute value of each weight is considered since it is undesirable to remove a hidden unit with a large
negiave weight (as well as one with a large positive weight) since this weight contributes significantly to the
inhibitory signal at to the output node.

The selective prning teclunique involves three steps:

1) Remove the hidden unit with the smallest sum of absolute weights associated with the connections to
the output units. This sum is computed according to Eq 1.

2) Train the network with the remaining hidden units.

3) Repeat 1) and 2) until the network can no longer converge.

S. Simulatlos Results Obtained for PAR4

Fqpms 4 and 5 illustrate the results obtained with PAR4 (parity problem with input pattern size 4) using
the Hire fixed prmuing method and the selective pruning method respectively. Both simulations were based on the
sae set of initial weights.
Y Y 10-
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Fiure 4. Fixed Pruning applied to PAR4. 8 hidden units were added and 3 hidden units were removed. The graph
on the right shows an enlaged portion of the pruning process.
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Figure 5. Selective pruning applied to PAR4, using de same initial weights as in Figure 4.4 units were pruned.
The graph on the right shows an enlarged portion of the priming process.

In both simulations, 8 hidden units were added. Selective pruning removed 4 hidden units, in contrast to
Hirose fixed pruning which removed 3 hidden units. The enlarged portions of both pruning processes show that
within the same 100 iterations, selective priming removed more hidden units, compared to Hirose fixed pruning.
Hence, the removal of subsequent hidden units is faster in selective pruning.

Also, the figures show that with selective pruning, the error immediately after pruning a hidden unit rose to
a level lower than that in fixed pruning. This is becam the unit removed in selective pruning contributed less to the
mapping than in dhe caue of fixed pruning. Thus these two illustrations show that selective pruning removes more
hidden unitsfasser without driving the error up, due to die fact that the correct redundant unit was removed.

6. Selective Pruning Applied to Other Boolean Test Cases

Simulations were carried to test how well selective pruing works for the other Boolean test cases. Boolean tests
cases wer culled from Rumelhart and McClelland (1986, chapter 8). These include the parity, symmetry, encoder
problem, aid binary addtion with carry. A total of 50 trials we carried out for the same set of initial weights in the
rane (-1, 1) using learning rate 0.7 and momentum 0.7. The average number of hidden units arrived at is tabulated
in Table 1.

The table shows that the selective pruning method performed better than the fixed pruning procedure in
being able to arrive at a smaller number of hidden units on the average. The largest improvements are in the cases of
PAR6 and ADD3. Also, for selective pruning, removing of subsequent hidden units took place very much faster after
the first hidden unit was removed. In many cases. this could be as fast as reqiring only I or 2 iterations.

7. Conclusions

In a combined addition and selective pruning method the redundant hidden units added during the trunig proem we
removed. The selective pruning method considers the magnitudes of the trained weights before selecting the hidden
unit to be removed. The method removes the hidden unit with the smallest total of the absolute weights associated
with the connections to the output units. This has been shown to 1) remove more hidden units, resulting in a more
efficient netwokr 2) increase the hkelihood that redundant hidden units are removed, and consequently 3) reduce the
effort needed Io retrain the pruned network which results in faster removal of subsequent hidden units.

The above method overcomes the problems faced by a method that uses a fixed removal order of hidden
units. Por more complex architectures consisting of more hidden units and more weight corrections, removing the
"rWiht hidden units is especially important Rather than removing the hidden units in a fixed manner, it would be
more efficient if tho algrithm is capable of removirg redundant hidden units in a non-arbitrary and effective manner.
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Fixed Selective

Pruning Pruning

PAR2 2.08 2.02

PAR4 4.94 4.34

PAR5 6.46 5.31

PAR6 12.60 8.20

SYM4 3.04 2.94

SYM6 2.33 2.02

ADD2 4.03 4.00

ADD3 9.15 8.77

ENCI6 4.00 4.00

Table L Average number of hidden units for Hirose fixed iuning method (in which the most recently added hidden
unit is removed) and selective pIning method (in which the hidden unit with the smallest total of the absolute
weights associated with all its connections to the output units is removed). Both simulations wee based on the same
set of initial weights in the range (-1, 1).
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Abstract- A constructive training algorithm for supervised neural network, based on a
linear-programming procedure, is presented. It builds two-layer single-output networks that
implement any consistent training set of binary or real-valued examples. The algorithm can
incorporate a self-pruning technique; in fact it can determine the percentage variation of the examples
which are satisfied by the construction of any further hidden neuron. Simulations show satisfactory
results.

1 Introduction
In the present paper we propose a constructive training algorithm for supervised single hidden
layer neural networks. The algorithm is guaranteed to implement any consistent training set of
binary or real-valued examples classified into two classes. It extends the constructive algorithm
based on a linear-programming approach presented in ref. [1] and results similar to the 'sequential'
training algorithm of Marchand et al. [2], without the restriction of binary input only. Our approach
is based on the following remarks:
1) For classification problems on a point set, it is known that a single hidden layer is sufficient to
implement any task [3]. In fact, the hidden neurons define the hyperplanes which separate the
decision region that is an approximate version of the true decision region for the problem;
2) Hyperplanes coincident or very close to the previous ones are determined step-by-step by means
of a procedure inspired by the 'simplex method';
3) Our constructive algorithm is inherently self-pruning, since it is able to measure the importance
of each hyperplane to the total solution of the given problem. Therefore, we have all the
information necessary for applying a simple and effective pruning of the neurons and for obtaining
a simultaneous control of the resulting generalization capability of the net.

2 The Proposed Algorithm
The proposed algorithm is based on the constructive procedure described in ref. [1]. That

procedure builds a cascade scheme which satisfies all the examples of a training set by a suitable
number of neurons. In order to understand the method, it is necessary to summarize the procedure

followed in determining the cascade. Let us denote by type 1 and 0 respectively the examples of the
training set belonging to the two possible classes. In correspondence to step k, the k-th neuron of
the cascade is determined by carrying out the three following substeps:
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i) determination of the residual training set. The number of examples decreases at each step (i.e.,

we have a convergence to zero-errors);

ii) determination of the hyperplane in the input space, which allows to correctly classify all the

examples of one type and the maximum number of the other type. This substep is carried out by a

linear programming procedure based on the simplex method. Namely, at each application of the

procedure a 'feasible set' of the linear inequalities, that correspond to the training examples suitably

modified, is found;

iii) determination of the connection weights and the threshold of the k-th neuron from the previous

hyperplane.

The cascade obtained at the end of the k-th step satisfies a certain percentage of examples of the
original training set, say Pk. It is important to note that PkPkc. 1.

The proposed method builds a single hidden layer network by means of two applications of the

previously described procedure. It starts by applying this procedure to the given training set. The

neurons of the resulting cascade, with the same connection weights and thresholds, constitute the

first layer of the neural network we are constructing. Some of these neurons can be eliminated by
the pruning technique discussed in sect. 3. Then, we determine the outputs of the neurons of the

first layer corresponding to all the inputs of the original training set. These outputs take on the
values [ 1,0) since the activation function of the neurons of the cascade is hard. The set of input-

output pairs identified by the calculated outputs of the first layer neurons (as inputs for the second
layer) and by the original desired outputs constitutes a new binary training set. Since it is always

possible to solve a classification problem on a point set by only one hidden layer, the new training

set is characterized by linearly separable binary examples. Hence, a second application of the

linear-programming procedure on this linearly separable training set constructs a single neuron that
constitutes the second layer of the network.

3 Pruning and Generalization Capability
The generalization capability of the two-layer network regards its operation with respect to

examples outside the training set. It can be strongly hampered by wrong examples present in the

training set, since the training algorithm will try to accommodate them in contrast with the

remaining ones. Consequently, a robust training algorithm should be able to detect wrong

examples and to neglet them.

The algorithm proposed in the present paper can be easily tailored to incorporate this performance,
since it is possible to measure the importance of each neuron to the formation of the decision

region. In fact, when we apply the cascade procedure for determining the hidden layer, we can
simultaneously determine the percentage variation of the training examples which are satisfied by

the addition of any further neuron. It is evident that, when the percentage is very close to 100%,
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the remaining examples to be satisfied are very different from the previous already satisfied. This

difference is usually due just to the presence of wrong examples. A reasonable strategy in this case

is consequently to prune away the final neurons of the cascade by retaining only those which

guarantee a desired threshold on the percentage of satisfied examples.
As an illustration of this point, we consider the simple case of classifying two regions in a plane

separated by a straight line. The training set is constituted by examples concerning with 18 points

uniformly located in the first region and other 18 similarly located in the other region. One of those
examples is then set to the wrong label. In Fig. 1 these points are represented by black or white

dots together with the lines corresponding to the neurons which the cascade procedure successively

determines. The lines are labelled 'a', 'b', and 'c' in order of succession. We see from the figure
that line 'a' is such that the points are correctly classified independently from the error. The first

neuron of the cascade attains a percentage of correct classification equal to 97,2% (35 over 36
examples of th training set). This percentage does not vary when a further neuron is added. In

fact, the line corresponding to this neuron, i.e. 'b', is not sufficient to separate the wrong point.

Only where we add the last neuron, which introduces line 'c', the percentage rises to 100%.
However, it is evident the overfitting operated by the cascade algorithm, when we try to arrive to a
zero-error solution. It is also clear the simple and effective pruning technique which we can

implement by controlling the percentage of training examples satisfied by the cascade scheme

during its construction. It is sufficient to stop the construction by pruning away the successive
neurons, when the percentage of satisfied examples attains a suitable threshold.

00 a 00 O 0 a/..

0 0 0 0 .b.
0

0 0 0

0

0 0
0 0@ 0

0 0 0.

C

Fig. 1: Example related to the adopted pruning technique (classification on a set of 36 points).

4 Simulations
In order to illustrate the proposed algorithm, we will describe in the following simulations both

with binary examples and with real-valued ones.
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Random Boolean functions: To test the robustness of the algorithm, we have generated at

random 100 Boolean functions on 6 input bits. As expected, a single hidden layer network was
always found. The average number of hidden neurons found was 7.37±1.06, which is very close to
the one obtained by Marchand et al. [2] (7.28±0.82) and significantly better than the results reported
in ref. [4] (20.5±3.9) and [5] (about 18 units in 4 layers).
Parity functions: We remark that, in the case of Parity functions (tested from N=2 to N=8), the
algorithm constructed networks with a number of hidden neurons equal to [N/2+ 11. The only

algorithm with a similar performance, that we aware of, is Cascade-Correlation [6].

tS

* *p

Fig. 2: The twin spirals problem training set (194 pixels distributed in two interlocking spirals).

Twin spirals: The twi spirals problem (separating 194 points from two interlocking spirals, see
Fig. 2) requires a highly nonlinear classification of real-valued patterns; therefore is an extremely
hard problem for algorithms of the Back-Propagation family to solve [7]. The proposed algorithm
found a solution with 20 hidden neurons. We consider to be satisfactory the resulting decision
region (see Fig. 3) The time required for building the network (with a 486-based computer) was less
than five minutes. We note that a solution of the same problem with Cascade-Correlation [61 and
Upstart [8] required about one hour of elaboration time in the same conditions. Finally, we remark
that the only other solution to twin spirals in a single hidden layer architecture, that we are aware of,
has 50 hidden units [9].
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Fig. 3: The decision region obtained with a 20 hidden neurons network.

5 Conclusions
By relying on the proposed constructive algorithm, some of the inconveniences impairing the

determination of a supervised neural network can be circumvent. In particular, the architecture and
the connection weights are determined directly from the training set without trials and time-
consuming iterative procedures. Also the generalization capability can be controlled by a very

simple pruning technique.
In the present case we have considered the cascade procedure which is based on a modified
simplex method. Consequently, a possible improvement can be obtained by using the neural
networks proposed in the technical literature for solving linear programming [ 10--121.
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Abstract

It is well known that the generalization ability of a neural network can be improved by
reducing the network's complexity. Pruning methods based on the idea of eliminating weights
of a well working feed-forward network have proved to be successful. The theoretical background
of pruning is established through a mathematical model of generalization. A short description
of three of the most popular pruning methods, Optimal Brain Surgeon (OBS) [Hassibi et al.
93], Optimal Brain Damage (OBS) [LeCun et al. 90] and Magnitude Based Pruning (MAG) is
given. These three methods have experimentally been tested on standard benchmark problems
known as the MONK's problems [Thrun et al. 91]. It is shown that there is no theoretical
evidence for choosing one of the methods compared to the other. This was confirmed by the
experiments showing that all methods were capable of reducing the number of weights of a well
working network, but none of the methods was the best every time. However, OBS was the
most robust, stable and fastest method although it could be caught in a local minimum. Both
MAG and OBD showed a fluctuating performance according to number of weights they could
remove when the initialized conditions or learning parameters were changed.

1 Introduction

The main goal with a neural netwprk classifier is to get a system that is able to classify unknown
data correctly, i.e. a system with a good generalization ability. Vapnik (1992) and many others
have shown the relation between the capacity of a network and its generalization ability. Further
it is also known that the capacity of a feed-forward network somehow is related to the number of
units and weights in a network. But it is often impossible to determine the exact capacity of a
neural network. In order to overcome this problem various, more or less mathematically based,
methods have been proposed. A group of methods focus on successively building a network while
others try to reduce the number of units or weights in a well working network. This paper focuses
on the latter group of methods known as prunings. Through a description of generalization the
foundation of pruning is established. Three of the most popular methods are described and tested
on a benchmark problem.

2 Learning and Generalization

This section describes generalization and how it is related to a feed-forward network. The learning
paradigm considered here is supervised learning. The error between the output y = f (x) and
the desired output t = fd(x) is normally calculated by an error function E(y, t) often, but not
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necessarily, the Least Mean Square error between y and t. Hence bold script will denote a vector
or a matrix. The learning error on a set of known data, the training set {x,, t,l < i < m, is
defined as n1ELMW E E(yi' ti)(1

and measures the dissimilarity between f, and fd, within the restricted domain of input patterns
in the training set. Note that it is a function of weights in the weight space W.

However, the error of interest is the expected error on unknown data, the test set. This error is
called the generalization error and is defined as an average over the full distribution of input-output
pairs, and can be expressed as:

EG(W) - JE(yi, ti)P(x, t)dxdt. (2)

where P(x, t) is the joint probability distribution formed by P(x) describing the distribution of
data in the input space and P(tlx) describing the functional dependence, so P(x, t) = P(tlx)P(x).
The generalization error is the expectation value of error for an arbitrary (x, t) point drawn from
the P(x, t) distribution.

The real goal of learning is to minimize the generalization error. But the joint probability
distribution P(x, t) is unknown and the only available information is contained in the training set.
In order to solve this problem the generalization error is replaced by the learning error, computed
empirically on the basis of data available in the form of a training set.

For simplicity the following description is restricted to the binary case, where data from an N-
dimensional space are to be classified as belonging to one out of two possible classes. This means
that y E {0, 1} and that the mapping function f. is an indicator function. The error function
E(t, y) is also assumed to be an indicator function. This means that E(t, y) = 0 if f,(x) = t, and
E(t, y) = 1 otherwise, so EG(W) is the probability of error, and EL(W) is the frequency of error
on the training set.

Inspired by the Bernoulli theorem Vapnik (1982;1992) found that with a probability larger than
(1 - 9), simultaneously for all possible configurations {W} the following relation between EG(W)
and EL(W) independent of P(x, t) would be valid:

EG(W) _ EL(W) + C(', EL, 77) (3)

where C(#, EL, q) is a confidence interval, a function which depends on m, the number of training
patterns, h the capacity of the network, EL the learning error and 17 the accuracy parameter
corresponding to the probability. The confidence interval is defined as:

C(m, EL,7)- 2,(,)n + , (4)

where
F(T, T ((In 2m+ 1)h - Inj7

is essentially a function of the ratio m.
The only unknown parameter at this point is the capacity h, known as the VC-dimension.

This parameter is very important because it is related to the architecture of the network. The
capacity for a feed-forward network will correspond to the number of units and number of weights
and thresholds (Baum et al. 89).
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The size of m, the data in the training set will normally be limited by the problem domain or by
the supervisor in order to learn something in a reasonable time. For a fixed number m, the learning
error will decrease monotonically as the capacity h increases. Unfortunately the confidence interval
of equation (4) is a monotonically increasing function of h at a fixed m. This indicates that there
will be an optimal hopt where the generalization error will have a minimum. If an optimal capacity
hopt of the network could be found, the number of units and the number of weights and thresholds
would be known. So far nothing is said about the values of these parameters. It seems likely that
there will be several weight constellations Wi from W that could implement the desired function.
This corresponds to the curve-fitting situations where it is known that an n- polynomial to some
extent would fit points from a N-polynomial where N > n. It would be possible to find several
coefficient constellations that would be equally valid. This was confirmed by Denker et al.(1988) in
what they call a perturbation analysis. They took a well working network (EL = 0), and perturbed
the network, moving the weights to a new point in the weight space, and re-trained it. They found
that the network was quite able to re-solve the task, returning to EL = 0, but did not do so by
undoing the perturbation. In fact, it moved in some other direction and settled on a new point W
in the weight space.

A class of experimental methods used to find a h close to the optimal hot is known as pruning
and will be described in the next section.

3 The theory and ideas behind pruning

The main idea behind all pruning methods is to keep the learning error EL(W) for a well working
feed-forward network as low as possible and at the same time to reduce the complexity i.e. number
of weights.
One of the simplest methods for reducing the complexity in a neural network is called Magritude
Based pruning (MAG). The method is based on the idea of eliminating the weakest connection, i.e.
the weight with the smallest magnitude. For the simplest MAG version the algorithm is: delete
the weight with smallest magnitude and retrain the network, repeat until a certain stop criterion is
fulfilled. There are several more or less sophisticated versions of this method. A widely used form
is the weight decay (Herzt et al.) gradually decreasing the magnitude of the weights doing training
(not necessarily eliminating any weights).
The next two methods called Optimal Brain Damage (OBD) and Optimal Brain Surgeon (OBS)
have a more mathematical approach using information from the second order derivatives of the
error function to perform pruning. They both use the Taylor expansion to express an estimate of
how the training error will change as the weights are perturbed.

1 1

6ETz Giwi + 1 Hiibw? + E iwi+wj + (I1W 13)

BE a 2 E
where G is the gradient f and H is the hessian

Both methods make the assumptions that the network is trained to a point where the gradient
is zero so the first term in the equation can be neglected and that the "quadratic" approximation
assumed that the cost function is nearly quadratic also holds so that the last term in the equation
can be neglected.

The OBD method additionally assumes that 6E caused by deleting several parameters is the
sum of the 6E's caused by deleting each parameter individually so the off-diagonal part of the
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second order term is zero. The equation is then reduced to
1

6 EL =bHiw?

The 6EL term is called saliency and expresses the change in the cost function due to the eliminations
of weights. The algorithm is: delete the weight with smallest saliency and retrain the network, repeat
until a certain stop criterion is fulfilled.
The OBS does not assume that the off-diagonal of the Hessian is zero. Instead it reformulates the
goal. The elimination of wj can be expressed as: 6wi + w i = 0 or eT6w + wi = 0 where ei is the
unit vector in the weight space corresponding to (scala) weight wj. The goal is then to solve:

min min(6wT H6wij) ; such that eTbw + w i = 0j \6w 2 /

or expressed in terms of Lagrange Multiplier

SEL = 1-wTHbw j + A(eTbw + wi)

By taking functional derivatives the foil owing equations appear:

W , .. .b T 1 W

6w = v('- )H- ej and bEL = ( )

The 5EL term is again called saliency and expresses the change in the cost function due to
the eliminations of weights. The 6w indicates how all weights should be adjusted, according to
the elimination of a weight. This means that the network does not demand retraining. The only
"learning" parameter involved is an a which comes from using a particular data vector and the
Sherman-Morrison formular in calculations of the Invers Hessian. The algorithm is: delete the
weight with smallest saliency and adjust the other weights according to 6w, repeat until a certain
stop criterion is satisfied.

4 Test and experiments

The three methods were tested on the MONK's problems (Thrun et al. 1991). They designed 3 fully
connected networks trained by a backpropagation with weight decay (BPWD) that outperformed
all other approaches ( network and rule-based) on these problems in an extensive machine learning
competition. The goal here was to find how many weights could be eliminated by the different
methods and still perform as well as Thrun et al. did. The result from these experiments is shown
in table 1.

Comment to MONK 1: The MAG used a standard backpropagation with weight decay with
learning rate 77 = 0.1 and decay rate -= 0.00001. It needed only 3 epochs to perform as well as
the OBS and was better with 22 epochs. The OBD used the same learning procedure as MAG
with learning rate q = 0.1 and decay rate -= 0.0001, but needed 300 epochs to perform as well
as the MAG. Both methods were, however, highly sensitive to changes in the learning parameters
(Epochs, q/, y). This is contrary to OBS, which shows the same performance as long as a was kept
between 10- 3 and 10- 7 .

Comment to MONK 2 and MONK 3: The learning parameters for MAG and OBD were respec-
tively: epochs = 10, ql = 0.1 and y = 10-6 and epochs = 100, 7I = 0.1 and 7 = 10 - . Other
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BPWD MAG OBD OBS
MONK I 58 13 13 14
MONK 2 39 15 26 15
MONK 3 39 6 9 4

Table 1: Number of weights needed for MAG, OBD and OBS to make the same performance as
the Backpropagation with weight decay (BPWD) found by Thrun et al.(1991), on the MONK's
problems.

combinations of learning parameters were tried but the best performance was obtained with the
above-mentioned parameters. The result with these parameters is shown in table 1. It will be
possible to optimize their performance, by training other parameter combinations.

Many similar tests were made on these MONK's problem given new start conditions. The new
start conditions were created by training the original network from random weights so the weight-
start-position of the test network would differ from test to test.
The result was the same, all methods were capable of reducing the number of weights, and none of
the methods was the best every time. Adjusting the parameters in the learning algorithm, MAG
and OBD performed as well as the OBS and sometimes better. However, OBS was by far the most
robust, stable and fastest method.

5 Discussion and Conclusion

In section 2 it was shown that there could be many possible weight constellations (points in the
weight space) that would yield equally valid generalizations for an optimal or nearly optimal ca-
pacity.

Although OBD and OBS have established a mathematical foundation to get a good estimate
of the saliency, they still do not make a quantitative statement of how well they improve the
generalization. From equation (3) it can be 'ustified that they will improve the generalization. The
same is also true for the magnitude based method. So it seems there is no theoretical evidence
that one method will improve the generalization more than the other. Experimentally this was
confirmed by showing that there were several optimal solutions to the same problem.

But the experiments also showed that OBS was by far the most stable and robust. If it was not
the best it was always close to the best. The way OBS works is that it will stay close to the local
minimum from where it begins the pruning, try to remove one weight and then project the error
surface to a space one dimension smaller that the previous. This means that it will stay at the
same local minimum error in the surface. This will work very well as long as the local minimum
from where OBS starts is close to the global minimum. But if the original (start) minimum error is
not the smallest local error OBS will never find this point because it does not retrain. Both OBD
and MAG will be able to find such new local minimum all depending of their learning algorithm.
Nassibi et al. (1992) has shown through an example of a 5 node solution to the XOR problem that
only the OBS will always be able to remove the right weight while both OBD and especially MAG
often fails to do so. The reason OBS works perfectly here is that the minimum error at the start
is equal to the global minimum. This is often the case for smaller networks and OBS will probably
be the best in these cases.
The general problem with the strategies used by MAG and OBD is that they are one step predic-
tors, which means that they take one "optimal" step, recalculate the conditions and take another
"optimal" step. There are no guaranties that these two steps together are optimal. How optimal
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the steps are all together will depend on the recalculations of the conditions which are directly
dependent on the learning algorithm and its p-Lrameters. These methods are therefore unstable.
This explains how both MAG and OBD were o. le to perform better than OBS on the Monk 1
problem while OBS in general is more stable th the others.
To choose among these different methods, considerations of the memory requirement, computing
time, etc. should be made. For real life application, where the complexity might be very large
the following pruning scheme seems reasonable. Starting with MAG until the network has a size
that will allow the use of OBS, and use some effort in order to find "good" local minimum. When
such a minimum is found OBS should be used to do the rest of the pruning. When OBS stops the
network should be retrained in order to get 6E r- 0 and OBS should be started again.

Acknowledgements

We thank Brian Mayoh for valuable comment to the draft version and Barka Hassibi for kindly
providing us with his original OBS code. The first author is supported by TERMA Electronic AS
and the Danish Academy of Technical Sciences (ATV).

References

[Baum et al. 89] Baum, E.B. and D. Haussler (1989). What Size Net Gives Valid Generaliza-
tion? Neural Computation 1 151-160.

[Denker et al. 87] Denker, J., D. Schwartz, B. Wittner, S. Solla, R. Howard, L. Jackel, and J.
Hopfield (1987). Large Automatic Learning, Rule Extraction, and General-
ization Complex Systems 1 877-922.

[Hassibi et al. 93] Hassibi, B, Stork, D. (1993). Second order derivatives for network pruning:
Optimal Brain Surgeone. Advances in Neural Information Processing Sys-
tems V (Denver 1993). ed. S.J. Hanson et al., 164-171. San Mateo: Morgan
Kaufmann.

[Hertz et al. 91] Hertz, J. Krogh, A. and Palmer, R. (1991), Introduction to the Theory of
Neural Computation. Addison Wesley: 115 - 162.

[Le Cun et al. 90] Le Cun., J.S. Denker, and S.A. Sollar (1990). Optimal Brain Damage. Ad-
vances in Neural Information Pr ocessing Systems II (Denver 1989). ed. D.S.
Touretzky, 598-605. San Mateo: Morgan Kaufmann.

[Thrun et al. 91] Thrun, S.B. and 23 co-authors (1991). The MONK's Problems - A perfor-
mance comparison of different learning algorithms, CMU-CS-91-197 Carnegie-
Mellon U. Department of Computer Science Tech Report

[Vapnik 82] Vapnik, V.N. (1982). Estimation of Dependences Based on Empirical Data.
Berlin: Springer-Verlag.

[Vapnik 92] Vapnik, V.N. (1992). Principles of Risk Minimization for Learning Theory
Advances in Neural Information Processing Systems IV (Denver 1992). ed.
J.E.Moddy et al., 831-838. San Mateo: Morgan Kaufmann.

I1-509



Sequential Classification By Perceptrons
and Application to Net Pruning of

Multilayer Perceptron

Kou-Yuan Huang

Institute of Computer and Information Science
National Chiao Tung University, Hsinchu,

Taiwan, 30050, R.O.C.

Abstract

Using the important property of the approximating a posteriori probability functions of the classes
in the outputs of the trained multilayer percepum .we propose the technique for die implementio of
sequentil classification by perceptron and multilayer perceptron, md application to the node growing in
the number of input nodes of percetrou and the number of hidden nodes of the multilayer pareptron. A
mcaement for the ordering of hidden nodes of the trained mulkilayer perceptron is also proposed. The
ordering of the hidden nodes comes from the combitio of each hidden node, Using the node growing
technique, t minimum number of hidden nodes can be obtained in the gaining and used in the
classificatio. The technique can also apply to the single kr per epom. In the experiment, the typical
UXOR" problem is applied. The balance between the reduction of hidden nodes and classification results
is quite good.

Introduction

When performing the back-p algorithm on multilayer percepdon, the number of layers
and the number of the hidden nodes in layers have to be deternined, Related papers [1] have shown that
the feed-forward networks with one hidden layer are capable of accurate approximation to an arbitiamy
mapping provided that sufficient hidden nodes are available. So two-layer perceptron is used in this
study. Too many hidden nodes in the two-layer perceptron may take longer computation time. Too
small hidden nodes may not slove the problem. As for how many nodes should be used in the hidden
layer, no absolute criteria can be followed. It seems to depend on the problems to be confronted with.

One feasible method of obtaining a neural networks with an appropriate number of hidden nodes for
a particular problem is to start with a larger net, then prune it to the desired size. Many prev issues
of research has mentioned it [2]. Such a smaller net, owing to the reduction of synaptic connections, is
mer efficient in both forward computadons and learning.

Sequential classfation (SC) is quite important in statistical pattern recognition. Its application to
pattan classification was mentioned by Fu [3], and could be employed widely to a number of fields such
as industrial process and biomedical diagnosis. The property of keeping the balance between the
misclassified error and the cost of feature measurements makes SC a feasible method with practical
importance aid theoretical interest. By taking feature measurements sequentially and terminating the
sequential pmess (making a decision) when the proper stopping criterim is achieved, a desirable accuracy
of classification can be obtained and the cost of taking feature measurements is also acceptable. In this
sumdy, SC schemes applied to bck-prpa g ained single-layer and two-layer perceptns amre poposed
for dynamically pruning the network. lh number of hidden nodes can be reduced. The minimum
number of hidden nodes can also be determined.

Sequential Classification by Two-layer Perceptron

In this study, we adopt an important key property. The outputs of the output nodes of the
multilayer perptron are approximating the posteriori probability functions of the classes being trained
[41, it can be seen that
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o -P (04M) (1)

H.1 nd02 a the outm of the fuad econd m p m t .o md th clas 1 mnd2. X
is the input vaecr.

Ther ae m output nodes in the output layer to deno the classes. At the -th stage of the
pross, the v air Hof the hidden nodes is < hl.b,. ... h. The graph rqpentation of the n-di
step in this sequential clssification process is pmne in Fgi 1.

2 m

Output Layer ago

Hidden Layer hi h2 ha

Input Layer 1 2 p1 2 p

Figure 1 The u-tb step In this sequential classification process.

The ge alized sequential probability at Un(6o.IX) of taking n hidden nodes is computed as follows
[3]:

Un(WIX) = NX16,) = P .,Xn(X)Ip(o,)

SP(I) D) Lx -(

U3,X p )~ =l (iCk +8 (2)

q P(W) r m I + ex4(.t wjkj-ekX) L

Wher Wjk is die weight from the j-th hidden node to the k-tb output node. hj is the outpat of the j-th
hidden node. ek is the bias of the k-tb output node. And the modified stopping boundary is tae as
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g.An) - log I-C (-10(4)

lbW. lagU3(o)5X is compared with the siopping boundary of the s-tb pawn.clam. gg(n),if

" s not considered in the class 0). Repeat the rejection condition until one clan is left Thea the patin
"Xis migned I o clams.

Algorithm 1
Sequential classification, with growing of hidden mode for rn-dlam problem o

two-layer network

Input : A back-propagation *&aimed* two-ayer network with ordered hidden
sodes and a set of "testing" patterns.

Output : The classification result of every testing pattern by sequential
classification of ML?.

Step 1. Present an Input pattern.
efsentan input Vector X in the input layer.

Step 2. Set the selected aumber of hiddem modes starting from one.
n-I ,whon a is the amnber of the seleted biden nodes.

Step 3. Calculate the computed outputs throughi the selected hidden modes.

Calculate the computed outpu of k-tb output node from then selected hiden nodes.

0 k =1

1+cxp(-X Wjkhj - 90)

wher Wjk is doe weigh bete dhe j-th hidden node to the k-th outut node. Ok is
the bias of the k-6h output node.

Stop 4. If a sufficent or desirable accuracy of classification Is not achieved,
add one hidden node and go to step 3.
Set class s -I

Calculate tho sequential probabilityrai

If UU()JIX) > gn), go to step 5.
els s-s+l

I until s m
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Add onelhddeuanode,- a+ 1 ndgp otep 3.I

ste :.%Rpea by Going to Step I.EtI GO to fmp 1 untol anfl testing vtters we classified.

Ordering of Hidden Nodes on Neural Networks

In this shady, differing hm the K-L expafhion method in feature ordering. a technique booed on the
property of neural networks as used. The hidden nodes of the two-loaer epvn, essentially, behave as
the general featur ecxtracirs except for their non-linearities. A concept can be realized that a feature
mesurement i =r important if it can sepom maui training samples. Hence the classification ablity
of a node can be measured depending on tio separability of tihe training samples between their desire class
and the others by just consider it in the loa.

For a two-loae perceptron in in-class case, consider tha the activation function is a sigmioidal
function, and the i-ti hidden node has the classification eror 4psik of the k-th output node for the s-tb
learning sample. 4 sk -D 

6
qlsjk=Dkk- 1 k

Where Dk is the desired oupu of the training samples for the k-tb output node. Oj is the output
of the j-th hidden node. Wjk is the weight hao the i-tb hidden node to the k-th output node. Ok is the
bias ( threshold ) of the k-tb output node. From (6), the i- ti hidden node contributes the total mean

sure aor pj for alli U output node& And ham all n training sample, lVj is

mxns-I k-i
Sort the nodes and lot 1V1>1I2> -->Vh, where h is the number of hidden nodes.

A node with smal mean square erro indicates that it is helpful to correct classification, while ane
with larg meani square error shows the contrary. lIn the sequential classification process, the nodes should
be taken according to the scending order of their mean square error for the purpose of terminating the
process earler.

Experiments

The experiment is the classification of "XOR" pmroblem. We use four training patterns to train doi
two-layer networkL After back-propagation training, we take 1000 100 - 10,000 testing pattern for
chlasfication. They form a square in a two-dimensmoal space with themr X and Y coordinates which are
fr~om (- 0.5, - 0.5) to (1.5, 1.5) and increase by 0.02. Through the SPRT procedure of the sequential
classification, the used hidden nodes of 2-3-2 two-layer perceptro are shown in Table 1. The
classification results for the 2-3-2,2-4-2,2-5-2,2-6-2,2-7-2,2-8-2 and 2-9-2 two-layer perceptions are
shown in Figur 2. The overall reduction of the, net size can be seen in Table 2.

10000
Total No. of testing samples.
M.of hidden nodes used in die 123

SPRtTywrcedwe.
No. of classified somples 40365 1513
with used hidden nodes II

Average number of taken hidden 1.6711
nodes on the SPRT procedure. I___________

Table 1 Used bidden nodes for 2-3-2 two-layer perceptron with sorted
hidden nodes.
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2-7-2
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2-9-2

(a) (b) (C)

Figure 2. The classification results of the "XOR" problem. (a) shows the
classification result by using all the hidden modes for each network. (b)
Is the classification result of taking unsorted bidden nodes by SC. (c) is
the classification result of taking sorted bidden modes by SC.

No. of hidden nodes 3 4 5 6 7 8 9
used in the SPRT

Process.
Average No. of used
hidden nodes in the 1.67 1.70 1.67 1.67 1.68 1.98 1.81

SPRT process.
Reducedrat 44.3% 57.5% 66.6% 72.2% 76% 75.3% 79.9%
of network

Table 4. Net pruning results for the two-layer perceptron with sorted hidden
nodes.

Conclusions and Discussion

In this paper, the implementation of sequential classification by percetron and multilayer percetron
is proposed and an efficient net pruning effect is achieved. An important key property is adopted in the
derivation of sequential classification. This property is that the outputs of the multilayer perceptron are
approximating the posterioi probability functions of the classes being trained. The formular for the
ordering of hidden nodes of multilayer percetim or input nodes of percetron is proposed.

In the experiments, our method gets a good result to prune multi-layer network. The results of
pruning the 2-4-2, 2-5-2, 2-6-2, 2-7-2 two-layer networks to 2-2-2 two-layer networks are the minimum
number of hidden nodes used in the classification of the "XOR" probelm which is the same as the
derivation of Mirchandani and Can [5].

The proposed algorithm can be applied in the single layer perceptron with 2-class and multi-class
problems. If the number of hidden layers is more than 1, then our proposed technique may also be
applied. The paning procedures start from the hidden layer close to the output and sequentially prune the
hidden layer backward to the inpuL
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Abstract

We define layered networks with horizontal connections as networks having units that
receive inputs from the lower layer and also from the previous units of the same layer.
We show that architecture with horizontal connections does not require as many units
in the hidden layers as the plain layered architecture in order to approximate a function.

1. Introduction

Performance of a learning network depends both on the architecture and the algorithm
of the network. For example, the Cascade Correlation (Cascor) algorithm performs
better for both the two spiral problem [Fahlman 1991] and simple applications [Blonda
1993] than does the Backpropagation algorithm. Cascor is an example of the multilayer
architecture with horizontal connections and an incremental algorithm. One reason for
the superior performance of this architecture is the ability to capture regions where the
function being modeled is constant with a fewer units. In this paper we demonstrate
that architectures with horizontal connnections require fewer units compared with the
plain multilayer architecture.

The multilayer perceptron network with k units in a single hidden layer computes
functions

k()= ,wjH(ajx - c,) (1)

j.1

This network was proved [Leshno et al.1993] to be a universal approximator. The
function (1) can approximate any continuous function f(x) = [0,1]" -+ R provided that H
is a non-polynomial activation function satisfying mild conditions. Another architecture
[Blum1991], a constructive one, requires a three-layer network. We use Blum's
technique to demonstrate that nets with two hidden layers and with horizontal
connections require fewer units.
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2. Approximation by a network with two hidden layers

Approximation capabilities of two hidden layer networks were studied and estimates of
rates of approximation were derived [Bluml991]. For simplicity, let us assume that
f G 24 ([0,112). Piecewise constant functions on rectangular partitions of [0, 112 are dense
in L2([0, I]2 ). A function f e L2([0,1] 2) can be approximated by a piecewise constant
function 7. This function can be modeled by a two-hidden-layers network

7=XWJ (2)

where the summation is over all rectangular boxes and

1= HIX4[H(x -b ,,1 )+H(b,4,,,- x,)]- 2n + 0.5 (3)

is the indicator function (one hidden-layer network) for an n-dimensional rectangular
box ( ai<buf < i x,< b,4 1 i5 n = 4) of a rectangular partition of [0,112. The H is the

left-hand continuous Heaviside function, H(z) = l, for z> 0, H(z) = 0, z . 0.

Note that the activation function H can be a general sigmoid a. The Blum's
approximation results and the results that follow for Heaviside functions hold for

general sigmoids, a(z) -+1 as z --+ - , a(z) - 0 as z - -4 .
This stems from the fact that a general rescaled sigmoid converges to a Heaviside
function,

o(nz)=l for z>0,0 for z<O, a(0) for z=O as n--

and consequently Ila(nz)- H(z)i e -4>0.

3. Layered networks with horizontal connections

Definition. Networks with horizontal connections have units that receive inputs from
the lower (input) layer and also from the previous units of the same layer

k = 0k(akX-bk +Yb~oq) (4)

Note that a network with horizontal connections suggests an incremental algorithm. In
the n+lst iteration a new unit is added and all w,b,,+1 ,a.+,,b.+, coefficients are calculated
and the other coefficients associated with the first n units are kept unchanged. Examples
of incremental algorithms are the Cascade Correlation [Falman 1990] and the projection
pursuit algorithm [Jones 19921.

In two dimensional case, n=2, the function

I = H(b2 - a2x2 + E. b 2 H(xl - bk)) (6)
is the indicator function of a set which is a union of vertical rectangular strips, fig.1.
Similarly, the function
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I = H(b - ajx1 + I" Ib21jHx 2 - b2 k )) (7)
is the indicator function of a set which is a union of horizontal rectangular strips. By
replacing units

H(xi - bft ,j) + H(b. ,i - x) (8)

with (6),(7), the indicator functions of a piecewise rectangular region, we obtain a two
layer network. This network can model non-convex figures, e.g. a semicircle fig.lb.

4. Estimate for the upper bound of units needed in three-layer networks with
horizontal connections

Following Blum (1991) let us assume that we have a square mesh of size 1/m for
dimension n=2. Then we need m2 units (3) in the second hidden layer and 4(m+1) units
(8) in the first hidden layer of the plain multilayer net. The total number units for a two-
hidden-layer network is M2 + 4(m + 1).

Some piecewise constant functions can be conveniently implemented by units with
horizontal connections. To illustrate that a net with horizontal connections can reduce
the requirement on the number of units in the second hidden layer, let us consider the
indicator function of a 2-dimensional chessboard pattern (black=1, white=O, with an
even number of rows), fig.2. Two successive lines of squares can be implemented by
two units (each with one hidden layer), e.g. the indicator function of the first two lines
of the chessboard (a 'zigzag' function) can be defined as follows

1, = H(I/m-x 2 +(l/ m)Y ' bkH(xl -k/rm))

1o = H,(x 2 -(I/ n)X- bkH(xl - k n))

b4 =0, bk =1, for k even, bk =-1,for k odd

l14190 = H[Io + I, - 2 + 0.5]

Similarly we can construct an ini''cator function for other zigzag indicator functions.
This process requires two units per zigzag, or m units for the second layer, rather than

m' units when we model (using plain units of type (3)) one square at a time. The two-
hidden layer network for the chessboard requires only m + 4(m + 1) units. Similarly we
can construct two-hidden-layer networks, with fewer units, computing indicator
functions for other geometric figures, e.g. semi circles, spirals.

We can reduce the number of required units for any nonconvex indicator function:
Theorem. A function f e L2 ([0,1]" which is a constant on a nonconvex measurable
subset S can be represented by a two-hidden-layer network with horizontal
connections. This network has fewer units in the second hidden layer than the plain
network (2).
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Proof: The function f can be approximated with arbitrary precision by a piecewise
constant function 7, where the nonconvex set S is approximated by a piecewise
rectangular region, $. The boundary of 3 consists of at least one L-shaped set of 3
rectangles (fig. 6) or of the saddle type pairs of rectangles (fig. 3) where the function.is
constant across the L-shaped set. A one-hidden-layer unit with horizontal connections
can represent the indicator function of an entire set of four rectangles (either fig. 3 or fig.
6) whereas with a plain architecture, 4 units (one for each rectangle) are required. The
indicator function of an L-shaped set of 3 rectangles is represented
by I ,.= = H[x, -b, +bAH(b 2 -x 2].

The saddle-type representation is shown below.

5. Examples of two-layer networks
Blum (1991) showed that a saddle type function cannot be implemented by a two layer
net with a linear output unit. However, if we admit horizontal connections we can
construct a one-hidden-layer solution.

5.1 XOR example
An indicator function of a strip

0 for x2 <0.25

f(x)= for x2 > 0.5

I for 0.25<x2_<0.5

is implemented by a two layer net,
f ,, = H(x2 - -(1 - b1)H(x2 - b2)),bk = 0.25,b2 = 0.5

Rotation and slight rescaling of this strip results in a two layer net, fig.4,
f., = H(b-x -- x, + (2.5- )H(x2 - b2)),i =0.25,b2 =0.5
that separates points (0,0), (1,1), of the unit square, from points (0,1), (1,0).

5.2 Saddle type function implementation
Besides an XOR function, the two layer network with horizontal connections can
implement a saddle type function, fig.3,

Ifor xj <0.5,x2 < 0.5

](x)= I for x, >_:0.5, x2 >- 0.5

j otherwise

The net implementing this function has 4 units and a linear output unit

f,., = H(b - x2 - bH(x, - a)) + H(x 2 - b - (I - b)H(a - xj))
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Fig.1 Rectangular strips X1 x2

ZEIIEDl

Fig.2 A chessboard function Fig.2b A semi circle

X1 x2

Fig.3 The saddle type function net

Fig.4 The XOR net Fig.4b The L-shape net
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Abstract: In the past several years, a number of techniques for training feedforward neural net-
works were presented. Many problems such as local minima and training speed have been discussed

and were solved to some extent. However, generally speaking, gradient descent methods were used in

most of these papers. Since there exists complex nonlinearity in feedforward neural networks, train-

ing by gradient descent methods alone is sometimes inefficient. In this paper, principle and methods

of structure variation in feedforward neural networks are systematically presented. They also have
their basis in anatomy similar to the Back Propagation algorithm and cdnsist of three parts: network
expansion, network construction and network compression. Each part contains several methods.
Here multilayer preceptrons are regarded as White Boxes whose weights and thresholds are control-
led by us. In contrast, traditional gradient descending methods treat multilayer perceptrons as Black

Boxes. It is appropriate to use the gradient descent algorithms and structure variation methods

alternately. This combined method has been discussed by several papers. In this paper it will be stu-
died comprehensively and systematically.
Key Words: Feedforward neural networks, structure variation, dig tunnels, global minima, hidden
neurons

I. Introduction

The techniques of training feedforward neural networks have been studied and improved since the
resurge of neural networks. A large amount of efficient and powerful algorithms have been presented
to avoid local minima and speed up training in most cases of training. For example, for algorithms to
speed up learning, Weir (1991) analyzed the function of learning rates in Back Propogation and im-
proved the training speed by self-determination of adaptive learning rates. Shoemaker et al (1991)
discussed trinary quantization of weight updating. For the techniques of avoiding local minima,
Wessels & Barnard (1992) showed how to choose initial weights carefully, Hirose et al (1991) and

Tsaih (1992) added hidden neurons during training to skip from local minima. Among the methods

for avoiding local minima, simulated annealing (Kirkpatrick el ai, 1983; Atkin et al, 1989:
Nakayama & Normura, 1992) is a fairly effective one, but it costs too much time. The homotopy

method (Yang & Yu, 1993) is promising, however, it trains the network many times and therefore

costs much time. In these improved techniques, gradient descent methods are mainly used so that it
can be difficult to handle intricate problems such as the location of the global minimum at a "deep

and narrow well ' .
Since there exists complex nonlinearity in feedforward neural networks, it seems that it will be

inefficient always to use gradient descent techniques. Thus some researchers turned to changing the
structrue of the network while training, as in the above mentioned method of adding hidden neurons
given by Hirose et al (1991) and Tsaih (1992). Nadel (1989), Hoehfeld & Fahlman (1992) added
hidden neurons which are connected to the preceding hidden neurons and to the input layer, during
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training or construction.
In this paper, we will summarize and develop the structrue variation methods by dividing them

into three parts: network expansion, network construction and network compression. Due to space
limits, only our results about structure variation are briefly outlined in this paper (for details see
Liang (1993)).

The idea of structure variation has its anatomical basis. According to anatomy, the learning
process is not finished only by the variation of the intensity and polarity of connections among the
neurons. When learning becomes difficult, new neurons come into the biological network to aid
learning, i.e., the network expands. In fact, One neuron memorizing one pattern is a special case of
one neuron memorizing several patterns or several neurons memorizing several patterns, which is
similar to some construction processes. On the other hand, in the process of thinking, not only the in-
tensity and polarity of connections but also the structure of the biological network is always chang-
ing in order to comprehend and master the knowledge, which leads to a compression of the network.
Network expansion means learning while network compression means digesting. These processes are
also similar to the learning process of human beings. For example, when we first learn a subject, we
feel that there is so much for us to learn, but several years later, we will feel that the subject has nar-
rowed down into a few key points. In summary, when we learn knowledge, not only the intensity and
polarity of connections among the neurons change, but also the structure of the network varies.
Therefore, the idea of structure variation is based on anatomy.

This paper is organized as follows: Since the method of network compression will be used re-
peatedly in the later sections, it will be introduced in section 2, as well as the relevant proofs of its
generalization. Based on these results, the idea and technique of second learning and rotation trans-
formation are developed, the latter showing ways to skip out of local minima by digging tunnels hor-
izontally into the error hypersurface. In section 3, some construction methods for both binary and
real training patterns, particularly for the parity problem and the encoder problem, are given. In the
method of construction for the encoder problem, only one hidden neuron is used and the values of
connection weights and thresholds are polynomially increasing so that it is convenient to realize both
in programs and circuits. A statistical technique for fabricating multilayer perceptrons is also dis-
cussed. In section 4, the principle and method for network expansion are presented, in which we
intrinsically dig tunnels down with an inclination into the error hypersurface, and by which one can
dig tunnels down into the error hypersurface from local minima to the global one. Section 5 con-
cludes the paper.

In practice, the methods of network expansion, network construction and network compression
ought to be used alternately, e.g., in the process of second learning and rotation transformation, both
expansion and compression are involved. After construction, in general, network compression
should be considered. That is to say, the methods of structure variation ought to be taken as a whole
rather than in separate parts, and it will be powerful and efficient if we combine these methods, or
even with gradient descent algorithms in training.

2. Method of Network Compression

In this section, firstly a method of pruning away the redundant hidden neurons is reviewed systemat-
ically and mathematically. Secondly the necessary and sufficient condition of the generalized value of
change during the pruning process is given, as well as some relevent theorems. Thirdly, the steps of
learning the patterns in the testing set which is called the second learning is addressed, and the
change of generalization ability during second learning is proved. Finally, the method of rotation
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transformation is discussed.

2.1. Pruning away redeudmat hidden neurons
In recent years, some methods of pruning away the redundant connections were published. Some pa-
pers used connection constraints during training and removed the small value connections after train-
ing, e.g., Yasui (1992), Qin & He (1992). Using the linear dependency, some researchers presented the
method of general compression (Arai, 1989; Sperduti & Starita, 1992; Liang & Xia, 1993). Although
this method seems trival and obivous, it is the starting point of some useful methods.
2.2. Generalization analysis during compressing
While pruning away the redundant neurons, generalization ability may vary. In this subsection, we

discuss in which case it varies and in which case it does not. Two lemmas and six theorems are
proved. See Liang & Xia (1993) and Liang (1993) for details.

2.3. Second learning
See Liang & Xia (1993) for details.
2.4. Rotation transformation
Provided that the network is not at the global minimum, then adding a hidden neuron and pruning
away an old neuron in the same layer is the process of rotation transformation. In this process, the
outputs errors are not changed, so we dig tunnels horizontally into the error hypersurface. Since a
hidden neuron is added and then another is deleted, rotation transformation will not change the scale
of the network. See Liang (1993) for details.

3. Methods of Network Construction

We think that construction is one part of the structure variation methods because the memory of
training patterns is finished mainly by structure variation rather than by weights and thresholds ad-
justment. Construction procedures can also be found in the human's brain.

Although using Kolmogorov Theorem (1957), Hecht-Nielson (1987) gave the existence proofs,
he (1990) admitted that since it is no constructive proof, it is not useful in practice. It followed that
many papers dicussed the construction methods (Arai, 1989 & 1993; Huang & Huang, 1990;
Kruglyak,1990; Stork, 1992; Stork & Allen, 1992 & 1993; Brown, 1993; Korn, 1993; Liang et al,
1993; Liang & Xia, 1993a & 1993b; etc). For the binary taining patterns, Arai (1989 & 1993), Liang
et al (1993) constructed their three-layer perceptrons. For the real training patterns, Huang &
Huang (1990), Liang & Xia (1993a) gave some different construction methods. Besides, some
researchers studied the construction for two special training sets: parity problem and encoder prob-
lem. For the parity problem, Stork & Allen (1992) constructed a multilayer perceptron with minimal
numbers of free parameters, and replied to Brown (1993) and Korn (1993) respectively in his letter to
the editor (1993). We shall present a new construction with fewer connections than before for the

parity problem. For the encoder problem, Kruglyak (1990) constructed a feedforward neural net-
work solving the N-bit encoder problem with just two hidden units. In a recent letter Stork & Allen
(1993) presented a constructive method to the N-bit encoder problem with just one hidden unit,
which gives the minimal network architecture to this problem. However, in their method, the input
weights and output thresholds are exponentially increasing as N increases, which leads to
impracticality in designing learning algorithms. In our improved method (Liang & Xia, 1993b), the
weights and thresholds are polynomially increasing as N increases, thus it may be more useful to
learning algorithm designers.

In this section, only our methods are introduced. We will first breifly introduce the general
analytic express for the binary training patterns, which is convenient to be extended to solve some
problems, such as parity problem. In subsection 3.2, constructions for real training patterns are dis-
cussed. Parity problem and encoder problem are constructed respectively in subsectin 3.3 and 3.4.
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subsection 3.5 gives a statistical fabricating technique.

3.1. Construction for binary training patterns
See Liang et al (1993).
3.2. Construction for real training patterns

See Liang & Xia (1993a).

3.3. Construction for the parity problem

Minsky & Papert (1969) gave a construction for the parity problem. Liang (1993) gave his construc-
tion for the parity problem whose construction process is just like cutting the N-cube hierarchically

from a vertex. Recently, Setiono & Hui (1993) announced that some N-bit parity problem can be
realized by less than N hidden neurons. We have tested and confirmed their result.

Besides, interestingly, using the wave-like monotone increasing activation function, Stork &

Allen (1992) gave the minimal architecture with 2 hidden units for stardard three-layer perceptrons
(referring to the later four conditions Stork & Allen stated (1992), although strictly speaking, the

network given by Stork & Allen (1992) also violates their third condition: the unit step function of
the output unit is not a strictly mononically increasing function).

Inspired by Stork & Allen (1992)

and Minor (1993), Fig.1 depicts a

four-layer network with an equal
number of free parameters and with
similar generalization as the network of

Stork & Allen (1992), but with fewer o.tp,layer -, i(x)=m +!
connections than those of Stork & 2

Allen (1992) and Minor (1993). This - I

network also satisfies the three condi- hidden layer 2 f (x)x+*CoS(x) (0< 2<)

tions that Stork (1993) repeated later - .

and gives fewer connections than before

tor standard multilayer perceptrons. hidden layer1 0 f(x) =
3.4. Construction for the encoder prob-

lem"

See Liang & Xia (1993b). input lay"•

3.5. Statistical fabricating method
See Liang & Xia (1993c). FIgi. An N-1-2-1 feedforward network that

solve$ the N-parity problem. The values in the
4. Methods of Network Expansion units are the thresholds.

In this section, compensating methods

for multilayer perceptrons, which are
very difficult to train by traditional

Back Propagation methods, are presented. For a three-layer perceptron trapped in local minima the

compensating methods can correct the wrong outputs one by one until all outputs are right, so that

the three-layer perceptron can skip from local minima to a global minimum. The compensation

methods use principle of network expansion. A hidden neuron is added as compensation for a binary

input three-layer perceptron trapped in a local minimum; and one or two hidden neurons are added

as compensation for a real input three-layer perceptron. For a more than three-layer perceptron,

the second hidden layer from behind will be temporarily treated as the input layer during compensa-

tion, hence the above methods can also be used. In compensating, whenever a hidden neuron is ad-

ded its input and output weights and threshold are calculated definitely rather than iterated, so the

global convergence is guaranteed and a lot of time is saved. If the global minimum on the error
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hypersurface is in the "narrow and deep well", the multilayer perceptron can be moved there by com-

pensating. See Liang & Xia (1993d & 1993e) for details.

5. Conclusions and Further Work

In this paper, the principle and methods of structure variation are presented and developed, which

consist of three parts: network expansion, network construction and network compression. Each

part comprises several methods and its applications such as second learning and rotation transforma-
tion. This idea also has an anatomical basis like the Back Propagation method. In practice, it is ap-
propriate to combine several structure variation methods and even combine them with conversional
gradient descent techniques.

Obviously there is still a lot of work to do in the field of structure variation methods.
Consequently, further work includes developing and completing the methods of structure variation,
laying a more solid foundation for this idea, and testing these combined techniques in applications.
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Abstract

A novel learning technique is described as a faster and more reliable alternative to the classical
backpropagation method. The approach is based on the application of Least Squares criterion to a
linearized system at each step of the learning procedure. The squared error at the output of each
layer immediately before the non linearity is minimized over the entire training set by a Block
Recursive Least Squares algorithm. The optimal weights (in the sense of minimal 2-norm of the
error) are computed for each layer by using the QR decomposition.
The high performance of the new algorithm has been verified in several experimental trials,
yielding considerable improvements from the point of view of both the accuracy and the speed of
convergence.

1-Introduction

The multilayer perceptron is one of the most commonly used types of feed-forward neural
networks and it is used in a large number of applications. Its strength resides in its capacity of
mapping arbitrarily complex non-linear functions by a convenient number of layers of sigmoidal
non-linearities. The backpropagation algorithm (BP) is still the most used learning algorithm; it
consists in the minimization of the Mean-Squared Error (MSE) at the network output performed
by means of a gradient descent on the error surface in the space of weights.
The backpropagation algorithm suffers from a number of shortcomings; above all the relatively
slow rate of convergence and the final misadjustment that can not guarantee the success of the
training procedure in real applications. Great efforts have been made to overcome these
limitations by introducing some heuristic modifications to the basic BP algorithm [1 ][2].
Anyway these methods require an accurate tuning of learning parameters in order to obtain
satisfactory performance.
Recently a new class of algorithms has been developed, based on Least Squares concepts [3]
applied to the solution of a linearized system for each layer of the network. These techniques
generally offer more reliable training procedures and much higher convergence rates[4][5][6].
The Block Recursive Least Squares (BRLS) training algorithm allows to obtain considerable
improvements from the point of view of both the numerical accuracy and the speed of
convergence. Its numerical stability is enhanced by the use of QR decomposition [3] and by the
fact that the algorithm works directly on data, without forming any correlation matrix.
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2-Description of the algorithm

The presence of the non-linearity makes it difficult to apply to multilayer perceptrons a number
of techniques so popular in the field of adaptive filtering [7]. A kind of linearization is needed in
order to make available to the problem of learning a large number of experimented and efficient
algorithms.
The algorithm herein presented is based on the idea of separating each layer of the network in a
linear part (the multiplication by the weights) and a non-linear one (the activation functions).
Defining the error immediately before the non-linearity allows to use the method of QR
Recursive Least Squares ([3] [7]) to update the weights of each layer.
In the backpropagation algorithm the output error at step n is defined as:

E(n) = FEp(n) (1)
P

where Ep is the output squared error for the p-th pattern.
The weights are updated by computing the derivatives of E according to the formula:

Aw w' (n) a(n) (2)

where wij(k) is the weight from the i-th neuron in layer (k-I) to the j-th neuron in layer (k) and q
is the learning rate.
The learning rule thus derived is

w(k)(t +1) .=wk)(t) +ne()x( ) (3)wi (t -opji (3)

where epj(k) is the error signal for the j-th unit in layer (k) and xpi(k- I) is the outpLt of the i-th
unit in layer (k-1), relatively to the p-th input pattern. The error signal is computed as:

epj =f( )(dpj -xpj !' (4)
Pi Pi P)

for the output layer, and as:

e(k ) =f'(y(9)) ke(  +1) (5)
J

for all the other layers. In these formula. pj is the j-th desired target output for the p-th pattern,
ypi(k) is the input to the generic non linearity, being fo the derivative of the non-linear
activation function, typically the sigmoidal one. L is the number of layers.
The error signals above defined can be used to form a linear system for each layer of the
network; after each presentation of a learning epoch, this system can be solved in the LS sense
yielding the optimal weights.
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The new algorithm can be formulated in matrix notation in the following way. Let P be the
length of a generic epoch. For each layer the following matrices are defined:

XTn) I T~n I'T~41I I i I
Ip(n) Y yp(n)) eT~)

where the layer index has been omitted and n indicates the generic iteration. In these expressions
xiT, yiT and eiT are the input, output and error row vectors relative to the linear part of the
generic layer, for the i-th learning pattern (T indicates the matrix transposition operation).
Moreover we indicate with Q(n) and R(n) the matrices deriving from the QR decomposition of
the system coefficient matrix 13].
The BRLS algorithm consists of the following steps:
1- the weights are randomly initialized;
2- the triangular matrix R is initialized to R(0)=diag(e), where e is a properly chosen small
value;
3- each pattern of the current epoch is presented to the network and forward propagated
through it; during this phase the matrices X(n) and Y(n) for each layer are formed;
4- for each pattern, the output of the network is compared to the desired output; the error
signals (4) and (5) at the output of the linear part of each layer are computed. For each layer the
perturbation matrix E(n) is formed ;
5- after the presentation of an entire training epoch, for each layer the following linear system is
formed:

(I-/ 2 (n) (1-X 1 1 (,n

)/2R(n.-) W(n) ( 1 2 C(n) (7)(I _X1/2 ~n)) (l -)1/2 (Y(n) +-qE(n)))

where nI is the learning rate (measuring the entity of the perturbation on matrix Y) and X is the
forgetting factor. This system is solved for n>O by performing first a QR decomposition of the
coefficient matrix, yielding the matrices Q(n) and R(n). In (7) C(1)=O while for n>l C(n) is
computed from the formula:

Qr(n -1) (1 -X)1/2 (y(n -) +(E(n8)

QT n ~ X(Y(n -1) C (n)~)(8

Then a procedure of backsubstitution on matrix R(n) yields the optimal set of weights, in the
sense of the minimal 2-norm of the weight solution matrix W(n);
6- if the global output error with the new weights is still higher than a specified threshold the
procedure is repeated from point 3 by appending a new epoch (e.g. the QR decomposition is
recursively performed as new data come); otherwise the training has terminated successfully.
The QR decomposition (performed with either the Householder transformation or the Givens
rotations) gives to the algorithm stability and robustness from a numerical point of view. In
some cases it can be replaced by a Singular Value Decomposition (SVD), yielding a complete
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control over the internal structure of matrix X and the regularity of the weight matrix W, at the
expenses of a higher computational cost.

3-Experimental results

The performance of the BRLS algorithm have been evaluated in several problems: parity (2,3
and 4 bits), generalized XOR, pattern recognition (circle in a square and character recognition).
In all cases comparison with backpropagation has been made on the basis of a proper number of
trials with different configurations of initial weights and different values of learning parameters.
Main results of this analysis are much faster rates of convergence and higher accuracy of the
new algorithm in approximating the desired outputs.
Fig. I reports the MSE as a function of the number of iterations in a typical case for the XOR
problem; both the rapidity of convergence (about 30 iterations to get MSE<0.01) and its depth
(MSE-10-4 after 100 iterations) can be verified.

WK
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Fig. 1 : MSE versus number of epochs for XOR problem

The algorithm has shown also the ability of forming sharper transition regions. This property is
shown in fig. 2 referring to the circle in a square problem.

Fig. 2: 3D output for circle in a square problem
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The possibility of varying the length P of the training epoch (differently from other LS-based
algorithms) is a peculiar feature of LhLS algorithm. Its efficacy is proved by the good
performance of the algorithm in problems where the training patterns are totally randomly
selected during the learning phase. Moreover, with respect to previous approaches ([4] [5] [61)
the numerical stability is enhanced by the fact that the proposed procedure works only on raw
data matrices, without forming any correlation matrix.

References

[I]T.P.Vogl, J.K.Mangis, A.K.Rigler, W.T.Zink, D.L.Alkon, "Accelerating the Convergence of
the Back-Propagation Method", Biological Cybernetics 59,257-263, 1988.
[2]R.A.Jacobs, "Increased Rates of Convergence Through Learning Rate Adaptation, Neural
Networks", Vol. 1, pp. 295-307, 1988.
[3]G.H.Golub, C.F.van Loan, "Matrix computations", John Hopkins Universiy Press, Second
edition, 1989.
[4]S.Kollias, D.Anastassiou, "An Adaptive Least Squares Algorithm for the Efficient Training of
Artificial Neural Networks", IEEE Trans. on Circuits and Systems, Vol. 36, no. 8, August 1989.
[5]R.S.Scalero, N.Tepedelenlioglu, "A Fast New Algorithm for Training Feedforward Neural
Networks", IEEE Transactions on signal processing, Vol.40, No. 1, January 1992.
[6]M.R.Azimi-Sadjadi, R.-J.Liou, "Fast Learning Process of Multilayer Neural Networks Using
Recursive Least Squares Method", IEEE Transactions on signal processing, Vol.40, No. 2,
February 1992.
[7]S.Haykin, "Adaptive filter theory", Prentice Hall, 1991.

III-532



Batch Parallel Training of Simple Recurrent Neural Networks *

Peter J. McCann and Barry L. Kalman
Department of Computer Science, Washington University, Campus Box 1045, St. Louis, Missouri 63130-4899

pjm3Qcs.vustl edu
barry~cs, vustL edu

Abstract

A concurrent implementation of the method of conjugate gradients for training Elman networks
is discussed. The parallelism is obtained in the computation of the error gradient and the method is
therefore applicable to any gradient descent training technique for this form of network. The experimental
results were obtained on a Sun Sparc Center 2000 multiprocessor. The Sparc 2000 is a shared memory
machine well suited to coarse-grained distributed computations, but the concurrency could be extended
to other architectures as well.

1 Introduction

It takes an exceptionally large amount of computer time to train recurrent networks because of the added
complexity of the derivative calculations. In this work, we focus on one type of recurrent network, Elman's
Simple Recurrent Network [1], and we present a way to distribute the gradient computation.

Figure 1 shows a variant of an Elman SRN. This is a partially recurrent neural network capable of learning
sequence information. The context units hold copies of the hidden unit activations from the previous pattern
presentation, and therefore the output of the network can depend not only on the current input but also on
the entire input history.

Our network architecture includes "skip connections" that bypass the hidden layer. It has been deter-
mined experimentally that these connections allow for faster network training. They provide an alternate set
of parameters for the linearly separable, or perceptron, portion of the problem. See (21 for a more complete
discussion of the rationale for these connections.

Each input sequence is an ordered set of patterns because of the recurrent connections in the network.
These allow the network to learn sequence information and base its output on the history of the inputs
presented to it. At the beginning of a sequence, we can set the feedback activations to zero, so that they
have no impact on the output during the first pattern presentation. We have found empirically that this
is the best choice for the initial conditions. See [2] for a more detailed discussion. During subsequent
presentations, the feedback units are copied back from the hidden layer and provide the context needed

*This material is based upon work supported by the National Science Foundation under Grant No. IRI-9201987. Thanks to
Dr. Mark Franklin and the Washington University Computer and Communications Research Center for the use of their Sparc
Center 2000 multiprocessor. The Sparc Center 2000 was purchased in part with funds from NSF CISE Instrumentation Grant
9022560.
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Figure 1: An Elman Simple Recurrent Network.

to make decisions about later input patterns. Typically, we will present the network with many of these
sequences during training, in hopes that its performance will generalize across the set of all possible sequences
in some reasonable way.

Some notational conventions:

tPO The target of output unit o when the
network is presented with pattern p.

ap, The activation of unit o when the
network is presented with pattern p.

bi The bias value of unit i.
w,, The weight from unit i to unit j.
*" The set of all feedback (context) units.
* The set of all output units.
* The set of input sequences.

We are using an epoch based training method, so the error function is a sum over all patterns of some
function of the targets and the actual activations, defined as:

E E e(tpo, apo).
pEP oEO

Any gradient-descent based method of minimizing the error function will need to calculate the gradient.
That is, we need to take a derivative of our error function with respect to each of the parameters of the
network. Taking Y to be some weight or bias in the network, we have

9 = E Oe(tpo, apo)y_ I- b" y(1

pEPoEO

For efficiency, we should obviously propagate each pattern through to the outputs and then calculate the
o contribution from this pattern for every parameter in the network, summing each term into a global sum
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for that parameter. The propagation steps also must be performed in a certain order due to the sequence
information inherent in the patterns. However, we can break up the patterns along sequence boundaries, and
present the sequences themselves in an arbitrary order. This is where opportunities for concurrency arise.

2 Concurrency
We can partition the set of patterns into subsets where each subset is itself ordered, but requires no context
from any other subset. That is,

P = {sl,s2 ... SN},

where we can define len(s,) to be the number of patterns in sequence i. The input sequences might be of
different lengths, and so we need a strategy for assigning sequences to processors so that the computation is
as load-balanced as possible. To accomplish this, we first sort the sequences in nonincreasing order by len(si),
and then assign each sequence in turn to the least loaded processor. We assume that the load is proportional
to the number of pattern presentations required and therefore to the total length of all sequences assigned
to a processor so far.

After sequences have been assigned to processors, we need to make some additional modifications to
the sequential code. Since each processor will be doing independent forward propagation, we will need a
separate copy of the network activations for each job. Since each processor will be computing a local sum
of the gradient components, we will need a separate copy of all the M variables for each job. However, the
results are to be computed using only one set of weights, and so all of the wij and bi values can be shared.

The derivative calculation for recurrent networks is quite computationally intense. It scales as O(JII7It)
for calculating the derivatives with respect to weights that connect input units to hidden units. See [2] for
the details of these calculations.

Note that certain implementations of second order methods may require a line search along the descent
direction indicated by the gradient in order to find a minimum in that direction. Our conjugate gradient
trainer uses such a search, and we have found that a derivative-free line search involving only evaluations of
4D is the most efficient. The above partitioning of input patterns can be used equally well to speed up this
forward propagation.

3 Results

Our conjugate-gradient trainer is implemented using the available C libraries for multi-threaded execution
on the Sun Sparc Center 2000 multiprocessor system. There are currently eight processors available on the
system, but with a coming operating system upgrade, this number should increase to twenty. The Sparc 2000
has a shared memory architecture with two high bandwidth packet buses. A message-passing implementation
would require duplication and update of the wij and bi values in the local memory of each node.

Our test problem was a (192+9)-13-2 network, meaning 192 inputs, 9 feedback units, 13 hidden units,
and 2 outputs. The goal was to identify the language spoken in a ten-second sample of audio. The network
was presented with successive 400 millisecond overlapping frames of bandpass filtered sound and trained to
differentiate between English and French speakers. The training patterns consisted of 41 sequences which
were divided over processors as evenly as possible. Table 1 shows the division of labor. There was a total of
15,457 patterns in all 41 sequences.
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Processor Number of Sequences Assigned
8 6
7 6 5
6 7 6 5
5 9 7 6 5
4 11 8 7 6 5
3 14 10 8 7 6 5
2 21 14 10 8 7 6 5
1 41 20 13 10 8 6 5 5

1 2 3 4 5 6 7 8
Number of Processors Used

Table 1: Division of Labor
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Figure 2: Speedup of a derivative, or backpropagation, epoch as function of processors used.

Figure 2 shows the speedups obtained for a derivative epoch. Speedup was experimentally measured
and is the ratio between the execution time of the sequential version and the execution times of each
multiprocessor version. It includes all overhead for adding each portion of the derivatives into a grand
sum for each network parameter. A derivative evaluation, in the sequential version, takes approximately 24
minutes for this problem.

Figure 3 shows the speedups obtained for the derivative free forward evaluation of the error. A forward
evaluation, in the sequential version, takes approximately 13 seconds for this problem. Typically, about
ten forward evaluations are required per conjugate gradient epoch to perform the line search. The speedups
obtained here are smaller because the computation is smaller, and the overhead of concurrent memory access
tends to drown out the advah~ages gained. The data point for 6 processors represents an unusually efficient
use of time. This is probably because the assignment of sequences, as shown in Table 1, is unusually smooth,
and the smaller computation is more sensitive to this than the derivative calculation.
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Figure 3: Speedup of a linesearch epoch as function of processors used.

Figure 4 shows the overall speedups obtained for a conjugate gradient epoch. The speedups take into
account time from the sequential portion of the code that computes the conjugate gradient directions. A
training epoch, in the sequential version, takes approximately 27 minutes for this problem. This time is
dominated by the derivative calculation, and so good overall speedup can be obtained by making that
portion of the code concurrent. Note, however, that forward evaluation is also important, as indicated by
the data point for 6 processors.

Typically, a single training run will require hundreds of epochs. The overall speedup presented here
therefore represents significant savings in time over the sequential version. By reducing the turnaround
time, a greater number of network architectures 

can be investigated, 
and connectionist 

research can be more

effective.

4 Conclusion

Our previous work focused on the possibilities for concurrency in one portion of the derivative calculation.
This allowed us to achieve some speedup, but it was limited by the size of the network architecture used,
and did not allow concurrent computation of the forward propagation step. Our current trainer, although it
was more difficult to implement, allows us to partition the set of inputs, which is typically large. This lets
us use the available hardware more efficiently.

While the training of recurrent networks, even of simple ones, introduces myriad new complexities over
feedforward network training, our algorithm contains opportunities for concurrency. These opportunities
can be taken advantage of after a careful and thorough study of the data dependencies involved. Reducing
the real time elapsed during a training run is of great benefit to those undertaking connectionist research
projects. It means that more experiments can be conducted in less time than with sequential methods.
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Figure 4: Overall speedup as function of processors used.
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ABSTRACT : A time constant is introduced as a variable in the decision function of
the perceptron neuron. It is shown that a time constant carefully chosen
dramatically improves the performance of the backpropagation algorithm on a
benchmark. A new learning algorithm including the time constant as a variable is
developed in this study. Two versions of the algorithm are detailed. The
difference between them lies in the set of neurons to which the new algorithm is
applied. Both versions exhibit improved convergence rate when compared to a
backpropagation algorithm using optimum fixed time constant.

I INTRODUCTION

One of the most popular decision function for the neurons of a multilayer perceptron (MLP) is
the so-called sigmoid function defined by:

n
1,0 with netj = wji xi + Oj

1.0 + e- net4 i=O
where:

- wji is the synaptic weight from neuron i of layer I to neuron j of layer 1+1,
j is a bias term

yi is the output of neuron i.
- n is the number of neurons of layer 1.

Using this decision function, the poor performances of the MLP on the XOR problem have been a
strong motivation of research for improved versions [1][2] of the classical backpropagation (BP)
[3]. A simple variation of the decision function allows the MLP to achieve convergence in an
average of 42 epochs over 100 runs of the XOR problem. A time constant I scales the network
input to the neuron (i.e. netj) before passing through the non-linear decision function:

1.0

1.0 + e" X netj
"Trial and error" method was used to choose a proper time constant. This approach is time

consuming and would be even more consuming should each neuron have its own time constant. In
section 11, the time constant is introduced and its effects on the discrimination capabilities of a
neuron analyzed. In section III, a new algorithm based on BP is derived in full length. Each
neuron uses an individual time constant learned during training. In section IV, the dynamic of the
time constants is studied and we draw the conclusion that the output layer neurons alone should
make use of an individual time constant thus reducing the computational burden induced by the
introduction of this variable in BP. Finally a comparison of the new learning algorithms with a
standard version of the MLP is carried out on a 2-D artificial data in section V. Section VI
concludes this paper by discussing the robustness of the algorithms.
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11 TIME CONSTANT AND DISCRIMINATION

While used on classification applications, the sigmoid function exhibits the advantage over the
symmetric tanh(ne / 2) function that it can be interpreted as a loose membership function varying
from 0 to 1. The critic of slower convergence of the sigmoid function emphasizes the need for fast
learning algorithms. Consider a single perceptron neuron trained on a two-class discrimination
problem according to an algorithm aimed at minimizing an error function defined by:

E(t) = I (d(t) - y(t) 2

2
where d(t) is the desired output at time t and y(t) is the actual output of the neuron at time L

While learning unfolds, this neuron must deal with two opposite goals : on one side, the update
of its weights is maximum when the output of the neuron is near 0.5 and on the other side, its
objective value for each pattern is either 0 or 1, those values prevent any update of the weights.
Adding a time constant to the decision function of the neuron helps acting on its sensibility to input
patterns. The variation of the output value according to different values of the time constant is
illustrated in Fig. 1. A decision function with a large constant tends to approximate a Boolean
decision function while the same function with a small constant looks like a quite linear function.
Clearly the time constant must be carefully chosen in order to achieve fast and efficient training.
One may also wonder whether a fixed time constant is well suited for learning since during the
process of training the behavior of the network is bounded to change.

0 O
D 0.9 1

:0.7eO, I/
0. 

, ,
0.5
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0
-5 .3 -I I 3 SNetwctk jq~W

Fig. 1 : Influence of the time constant on the shape of the decision function.

The XOR problem was referred to as a toy problem, the decision of introducing a time constant
must not be taken on the sole basis of the performance of a neural network with two hidden
neurons and one output neuron. When dealing with a real problem, such as texture classification,
the size of the network is an order of magnitude larger than that of the previous one. No a priori
knowledge ensures the existence of a single optimum time constant shared by all the neurons, it
may turn out that each neuron needs a specific time constant. Empirical search for these optimum
values may soon become intractable. This emphasizes the need for learned time constants.

II FORMAL DERIVATION OF THE NEW ALGORITHM

Since the time constants will be learned, and according to their effects on the decision function
curve, they will be referred to as slopes from here on. The notations are defined in Fig. 2.
The output of any neuron is defined by :
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Yi - I '|
1 + e- Ai neti)

The error function for pattern p is defined by :

2k

where dk is the desired output for neuron k and yP is the actual one when presented the pattern p.

Weight updating rule is computed according to:

Awjk = - 2
SWjk

In order to preserve the consistency of the BP learning algorithm, slope learning is achieved
according to :

Alk_ VD EP

For the neurons of the output layer it comes:
LEp =-(dk- yk)k Yk(I- Yk)yJ (1)

aWkj

EE =-(dk- Yk) netk yk (l- Yk) (2)

a)Lk

For the neurons of any hidden layer it comes:
,k) = (dk -yk) yk (l - Yk) Wkj )k YJ (l - YJ) - Yi

~j k

a Ep = - (dk- yk)Yk(l -yk) Wkj Xk yj(l- yj)netj

X k k

Detailed formal derivation of the learning algorithm is given in appendix (for sake of simplicity the
momemtun term is not introduced here).

Fig. 2: Notations used in the derivation of the new algorithm.

Some learning algorithms need to evaluate the exact energy function before any weight update: the
entire training set must be propagated forward, and the error for each pattern estimated, between
each backward propagation. Since the introduction of a time constant do not alter the core of BP,
the new algorithm takes advantage of the so-called stochastic gradient algorithm. After forward
propagation of a pattern, the weights and slopes are updated.
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IV ANALYSIS OF THE SLOPE DYNAMIC

A test on artificial data is used to analyze the dynamic of the slopes. Several runs were
performed on two-dimensional difficult data. One representative run is depicted in Fig. 3.
Although the neural network used on this test is a two-layer one, preliminary results on networks
with many hidden layers confirm the analysis drawn below. Furthermore, some additional runs
with random initial values of the time constants show that these values do not have much effect on
the following evolution.

An empirical study shows that the slopes of the hidden-layer neurons do not vary much during
learning. The only variation is a slow increase of these slopes. This can be explained by
considering the presumed goal of the neurons of any hidden layer. These neurons try to separate
patterns according to their class : a stiffer slope gives a finer separation.

The slopes of the last-layer neurons decrease at the beginning of learning then increase until
convergence is achieved. The initial decrease of these slopes can be analyzed as a search for
information in order to ignite the process of decision-surface positioning. Once those decision
surfaces are coarsely positioned, stabilization becomes the goal of the output neurons. The
increasing slopes prevent broad variation of the weights by saturating the output of the neurons.
Due to the backward process of updating, small variations of the weights of the last layer neurons
prevent large variations of the weights of the hidden layers neurons.

slopes of the last layer neurons slopes of the first hidden layer neurons

Uepochs

Fig. 3: Dynamic of the slopes

V OPTIMUM VERSION OF THE NEW ALGORITHM

The new algorithm as defined in section II, adds a computational burden to the already slow
and heavy BP algorithm. Although the updating laws of the weights and of the slopes share a
common part, it would be useful to keep the additional computation to a minimum. The analysis of
the dynamic of the slopes suggests a way to achieve this goal. Since the slopes of the hidden-layer
neurons do not vary much, those neurons may not need an individual variable slope. A minimum
algorithm including slope learning for the neurons of the last layer is derived. The updating laws
for those neurons are identical to the previous ones: (1) and (2) . In order to preserve adaptation
ability, a common slope y that can be set to any arbitrary value is kept in the decision function of
the hidden-layer neurons. The updating law for their weights is :

a E (dk- yk)yk(l - yk) Wkj )Xk yj(l- yj)Y Yi

k
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The performance of the minimum algorithm is analyzed on the problem used previously in
order to appreciate the loss induced by the simplification. A general robustness test was performed.
A standard MLP with a common slope for every neuron trained consecutively with classical BP
(CBP) , BP with individual slopes for every neuron (EBP) and BP with individual slopes for the
output layer neurons (OBP) , was trained 10 times for 2300 combinations of the learning
parameters chosen to span the whole parameter space. Results are described in the next section.

VI CONCLUSION AND DISCUSSION

A new algorithm for the MLP has been presented. The introduction of a variable slope in the
decision function of the neurons increases the convergence speed. The additional computation
burden induced by the new algorithm, lead us to an empirical study of the slope dynamic that
points out the uselessness of the variable slope for the neurons of hidden layers. A minimum
algorithm was then derived. It exhibits good performance results on both artificial and real data
classification problems. A detailed performances analysis can be found in [4]. Preliminary studies
of the robustness of the algorithms show that while the maximum number of achieved convergence
is obtained by EBP : 42.1% (pointing out its robustness to parameters variation), the performance
of OBP : 39.6% is quite equivalent and anyway much better than those of the CBP : 26.5%.

VII APPENDIX

Notations are defined by Fig. 2. Derivation deals with a two layers network for the sake of
simplicity (extension to higher dimension network is immediate). The output of the last layer
neurons is: m

Yk -,0 with netk I yj Wkj + Ok
1.0 + exp (Xk netk) j=1

The output of the neuron of a hidden layer is given by :
n

S1,0 with nq Yi wji + ej
1.0 + exp (x- netj)

Updating of the variables (weights and slope) of a last layer neuron follows:
a Ep

Awkj (t+I) = - 1 p + a Awkj (t)i)Wkj

A)k (t+l1) = - v a2. + 'C AXk (t)
aXk

where:
aEpD Ep olnetk

awkj anetk iwkj

a;E
a netk
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netk DOk lneti
=-(dk- yk). yk(l Yk)Xk

and:
Z)Epi9Ep a)yk,

ax ) yka yk))Lk
-(dk- yk). (Yk(l yk) netk)

Updating of a hidden layer neuron variable follows :

Awji (t+l) = - n aEp + a Awji (t)C)wj i

AX,, (t+l) = -V -) -+ i A (t)

with:

aE a net
)Wji a)netj awji

cl )Ep.Y
.Yi

a netj

anet Oj a nej
Y, 8k Wkj. -yj0- Yj) )-j
k

and

-' X k Wkj. (Yj (1- yj) netj)
k
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The Constraint Eased Decomposition Training Architecture
Sori Drnlhc Deatmnt ot Compuional Science,

University o(St Andrews, North Hmagh. St Andrews, KYI6 9SS, UK

Abstraict. Constraint based decomposition (CBD) is a variaton of the "divide ad conquer* method. The
CBD aWgorithm is composed by a weight updating rule (any algorithm able to train a single layer net), a patten
presentation algorithm and a method for constructing the network. CBD finds an architecure able to solve the
problem and trains it at the same time. The search for the solution is performed by reducing the dimensionality of
the weight spece and that of the tanDing set. The training is performed on subaets with subgodls and the weights
found in one subgal training will be conserved and form a part of the final solution. The training is performed
exclusively on the simplest possible type of aem one layer, one neuron and though the resulting net is as powerful
as a multilaye peeptroa. The pattern subsets contain always n-I correctly classified and one misclassified pauern.
The computation involved is very simple. No derivatives am calculae and no preprocessing is needed.

1. Introductlom
Many training algorithm for feedforwad multilayer networks, have important drawbacks. Some of them are

inherently slow and can be trapped in local minma For most of them, It Is necessary to start the training with the
correct architecturm In the following, some factors Influencing the training process are reviewed and a new algorithm
is proposed that addresses these factors. This algorithm Is based on cosmaint satisfaction and constructs the network
during training.

Arclitectural Issues. It is well known thl the training difficulty Increases with the complexity of the
architecurre, in particular with the number of layers

A cerain achtectural complexity is requied because one layer networks cannot solve problems that are not
linearly separable. At the same time, multilayer networks,e hard to train and their training may fail. If the network
has more than oe hidden layer, other problems such as the attenuation of the eror signal appear [Lag, 1988].

Deciding the architecture of a multllayer perceptron for a given 110 training set is a problem in itself.
Many algorithms work with a fixed architecure. Therefore, the corre architecture has to be chosen before training
starts. If training falls it is not clear if this is because of an Insufficient architecture or another cause. If the
architecture is too rich, the solution weight state will have neurons which provide unnecessary information and/or
neurons which do not contribute to the solution [Sietsma, 1991].

Dimeuloalty of ,h. weigbt sp ce. The training problem can be posed as that of finding the
minimum of an error surface over a weight space. Independently of the algorithm used, this problem becomes more
difficult as the number of dimensions of the weight space increases. Wdensky and Neuhaus (Wdensky, 1990) report
that even for a simple, linearly separable problem like discriminaton between two N dimensional gaussians, the
training time increases both with the number N of dimensions for the same architecture and with the number of
hidden units for the same dimensionality of the input space.

The pattern set. Falhman and Lebiere in [Falhman 1990] identified the moving target problem as one
of the causes of the training problems for a multi-layer architecture. This effect is determined by the presence in the
training set of many different tasks to be accomplished. In this situation, more than one hidden unit will try to tackle
the same task. Only after one of the tasks is accomplished by one or more hidden neurons, will other neurons be
redirected to other sources of error. This is one of the reasons for which the standard training is slow. This effect can
be eliminated if there is only one source of error in the training set and only one hidden unit to be trained. The
trainkg problem is even simpler if the net does not have hidden units.

There are perhaps counter-examples for one or more of the statements above. These should be taken more
like assumptions justified by some experiments rather than irrefutable truth. However they are useful in
understanding the technique which is being proposed As far as these factors are concerned, the ideal training problem
is to train an architecture with only one layer, only one neuron and to have a unique source of error in the training
set. This is what the CBD techniques addresses.

2. TIme based decomposition (TBD) vs. constraint based decomposition (CBD).
A possible approach to solving a problem is "divide and conquer'. Split the task into many simpler tasks

and solve each of them. There ae two fundamentally differmt methods for splitting a complex goal into sub-goals:
history based decomposition and constraint based decomposition.
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Let us consider for Instance a robot (with a humanoid iawimy) situated in the middle of a room with the
task to open the doer. The task is complex. The robot has to move towans the door. Perhaps at the same time, it
will move Its arm, raising it from Its normal positioe along the body towards the level of the door knob.
Concumntly, it will move Its fingers preparing them to grasp the door knob, During this complex movement, the
'.ad and the eyes must move in such a way that the door knob is kept in the centre of the visual field independently
of the position of the body.

Let us suppose we ask a human to perform the task. We ame going to record this solution which Is one of
the many possible solutions and use It to teach our" robot. The solution will be a sequence of intermediate positions,
a path P in the space S of all the possible positions. We call this path a solution path. Now, we could sample this
path by choosing a number of intermediate posItionc (pl, P2.....Pn). This is a discrete solution path. The first sub-
goal of the system is to reach the first point on the path, the second is to reach the next point and so on. Any
complex task for which we know (or could design) a path can now be learned. This type of decomposition will be
called time tred decmposio

There exists, however, another possibility to split the task into sub-tasks. For the robot to accomplish the
task, a set of constraints must be satisfied e.g. the robot must be near the door (i.e. the distance between the robot's
mass centre and the door knob must be less than the arm's length), the hand must be at the height of the door knob,
the fingers must be open so that grasping the knob is possibl. etc. The task is characterised by a set of constraints
(rl, r2,....rp). This set of constraints does not depend on the path In the position space the subject used to reach the
final state.

One could consider a constraint space with one dimension for each constraint in the constraint set. Fig. I
shows a possible training path for a time based decomposition. The variables characterising the constraints vary all
ate same time. In each step. each of them will come closer to the value which characterises the solution.

Fig. 2 shows a training path for a constraint based decomposition. The subgoals are defined such that the
first one includes the first constraint, the second one the first two constraints and so on. The first step of the training
takes the net into the subspace corresponding to the first constraint. The search for the solution of the second sub-
goal will be performed in the subspace ssl which is a subspace with n-I dimensions of the n dimensional constraint
space. The search for the solution of the next subgoal will be performed in a subspace with n-2 dimensions and so
On.

3. Theoretical framework

Definition. A constraint is a condition necessary but not sufficient for the solution. There must be
possible for the solution to be expressed as a set of non-contrwhctouy constraints.

Definition. A task is defined by a set of constraints (rl, r2,...,ri). This set of constraints defines a point
p in the constraint space. The solution of a task is a point W in the weight space which satisfies the given set of
constraints.

Observation: In a constraint based decomposition the number of constraint variables varies but if a
variable appears in a subgoal it will contains the final value of that variable (the value characterising the solution).
In a time based decomposition, the numbqr of constraint variables remains constant and equal to the number of
constraints of the problem but their values 1ary at each stage.

Definition. Given a task defined by the set of constraints (rl, r2,...,rn), a time based
decomposition (TBD) is a discrete solution path PI(pl, p2,....pn) with the property that pl is the initial point,
pn is the solution and each state P1 satisfies a set of constraints (r1 rt2,...,rin).

Definition. Given a task defined by the set of constraints (rl, r2,...,rn), a constraint based
decomposition (CBD) is a discrete solution path P=(pi, P2,....pp) with the property UM pl is the initial point,
pn is the solution and each statc pi satisfies the constraints (r1, r2,...,ri).

4. Constraint definition. CBD as a method to perform a dimensionality reduction in the
weight space.

For present implementation purposes, a constraint is defined as obtaining the correct output for patterns
situated in a limited region of the Input space or equivalently the construction of the desired I/O surface above a
limited region of the Input space. When the output is the correct one, the constraint is satisfied.
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TLis deflinitiu stisks the conditions for a consurants becaus:
a) The whole IO surface can be cut into pieces corraponding to disjoint regions of in ; lpaco, (a, a2,

..a3). In order for the 10 surface S to be the S a O sturface SS, S must be equal to Sg in all of the regirls al, a2,
...a3. Tberelfo e, S - SSgI& (the condition that S be equal to Sg in the limited area aj) is a necessuay but no &ffcicnt
condition.

b) The solution L.e. the goal 1/0 surface can be expressed as a set of non-contradictory constraints: S is a
solution if and only if S - Sai for any I from I to n, where n is the numbr of areas the input spae has been cut
Into. Due to the fact that aI ae disjoint by definition, the conatraints cannot be contradiczory.

The CBD training stat by training the first subgoal which requires the satisfaction of the first constraint.
The secod subgoal will ask the satisfaction of the first two constraints. Therefomr, the search for the solution of the
second subgoal is performed in a subspece with n-I dimensions of the a dimensional constraint Space.

The interesting case is when the reduction of dimenslonality in the constraint space can be put into
correspondence to a reduction of dimensionality in the weight space. In this case, the weights found in one subgoal
training will be preserved unchanged and will be a part of the final solution. Having as few dimensions in the weight
space as possible was one of the characeristics of the Ideal training situation.

The shape and the size of the regions of input space used in defining the constraints is very important. The
shape and the size chosen should depend on the problem. Ideally this should be done automatically, by the training
algorithm.

Search directed by subgoals
The search directed by subgoals charnriscs a stuation in which there is only a weak coupling between the

constraint space and the weight space. A reduction of dimensions in the constraint space could but does not
necessarly correspond to a reduction of dimensions in the weight spm.

The simplest form in which the CBD Idea can be implemented is to define the subgoals by splitting the
training set into subsw. This is roughly equivalent to splitting the input space into disjoint regions and taking as a
training set of a subgoal, the patterns in this region. A constraint is getting the correct output for a subset of the
training set. A subgoal is the training of a inceasing number of constraints.

In order to check the effects of this CBD, one could simply train (with a standard weight change algorithm)
the subgoals corresponding to the chosen constraints. In constraint spc, the net is asked to reach the first subgoal.
From this point, the net is trained with the second subgoal. No measures to ensure that the net will remain in the
subspace corresponding to the first subgoal are taken. The question is whether the net will be able to preserve the
information obtained by the training of the first subgoal in the training of the second one.

This will be shown by the evolution of the error for the pattems in the first subset during the training of
the second subgoal and so on. If this error remains small, i*. will mewn that the search for the solution to the second
subgoal is directe by the subspace corresponding to the first one. If the emr goes up, it will mean that the firs few
weight changes in the second training session have thrown the net far from the subspace corrsponding to the first
subgoal and the first training was useles.

This experiment could show the importance of the pattern prestmtation algorithm. If the result of the
training can be substantially changed by changing the pattern presentatio, algorithm, a training algorithm must be
seen as the cxnbination of a weight changing algorithm and a pattern presentation algorithm rather than a weight
changing algorithm alone. A substantial change would be for instance the success of the CBD patuern presentation
algorithm in some problem where the batch pate presentation algorithm fails. Both should use the sane weight
updating rule.

The CBD pattern presentation algorithm tries to ensure that. for each training, the position of !be initial
weight state in relation to the position of the goal is good. This is achieved by training exclusively on patm-rn sets
containing mostly patens that toe net is already able to respond to correctly.

Search restricted by subgoals. The CBD net.
In the case of a search remsicted by subgoals, there is a strong connection between the constraint space and

the weight space. A reduction of dimensions in the constraint space is put into a direct correspondence with a
reduction of dimensions in the weight space. The weights found by training a subgoal will become a part of the final
solution.

Since the purpose is to train only few weights at a time and to keep those weights unchanged afterwards,
the idea of constructing the net during the training comes naturally in one's mind. The CBD algorithm is formed by
a CBD pattern presentation algorithm, a construction mechanism for building. the net and a weight change algorithm
for a single layer percqpron (delta rule for instance).
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To illu..wrat the CBD algorithm, let us consider the exampLc of a .s siction problem. Without ios of
generality, we shall consider only two claues CI and C2 in an a dimensiona Iput space. The problem is defined by
a set of patterns for each class. Them up two output units 01 and 02, oa kmr each class.

The CBD algorithm starts with the input units, oae hidden unli -W,. te bias unit (permanently set to ).
lr" the classification pobem oe can use thresthod units with (-1,+l) output range and 0 threahold. For problems
in which a precise analogue output is desired, one can use a different type of activation function with the same
algorithm.

La C1  { ',,.,xC'} be the setof paneni the clas Cl and C2  {f 2 x,.,~}b h
set of paerns in clas C2.

The first stage Is to constuct a bidden layer (the hyperplane layer) which has a hidden unit for each
hyperplane e sry for the separation of the regiom belonging to different classes. The result of this stage is a set
of hyperlpa h i. h2.... hk and a set of terms Ti of the form Tslpgn(hl)h I...sign(hk)hk. C) where sgn(hj) cam
be 1.-1 or nil andj can be I or 2. This is equivalent to building a piecewise linew boundary between classes.

Each hyperplane divides the space Into two regions one postive and one negative. A hyperplane and its
sign form a factor. A factor is used to repleen the corresponding half-space determined by the hyperplane. A term
Is obtained by performing a logical and between factors. Not all the hyperlAne must contribute with a factor to all
the terms Finally. a logical or is performed between trms in order to obtain the expression of the solution for each
class.

The algorithm for the first stage (building and training the hyperplane layer) is presented n fig. 7.
The algorithm is presented as a recursive procedure. Its paameters are a region of the space (initial value =

whole space), the training set divided into two sets, one for each class (initial value - the whole training set) and a
factor (nitial value = nil). The factor describes the region and nil corresponds to the whole space.

The CBD algorithm starts by building a subgoal with only two patterns, one from each class. A unit
(which will become a hidden unit in the final e) will be added and trained such as it separate the two patterns. This
training problem is the simplest problem one can have: only one layer and only one unit It is assumed that this
training will succeed. Let h be the hyperplane obtained by this training. This hyperplane will be saved. A new
pattern (from any class) will now be added m the current subgoal. The same unit will be trained again. The training
roblem is again the simplest possible: oae layer, one unit and the pattern set contains only one misclassified

example If the training succeeds, the pauren will remain the curent subgoal and the new hyperplane will be used
subsequently. If the training fails, the old ;iyperplme will be restored and the pattern will be deleted from the current
subgoal. The process continues until all the patterns in the training set have been considered. In the simplest case,
the failure of a training is detected by imposing a timeout condition In number of epochs or monitoring the weight
changes and slapping the training when the error evolution beccmes asymptotic.

The hyperplane resulted at the end of this procem will divide the space into two half-spaces h+ and h-. If b+
contains only pat s in the same class C, h+ will be added to die caent factor and the result classified as class Cj.
The region resulted will be the ntersaection between the initial region and h+. Therefore, the factor chsracterising the
new region will be (factor and h+). If b+ is not homogeneous (it contains patterns in both classes) the algorithm
will be applied again to h+ region. The same is done for h-.

The next stage is very simple and does not need training at all. CBD builds mother layer with a unit for
.ach term T-iWgn(l)hl..gn(hk)bk. Let us consider the unit associated with Ti. The bias weight wbias, will be
set at an arbitray negative value (e.g. -0.5). The unit will be connected only with the units corresponding to those
hyperplanes in Ti. The values of the weights will be all equal to x where x is the solution of the following
inequalitr.
x > threshold + bias_-, vightI fanjin

th4l + ia ein where fin.in is the number of hyperplanes present in Ti. The first inequalitythreshold + bias_ ghf

fan-in -2
cusures that the unit will be wred on 0 all of the units ame in the state required by the sign of their corresponding
facors. The second inequality ensure that the unit will remain off if even a single unit has the wrong activation
For the chosen type of neurons, the threshd is 0. In this formula, the bias-weight represents the absolute value of
the bias weight. The sign of each weight will be the sign of the cofresponding hyperplane in Ti. This unit
implemmEts a logical and and will be turned on if and only if the Input pattern is in the region characterised by Ti.

There will be a unit for each term in the soludoe given by the algorithm. Finally, another layer of weights
will implement a logical or. This layer will contain a iznlt for each class (2 unlis In this case) and each unit will be
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connecied with the terms c spondiag to Its class an the ip v o laye. Te weight c have any value grmer ON
the threhold (my posidv va"u for 0 fteaboid).

In coacluss. the CBD alSocithat builds a aet with 3 layers o( active weights. The rust layer impklmt
hyperPIAMe which SCq~epm the PUau iDo nSiOUs containlng only pMaerU in the swme class. The secod layer
implements a logical and between differe hyperpLanes, In the set theory Language this Layer impkements an

tntersectlon between W-spaices given by different hybtpames. Each uit on this layer will be activated only by

input pattens sated in a bck3a reg mgo of the inpu space and can be associated with their ouu dims.
The third layer kImns a logical or between unlt on the se.ond layer. In other words iC performs the reunion
of dlffcrem regions corresponWg to the same class The typical fhna ardhisedive of die net is presented in fig. 3.

Another option is to use only two layers. Te first one is built in the sa e way and the second one is
trained with the "delta rule or my other well-known learnig algorithm for single Layer networks. Becanse the
byperplanes are In the correct position, the pxrbem is now separable in the hidden layer activation space and the
trainins cm seed

The CBD algorithm cm be eaily extended to cope with more than two classes. The training speed can be
further reduced by performing an simple on-line aaly5i e- ft- curent subgoal and the crrent solution but these
enhaucenent are beyond the scope o1 the presan paper.

Experiments.

1. Search directed by subgoals. Pattern presentation algorithm.
The experiments were done with a dassilctfim network with a 128-20-36 architecture. The net is used to

classify characters of the English alphabe (10 digits and 26 letters).
The training paterns were obtained from imags of car number plates. The image is segmented into number

ple and background and the number plate is segmented ino caacter. Each characer aea is binaxised and divided
Into 8 by 16-128 rectangles and a mean knminance value is calculated for each rectangle. These 128 luminance
values ar ncrmlised and the result of ths normalisatlon constitutes the input to the net. The output is a vedor of
36 elements with all eleent z= but the one cofspanding to the chiare presented.

Due to various character sets used in the nmber plates, different illumination conditions and different
positions of the camera with respect to the car, the differences between vario instances of the same chracter are
rather arge in spite of various narmalilsaom performed. As a consequence, varios Instances of the same character
will be spread over a large volume in the input spce. The taining set contains 180 patterns.

Two types of experimems were performed. The first type compares the training of a constraint based
decomposition approach with respect to the udard aning approach. The second type of experments Investigates
in more detail the behavioer of the constraint based decomposition and shows that the search is Indeed directed by the
subgoals.

A. Constramint based decompoeltlm versus standard training.
The stand approach 01 training the whole training set Is compared with a constraint based decomposition

approach. The weight changing mechaisms is the genetalisod delta rile [McClefland, 1986).
In each trial, two networks wre initialised with the same initial weight state and used the same values of

the above parameters duing the whole trainng process. One network used the clssi technique of training with the
whole set of patterns and the other was trained with a constraint based decomposition of the training set.

Subsequently, the standard training was tried with different parameters (especially learning rate) but it was never
succesd.

The standard approach taining fails to converge in 15000 epochs whereas the CBD training converges to an
error limit of 0.3 In approx. 13200 epochs and so a erro limit o0.2 in approx. 13600.

As the final performances of the net depend ultimately on the eror limit for the last sub-goal only, the
speed of the training can be dramatically increased if a higher error limit is used to detect the end of a sub-goal
training. An er limit of approx. 0.75 for the subgoals reduces the total raining time (in epochs) by approximately
a half. This intermediate error limit depends very much on the problem.

Note that an epoch for the whole training set necessitates the calculation of the weight changes determined
by the entire number of training patterns whereas a epoch for a sub-goal training set necessitates only the calculation
for the number of the patterns in the sub-goal training act. Therefore, the CPU time needed for an epoch in the
standard technique will be muclAonger than the time needed for an epoch for any sub-goal but the last one which is
the whole taining set.

As discussed in the Introduction, the results of the generalsed delta rule as a weight upidating algorithm can
be Improved using various techniques. Their combination con as be used with a constraint based docomposition
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pat' presMcItion algorithm. It is believed that the use o( moat of the -xhaiques would not affect essentially the
ovrall result of teCVMMi onjwso

A srit constraint based decomposition would ask sub-goals fr;.d by adding the characters one by one i.e.
the first sub-goal is implemented by a training set formed with insi - of the first character, the second with
instances of the first two cxaactcrs etc. This is this is Inefficient beo-a all the units in the output layer whose
class is not present in the cvrrent subgoal will tend to have 0 weights, Ir ' '; conditions the distance in weight space
between the initial position and the solution would be very large for each subgoal. Without any other precautions,
the CBD patern presentatioe algorithm would not be able to help the training. For this reason, the first subgoal was
built with a patrn from each class ensuing that the first subgoal offers a fair start.

B. Investigatlan the search directed by subgoals
Fig. 4 shows the evolutica o the error during an CBD training session. Note that the error goes up at the

beginning of the training of each subgoal but the error does not accumulate from a subgoal to another.
In fig. 5 the evolution of the error during a subgoal training is plotted against the number of epochs. Both

tk,. error over the current subgoal and the error over the previous subgoal are plotted. This graphs shows that even
when the error over the current subgoal trining set is large due to the preew= of the newly added patterns, the error
over the previous sub-goal training set remains small which shows that the search takes places in the sub-space of
the target space determined by the previous subgoal. Therefore, in this case, the subgoal manages to direct the searxh
for tbo solutiom.

These experiments show the role of the pattern presentation algorithm. Both the standard training and the
CBD training used the same weight change algorithm. However, the standard training fails systematically on this
problem whereas the CBD can be successful. However, the success of the pattern presentation algorithm itself
depends too much on the subgoal definition which must be done manually. Although in this case there was an
improvement, the CBD pattern presentation alorithm by itself does not guarantees the success.

2. Search restricted by subgoals. CBD training algorithm (architecture and pattern
presentation)
The full CBD algorithm has been tested with linearly inseparable problems containing the XOR training

set. An example is presented in fig. 6. The figure contains both the training set and the hyperplanes the algorithm
found in solving the problem.

The architecture resulted at the end of the training used 5 hypeaplanes of the form wlx+w2y+wbias=O. The
solution is-

Cl =h. + kh 2 + +hjhh 3h4

C2 khhhh + hhA +h4A
The horizontal bar means the sign of the corespondent hypesplaDe is minus and the hyperplanes with sign

nil are missing from the expresson of the solution.
The solution is interpreted in the following way: a pattern will be classified as C1 if it determines (a

positive activation of the neuron associated with ho) or (a negative activatin of the neuron associated with ho) and
(a positive activation of the neuron associated with hi) and (a positive activation of the neuron associated with h2)
or.. .etc. Logical and has a higher priority than logical or. As previously described, the expressions for C1 and C2
can be seen as a reunion of regions obtained by intersecting half-spaces determined by different hyperplanes.

Discussion

The ciracteristics of the CBD architecture and training algorithm are:
1. The CBD training algorithm is composed by a weight updating algorithm for a single layer (delta rule,

for instance), the CBD pattern presentation algorithm and the CBD construcion method.
2. CBD has the abilities of a multilayer perceptron but the training is performed exclusively in subnets

with a minimal architecture containing only one layer and one neuron. This is the simplest possible training
problem from the point of view of the architecture (the best possible situation for the first two factors in section 1:
only one layer so one can use a simple weight update rule and only one neuron so that number of dimension of the
weight space is minimum).

3. CBD trains exclusively training sets with n examples of which n-i are already correctly classified. This
is the simples possible training problem from the point of view of the training set and this eliminates the herd
effect. Furthermore, al the training sets have less patterns than the original set and most of them have only very
few pauterns. This is a reduction of the taining sets dimenslonality.
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4. CBD finds autmatically an lchiecture ab to solve the problan. The algorithm gumutecs the absence
of usless units (whose outputs are not actually used in performing the clasificatio). Although the architwtre
found by the net is often the minimal one, the algorithm does not offer guarantees in this tense. However, the
conveence is guaranteed.

5. The computation involved in training is very simple. No first or second order derivatives are used, No
preprocming is needed The training is very fast and the resulting network is able to solve linearly inseparable tasks.

6. The fact that the first hidden layer is not fully coonected to the and layer avoids the interference between
hyperplanes which Is one of the difficulty aced by a fully conected net.

7. CBD can be used for incremetal learning, in which a trained network is asked to adapt itself at new
patterns. The CBD net will train only the smallest possible region(s) of the input space which contain the new
patetrs). The hyperplanes Introducod to satisfy the new pattu s will not affect the classification of other regions.

8. The CBD pattern presentation algorithm can be used with any training algorithm. Combined with the
standard backpropagatlon weight updating algorithm it gives an improvement over the standard training but the
results are not always guaranteed.

Relation to other work.

The main differences between CBD and older training algorithms are the solutions to the training problems
brought 'y performing the training only in the simplest architecture and the simplest training set.

Training only one neuron at a time and gradually building the net am present in the Cascade Correlation
(CC) net proposed by Falbman and Lebier in [Falhman 1990]. However, CC algorithm uses the whole pattern set
and the resulting architecture is different. CC builds feature detectors which could be useful in some problems.
However, further reseach must be done in order to compare the performane of CBD and CC.

The idea of positioning the hyperplanes in the right places is present in several other techniques such as
entropy nets and query learning. The entropy nets use a decision tree to classify the regions and two layers one for
logical and and one for logical or. These layers an similar to those use by CBD. However, the building of the
decision tree can be a very lengthy process because it involves testing very many candidate questio for each node in
the tree. For instance, the CART (Classification and Regression Trees) uses a standard set of candidate questions with
one candidate test value between each pair of data points. At each node, CART searches through all the variables,
finding the best split for each. Then the best of the best is found (see [Breiman, 1984]). This can be a very time
consuming process.

Query learning is more efficient but it requires the existence of an oracle able to give the correct
classification for any point in the input space. In the usual case of learning from examples, where only a limited
number of data points is available, this is not possible. The query learning algorithm is presented in [Baum,1990]
and [Barn,19911.

CBD builds up the LO surface gradually, one region after another. The idea of locally constructing the I/O
shape is present in all RBF algorithms (see (Moody, 1989], [Musavi, 1992], [Poggio, 1990]). In RBF's case, one
unit with a localised activation function will ensure the desired response for a small region of the I/O space.
However, them an situations in which a hyperplane net is better than an RBF net. Furthermore, for an RBF net to
be efficient, a preprocessing stage raust be performed and parameters like radii of the activation functions, their shape
and orientation, the clustering, etc. must be calculated. For some problems the simplicity of CBD could be preferred.

The idea of building the solution by combining pwaial solutions was proposed by Hinton and Anderson in
(Hinton, 1981]. However, the combining method proposed there is a simple sum of the weight matrices and it works
only for orthogonal patterns. This can be seen a* a particular case of CBD in which a constraint is one pattern. In
this special case, each subspace of the constraint space is characterised by a unique weight state (a partial solution).
The set of partial solutions can be combined to give a unique weight state which satisfies all the constraints and
therefore is the solution. In constraint space, the above technique is equivalent to finding the subspaces
corresponding to each pattern and directly calculating their intersection which is the solution.

There are few algorithms which ensure the convergence of the training process. The upstart algorithm
[Frean, 19901 builds a hierarchical structure (which can be eventually reduced to a 2 layer net) by starting with a unit
and adding daughter units which cater for the misclassificatlons of the parents. Sirat and Nadal proposed a similar
algorithm in (Sirar, 1990] However, both of them work for on/off units only. Mezard and Nadal proposed a tiling
algorithm which starts by training a unit on the whole training set. The training is stopped when the units produces
the correct target on as many units as possible. This pseudo-solution weight state is given by the pocket algorithm
which assumes that if the problem is not linearly separable the algorithm will spend most of its time in a region
giving the fewest errors. "he pocket algorithm simply monitors the weight change and stops the training after some
chosen time t It is very inefficient to start with the whole training set because most of the time the training will fail
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un tdr pocket algvuthm does aot oftc my juatrumoe regwding de optimtalty of fhe weight state obtainod. A sbor
deacritim ol these ktniqu cm be fkuod in [Hter 1991).

Romaiauk a f hail [Romauk, 1993) ppoued a divide and conquer net which builds up the network.
Theif divide and coi~ucr sWategy sur with oe newon and the etire training set. If the problem is linearly
inseptar (usially). the first training is bound to W and this is decled by a time-out coodloe. In comparism,
CBD starts with the minimum prob&em which is guaranteed to have a solution. The divide and conquer technique
also nquire. a pv-poccssmg stage in whic the nerst aedgbbow is found for ch pocra in the trai n ig set The
architecture given by the diviide ad ooequer algorithm is shmilar to that of a Cmcadc Correlion network, with each
Mn connected to all the Input units. Howevm, the architec ot the DCN network depends on the Initial weight

stme which can be InconvnIent In sm cam,
The etneron, proposd by Baffes and Zelle in [Baffem, 1992] builds up a network using the idea that a

problem which Is not lineary separoble in the original input Ve becamne so in a spece: with mom~ dimeriskas. A
unit Is used to seprawe at least one pan and my other sub6quent units will be connected to it as well as to all
input patru. This cscade con;';:t.oo means that for highly non-linear problem such as 2-spirals, the Last few
hidden units, will have to solve a prmo em in a higly dimensional space (2 dimensions of the input space plus n
dkomionas o the first n hikdn units). Although a pcrceptro taining, the training can be more difficult because of
the possible large number of dimensions.
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Fig. 1. A history based training (in restriction Fig. 2. A restriction based decomposition (in
space). The network is trained with intermediate target space). Each subgoal asks the satisfaction of
targets. Each intermediate target (sub-goal) is one restriction more than the previous sub-goal.
characsed by the me number of restricions as The search for a solution of a sub-goal is
the original training s&t performed in a sub-space of the restriction space.
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Abstract

The EBP (error back-propagation) is now the most used learning algorithm for FFANNs (feedforward
artificial neural networks). There are two versions of the EBP algorithm - on-line and batch. The on-line
version updates weights after presentation of every training pattern. On the other hand, the batch version
of the EBP algorithm accumulates weight-corrections for all the training patterns, and then updates all
weights. Each version has its advantages and disadvantages when compared on the basis of learning time
and convergence rate. In this paper, we propose a method for integrating on-line and batch versions of the
EBP algorithm into one algorithm. We also propose and study three approximate implementations of the
integrated EBP algorithm. Our simulation study of the integrated EBP algorithm for the XOR problem
has shown smaller learning time and better convergence rate than those of the Quickprop algorithm
proposed by Fahlman. All three approximate implementations of the integrated EBP algorithm for the
binary version of the Majority-XOR problem have shown very favorable performances in comparison with
extensive study data available in the literature.

1 Introduction
Artificial Neural Networks (ANNs) are mathematical models developed to mimic certain information storing
and processing capabilities of the brain of higher animals. Although the interest of the research community
in ANNs as a means for intelligent computing had existed for over 30 years (see [WLg0]), there is little doubt
that Rumelhart, McClelland, and the PDP research group are credited with revitalizing of wide interest in
it [RM+861. The different models and their applications can be found in many books and in such surveys
as [Hin89, Lip87, WL90. This paper concentrates only on Feedforward ANNs (FFANNs) and Error Back
Propagation (EBP) learning algorithms for them. Basic elements of the theory, as pointed out by le Cun
[1C88], can be traced back to the book of Bryson and Ho [BH69]. It was more explicitly stated by Werbos
[Wer74], Parker [Par85], le Cun [IC86], and Rumelhart-Hinton-Williams [RHW86]. The EBP is now the
most popular learning algorithm for multilayer FFANNs, because of its simplicity, because of its power to
extract useful information from examples, and because of its capability of storing information implicitly in
the connecting links in the form of weights.

Despite its power, the original version of the EBP learning algorithm has been of great concern to practical
users for many reasons: i) it is extremely slow if does converge, ii) it may get stuck in local minima before
learning all the examples, iii) it is sensitive to initial conditions, and iv) it may start oscillating etc. Several
methods have been proposed to improve the performance of EBP algorithm. Important methods to speedup
the EBP algorithm have been surveyed in (Sar92], and are very briefly discussed next.

Efforts to Speedup the EBP Algorithm Rumelhart, Hinton, and Williams [RHW86] have insightfully
argued that a relatively smaller learning rate coefficient makes learning slow, but too large a value causes
oscillation preventing the network from learning the task, and have suggested adding a momentum term in
the weight updating rule which dynamically increases or decreases the effective value of the learning rate
coefficients depending on the nature of the energy surface. Further analysis and experimental study on the
effect of momentum coefficient on improvement of learning can be found in [Bat92, E092, Ja88, Tol90,
Wat88]. Although a limited effective dynamic range of learning rate coefficient is obtained by adding a
momentum term, in most practical cases it is not good enough to cover requirements of all types of energy
surfaces that may have a wide range of gradient values, and hence various methods have been reported to
directly adapt learning rate coefficient [Bat89, D088, Jac88, PS91, Tol90, Weigl]. Some of these methods keep
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one learning coefficient for each weight (DO88, Jac88, To190], and others keep only one learning rate coefficient
for all weights [Bat89, PS91, Wei9l]. Conjugate gradient method or some approximations to it, when used
with the EBP algorithm, have shown considerable improvement in learning speed [Bat89, Bat92, Kin92]. Yet
another method for fast learning with the EBP algorithm is to use new (other than standard sum-of-the-
squared error) energy functions [EO92, AS92]. The size of the learning set affects the learning rate and could
be considered in selecting learning rate coefficient [vON92]. Other suggested methods for improving learning
rate include rescaling of error at every layer [RIV91], and using expected outputs instead of actual outputs
to compute weight correction [Sam9l]. In the next section, following [RHW86] the original version of EBP
algorithm is presented.

2 Original EBP Algorithm

Error back-propagation (EBP) learning rule (popularly known as back-propagation algorithm) which is also
known as the Generalized Delta Rule (GDR) was proposed by Rummelhart, Hinton, and Williams in their
seminal work [RHW86]. In the EBP learning algorithm, following the presentation of an input vector Xm
and a target vector Tm (for m = 1...P), the rule for updating weight W.Vk of the link connecting kth node in
a layer I to the jth node in the subsequent layer I + I is given by:

w= -, × E,, (1)

where Y) is a constant known as the learning rate coefficient and At is the partial derivative with respect

to WtLk and E is the energy function. Rumelhart, Hinton, and Williams [RHW86] in their original EBP
algorithm used the sum-of-the-squared error as the energy function.

1P n.

Eb. = 2_n) (2)
m=1 n=1

where n. is the number of units in the output layer, t n and ymn are target output and actual output,
respectively. The energy function, E. can be defined for only one training pattern pair (zp, dp) as follows.

1 n

EP = I (tpn - Ypn) 2  (3)
2n=1

There are two versions of the EBP algorithm, on-line and batch. In the on-line EBP algorithm, the weights
are updated using the error corresponding to every training pattern. This method uses energy function
defined by equation 3. However, in the batch EBP algorithm, the weights are updated after accumulating
errors corresponding to all input patterns, and thus makes use of the energy function defined by equation 2.

Values of several parameters are of importance for implementation. The initial value of weights should be
small and randomly chosen [RHW86] to avoid the symmetry problem. The q value plays a very important
role. A smaller value of q makes learning slow, but too large a value will cause oscillation preventing the
network from learning the task [RHW86]. In practice, most effective value of iq depends on the problem. For
example, Fahlman [Fah88] has reported 0.9 as value of learning rate coefficient for one problem, while Hinton
(Hin871 has reported 0.002 as the value of learning rate coefficient for another problem. This variation in the
value of learning rate coefficient for faster training of FFANNs has drawn the attention of many researchers.

3 Integration of On-Line and Batch EBP Algorithms

In this section, we propose a method for integrating on-line and batch versions of the EBP algorithm. The
integrated algorithm attempts to take best features of both on-line and batch EBP algorithms. We believe, it
would increase convergence rate and reduce learning time. Since, an exact implementation of this novel version
of the EBP algorithm requires considerably higher computation time, several methods for its approximate
implementation are also proposed. Before proceeding further some notations are introduced to make the
presentation concise and precise. Since the same method will apply to all the weights, without causing any
confusion we drop the subscripts and superscripts from Aw '.
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The on-line version of the EBP algorithm updates weights after presentation of each pattern, and hence
if two patterns have weight corrections opposite in sign, they tend to cancel each other's effort. The batch
version of the EBP algorithm avoids this problem by accumulating weight-corrections for all patterns and
then making only one update at the end. This, however, may risk the possibility where the sum of all weight
corrections is zero but the network has not learnt many examples. Under this situation the on-line algorithm
may be of use since weight correction for one pattern at a time reduce error for that pattern.

The proposed algorithm defines energy function by combining energy functions of on-line and batch EBP
algorithms. A new energy function El, for the novel EBP is as follows:

El, -3 x Ep + -Eb. (4)

where f is a positive constant. For a given pattern p, the weight updating rule is given by:

= -1 x (ft x AVEp + IA.Ei.) (5)

Thus, for updating weights for a input pattern, it is necessary to compute weight correction for all the
patterns. This integrated energy function in computing weight corrections considers the effect of all the
patterns. Thus, for example, if overall weight correction for a weight w due to all the patterns is negative,
but weight correction due to a pattern p is positive, then the net weight correction will be lower, and vice
versa. This gives the algorithm some sense of fairness. The amount of learning for a pattern is reduced
if it has adverse effect on the whole set of patterns. On the other hand, the amount of weight correction
for a given pattern is increased if it has a favorable advantage on the whole set of patterns. Yet another
way to see the effect of the new learning algorithm is that it increases the dynamic range of learning-rate
coefficient. When the value of AwEp and AEb. are opposite in sign, the effective learning rate is lower;
but when A.Ep and AE 60 are same in sign, the effective learnin- -te is higher. Next, three methods for
approximate implementation of the proposed algorithm is presentet.

4 Three Cost-Effective Approximate Implementations

Average of the Last Cycle (ALC) In this method weight corrections for each weight is accumulated for
all the patterns to be taught during the last cycle. The average of this accumulated correction is divided by
the number of patterns to obtain approximate value of A.Eba. A Pascal-like description of this is given
next.

average-del-weight {approximation of I A.Eb. for the next cycle) :- 0;
while not trained do
begin

cum-del-weight {for a weight w} := 0;
for i := 1 to P I number of patterns ) do

begin cum-del-weight := cum-del-weight + Aw; end
average-del-weight (approximation of 'A. Eb. for the next cycle) :- cum-del-weight/P;

end

Our experience is that this very simple to implement method works well when the number of patterns to be
taught is not 'too large'.

Modified Average of the Last Cycle (MALC) In this method, at the beginning of each cycle FIAEb.
is the average value of weight corrections for all the patterns during the last cycle. For subsequent patterns
1A.Eb. is approximated by subtracting ]th of the current value and then adding ,th of the Aw for the
last pattern. A Pascal-like description of this procedure is as follows:

approx-average-del-weight {approximation of A, Eb. at the beginning of the next cycle) := 0;
while not trained do
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begin
cum-del-weight {for a weight w) := 0;
for i := 1 to P I number of patterns ) do
begin

cum-del-weight := cum-del-weight + Aw;
approx-average-del-weight fapproximation of 'A. Eb. for the next pattern)

(1 - IP) * approx-average-del-weight + (Aw)/P;
end
approx-average-del-weight {approximation of Aw Eb. at the beginning of the next cycle)

cum-del-weight/P;
end

This method requires additional computation for updating the approximated value of AEba after presenta-
tion of each pattern. However, when the number of patterns to be taught is large, this approxim Iln method
might reduce learning time to a great extent. Thus, the additional computation is justified aching a
large number of patterns to a network.

Weighted Average of Last and Current Cycle (WALCC) In this method the approximation of
A.E&. after presentation of i patterns is given by (P - i)/P times the average weight correction for the

last cycle plus i/P times the average weight correction for the i patterns in the current cycle. A Pascal-like
description of this method is shown next.

approx-average-del-weight {approximation of 'A. Eb. for the next pattern ) 0;
while not trained do
begin

cum-del-weight {for a weight w) := 0;
for i := 1 to P I number of patterns) do
begin

cum-del-weight := cum-del-weight + Aw;
approx-average-del-weight {approximation of A Eb. for the next pattern)

: (1 - i/P) * average-cum-del-weight + (cum-del-weight/i) * (i/P);
end
average-del-weight {approximation of 'A. E6, at the beginning of the next cycle)

cum-del-weight/P;
end

In the next section simulation results for approximate implementations of the integrated EBP algorithm is
reported.

5 Simulation Results and Discussion

The performance of the algorithms presented in the earlier section was studied through simulation. We
compare the performance of our algorithms with the data in [Fah88, CT91]. Since the Quickprop algorithm
in [Fah88 has shown dramatic improvements and benchmark data are also available, we first compared our
results with it.

The data in Table 1 for Standard EBP and ALC implementation of Integrated EBP algorithms are for 10
different initialization of the network. In three instances the Standard EBP learning algorithm failed to stop.
We excluded them in our average computation. The data for the Quickprop algorithm is for 100 trials [Fah88].
As can be seen from Table 1, Integrated algorithm outperformed both the standard EBP with momentum
and the Quickprop algorithms in learning speed and convergence rate.
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algorithm learning momentum restart maximum minimum average
rate or / epochs epochs epochs

Standard EBP 5.5 1.2 3 214 82 140.9
4uickprop (Fah88] 4.0 1.0 14 66 10 24,22

Integrated EBP 1.2 ( = 0.83 0 34 12 19.4

Table 1 Comparison of Performance of Integrated EBP Algorithm with
That of Quickprop and Standard EBP Algorithms

In [CT91] it was reported that for Majority-XOR problem (see description next) the standard EBP
algorithm with momentum converged only 86.84% of the times with a cutoff of 50,000 epochs. Thus, we
believe that it would be a good problem to compare our algorithms' convergence with their results. Next we
briefly describe the Majority-XOR and then the simulation results.

Majority-XOR (M-XOR) This is one of the problems Cohn and Tesauro used to see 'can neural networks
do better than Vapnik-Chervonenkis bounds?' [CTgI]. It is an extension of the linearly separable majority
function. Majority is a Boolean predicate in which the output is '1' if and only if more than half of the bits
are '1'. Majority-XOR is a Boolean function of N bits where output of the function is '1' if and only if Nth
bit disagrees with the majority of the first N - 1 bits. Following [CT91], in our study the input was 26-bit
binary patterns and output was one-bit binary value. The network had three hidden units and presented 600
patterns until it learnt all or 400 epochs expired. Table 2 summarizes empirical observations from simulations.

implementation learning /3 restart maximum minimum average
rate epochs epochs epochs

ALC 0.125 2.4 0 393 145 207.45
MALC 0.125 2.4 1 259 134 201.11
WALCC 0.125 2.4 1 324 136 206.58

Table 2 Comparison of Performance of Three Approximate
Implementations of the Integrated EBP Algorithm

With 20 different initializations each of the three implementations was tested. As can be seen from Table 2,
both MALC and WALCC implementations failed to stop only one in 400 epochs out of 20 trials. If we consider
all 60 trials of the three implementation, it turns out that 96.7% of the times the integrated EBP algorithm
converged even with a cutoff of 400 epochs. This is a significant improvement over the study reported in
[CT91], where it was reported that only 86.84% of the times Standard EBP algorithm with momentum terms
converged with a cutoff of 50,000 epochs.
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Abstract

This paper presents a modification to the backpropagation algorithm which
improves network development time. in two areas. The modification reduces the
number of times the network convergence settles into a local minima during
training. It simultaneously speeds convergence. Experimental results are given
which demonstrate the improvement gained in both of these areas: speed of
convergence is 3 to 5 times faster than with the standard BPN algorithm and for
many of the experimental cases, local minima are almost totally eliminated.

1. Introduction
The backpropagation ne'iral network has been used for both classification problems and

for generalization problems. This paper investigates the problem of local minima in the context
of generalization problems, although the results obtained should be equally applicable to
classification problems. (For a background on the use of Neural Networks in generalization
problems, see [Shekharl.)

A neural network "learns" a function from a set of input/output pairs representing the
function. As the learning algorithm progresses, it is possible that the network learns a less than
optimal function as its best approximation to the function over the full domain for which the
network is developed. At a local minimum, the algorithm makes no further progress on
approximating the function since any small change io the weights of the network will increase
the error found by applying the training patterns to the network. There has been considerable
discussion on the problem of local minima and methods to remove them. e.g. Paul Werbos's
presentation at WCNN, '93 [Werbos.] Some methods have proved to be quite effective in
removing local minima but are too costly in terms of convergence speed. The Boltzman machine
is one such attempt to avoid local minia but often has unacceptably long convergence time.
For a discussion of Boltzman machines, see [Ackley].

Others have examined how the number of training patterns or the number of hidden
layers in a network effect local minima. In some cases dealing with function classification
networks, increasing the number of hidden layers increases the number of local niinima
[Perugini]. In the generalization networks examined in this paper, this does not seem to be ihe
case. However, the complexity of the function to be generalized is a factor.

The convergence time which I investigate is simply a count of the number of training
cycles needed before the network's error on the training set is at some minimally acceptabie
level. Each cycle consists of the application of all the input patte.-s and of the weight
adjustments after each pattern.
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2. Ak-or ,ta r~udlizaflon
The backpropegation algorliic is undoubtedly the most commonly used neural network

impnlentation today. The description of Lhe algorithm can be found in many books and articles
JI[uunelhazt, or in Hecht-Nielsen].

The architecture for this paper consisted of a three-layer network. The transfer function
for the nodes of the hidden layer was the sigmoid transfer function, 1/( 1 + e -x ), where x is the
weighted sum of the inputs to the nodes plus the bias term. Then output nodes simply yielded an
affine combination of the hidden nodes including the output node's bias.

The ustul BPN algorithm is a gradient descent on the error surface, which is a manifold
over the "weight space" of the network. Any given weight configuration fixes the average error
of the network over all testing or training patterns. The backpropagation algorithm describes a
method to determine at each node the partial derivative of the error value with respect to each
weight at that node. A small modification of the weight is then made in the direction that will
minimize the error. Local ininima on this weight surface are one of the banes of the technique.

The algoritban dscribed in this paper avoids local minima by changing the weight
surface itself. First, define the transfer function for a hidden node to be:

s( I, nodm,., ioe-min) = (nodemax - nodemin) + node-min
( + e-I )

Note that a change in ,o.emax or node_min does not simply change the position on the error
surface for a given input or set of inputs - it changes the shape of the error surface. Changes in
these panameters have a markedly different type of effect on the output of a node for a given
input vector than those changes which occur when either an input weight is changed or the bias
value is changed.

The actual change to the backpropagation algorithm is given as follows:
* Define the transfer function for each sigmoid as in the equation above where each node

keeps nodemax and node_min in its local memory. At initialization, these are set to I
and 0 respectively.

* On learning, if sum is the accumulate, weighted, backpropagated errors to a node, then the
node_max is updated by the formua:

nodo_max += nodonxe_dlea = Ti * sum * logistic + a * nodemax_delta
where Tj is the learning rate, a is die momentum rate and

logistic = I/(I + e" 1 ) with I being the usual weighted input to the node.
• Node-min is similarly updated by the formula:

nodemin += nodomin_delta =,q * sum * (1 - logistic) + a * node_min_delta.

3. Test Cases
Currently, the efficacy of the algorithm has been verified on a number of generalization

problems for mappings from R1 -) RI. Runs were made on linear, quadratic and cubic
polynomial equations and also on a Bessel function. The Mathematica plots at the top of the
next page show the functions that were used for training the networks for this paper.
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I used 15 * BesseU[0,x] so the range of the two functions is similar thus facilitating comparison
of results.

For each function, the training set consists of the functional values for the integers in the
domain of the functions. Thus there were 7 training points for the cubic function and 11 training
points for the Bessel function.

4. Result: Effect on Local Minima
Look at the cubic function first. The following table summarizes the number of local

minima for various architectures with the two contrasting algorithms:

Number of Local Minima: Cubic Function
Hidden Nodes # tests "Standard" BPN "Modified" BPN

3 200 200 9
5 200 113 1
7 200 7 0
9 200 1 0

11 200 0 0

Althougl- there are several local minima configurations for the network, the following
graph shows a typical output from a network that is in a local minima. (In this case the max and
min on all nodes was set to I and 0, respectively.)

111-563



Plot[netoutput[netweights, hidmaxmin[[i], outmaxmin[[i]],( x}),
{x, -3, 3), PlotRange -> All, PlotLabel -> "Plot" (V2)]
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Local Minima for Network Learning Cubic Function

Similarly, there are a number of local minima configurations when the network is trying
to approximate the Bessel function. One of these configurations is:

1s Plot
is

Local Minima for Netwrk Learing Bessd Function

The following table shows the improvement made in the number of local minima in
convergence to the Bessel function in various network architectures. The modified BPN

algorithm shows markedly better convergence.

Number of Local Minima: Beel Function
Hidden Nodes # tests "Standard" BPN "Modified" BPN

3 100 100 27
5 100 100 8

7 100 93 7

9 100 63 7
11 100 42 1

Not only does the modified BPN algorithm decrease the number of local minima, it
simultaneously reduces the number of cycles necessary for convergence. This is described in the
next section.
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S. Result: Effect on Speed of Convergence
I checked the speed of convergence by running the network up to 10,000 cycles, where

one cycle was a presentation of all the training patterns. The network was said to converge
when, for a cycle, the maximum absolute error over all training patterns was less than 0.5. The
plots below for 100 runs show the number of cycles it took for the network to converge by this
criterion. Note that the network was in a local minimum for most (but not all) of the cases where
it had not converged in 10,000 cycles.

Test runs with 5 hidden nodes; Cubic Function; Modified BPN
10000

%Mo~ BPN9000

to 6000C-de

Converge 
8 0 

o P
4000

2000

0 20 40 60 80 100

Test runs with 5 hidden nodes; Cubic Function; Standard BPN10000

8000.

Cycles
to 6000.C-

2000

0 20 40 60 s0 100

As the nodes in the hidden layer increased, the modified BPN algorithm more
consistently gave convergence times in the 1900 to 2000 cycles range. With II hidden nodes,
the convergence statistics on the number of cycles it took to converge were:

Mean = 2034, Median = 1954, Standard deviation = 338.5

The standard BPN algorithm continued to improve with more hidden nodes, but even for 1
hidden nodes, the results were not that good. The statistics in this case are:

Mean = 6533, Median = 6546, Standard deviation = 970.5

The chart on the next page shows graphically the poor convergence results even in this case.
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Test runs with 11 hidden nodes; Cubic Function; Standard BPN
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The results on the Bessel function are not final but are very encouraging. The limit of
10,000 cycles allowed for convergence proved to be too stringent. The best convergence was
achieved with the 1 1-hidden node networks. Although it was clear that at least 58 of the runs
with the standard BPN algorithm were converging to a global minimum, after 10,000 cycles not
one of the 100 runs met the criterion of having an error of less than 0.5 on all training patterns.
The increased speed of the modified algorithm is seen by looking at the following graph showing
cycles at which that algorithm did achieve the convergence criterion. On the 100 runs, the
median time to converge was 9036 cycles. The mean time of 8580.7 is meaningless because of
the number of trials cut off after 10,000 cycles. Likewise, the standard deviation of 1646.2 does
not tell much; it would be somewhat larger if we upped the cutoff limit.

Test runs with 11 hidden nodes; Bessel Function; Modified BPN

9000

Cydw
to 6000

comrerge9"
4C0:0

200 BPN

0 20 40 60 go 100

6. Coancdsosm and DIscsIon
This easily implemented modification to the backpropagation algorithm shows much

promise in avoiding loc-l minima and simultaneously speeding the rate of convergence during
neural network training. It is recognized that the R1 -+ R1 mappings that were tested here are
relatively simple. Work is now in progress to verify these results with actul problem data. At
UAF we have implemented a neural network to aid lightening forecasting in Alaska and had
problems getting convergence and avoiding local minima. We are starting to test this algorithm
on a more extensive system which has 16 inputs, 30 to 60 hidden nodes and one output and is to
be trained on lightening data. Because the algorithm is based on the fundamental idea of avoid-
ing local minima by modifying the error surface instead of simply finding a path on the error
surface to a global minima, we believe that these results are extensible to much larger systems.
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Abstract

A system matrix is introduced through a reformulation of the backpropagation training algorithm. The
condition number of this matrix is a good indicator of training convergence. The structure of the system
matrix can also be exploited to accelerate convergence. This is illustrated via the addition of derivative noise,
the use of a cross entropy cost function and the addition of hidden units.

1 Introduction

Backpropagation of errors [12, 8] is the most popular training algorithm for feedforward artificial neural
networks [3]. Its popularity is a result of its simplicity and easy implementation on digital computers.
A major disadvantage of backpropagation is its slow convergence [7]. Presently, there exists a myriad of
algorithms which increase the convergence rate of backpropagation (10, 1, 9, 11, 2]. However, many are based
on ad hoc modifications which perform well under simulation of specific examples, but offer little in the way
of analysis. To design algorithms which have better convergence rates it is important to understand the
factors underlying training dynamics.

This paper reformulates the backpropagation training algorithm into a linear algebraic framework. As
a result, analysis of training dynamics is simpler and linear techniques can be used to predict algorithm
performance.

In section 2 the system matix, A(w), is defined. It represents the core of this analysis. In section 3 the
use of the condition number of a matrix as a related notion of linear independence is discussed. The condition
number of the system matrix is used to qantify the training process. Simulation results in section 4 illustrate
the use of condition number as a convergence indicator.

In section 5, the matrix formulation is used to predict the performance of various algorithms. These
include the use of derivative noise (2] and the use of the cross entropy cost function [10, 11]. The addition of
hidden units is also- analysed for convergence performance.

2 Construction of the System Matrix, A(w)

This section outlines the construction of the system matrix from the basic backpropagation of errors [8]
weight update formulae.

Consider a multilayer perceptron with I inputs, H hidden units and one output unit. The training
set consists of P patterns and the training cost function is chosen to be the sum of squared error, i.e.
E(w) = _= (t' -) 2 . i is the target output for the input pattern x1, and ol the corresponding network
output. The superscripts denote the pattern number. The vector w represents the weight vector of the
network. It is comprised of fl, the weights from the hidden units to the output unit and A, the weights from
input to hidden nodes. Individual weights in fl are denoted El,, i = 1,..., H + i. Weights in A are further
divided into Ai, i = 1,..., H, the weight vectors from the input nodes to the ith hidden unit. A particular
weight that connects hidden node i and input j is denoted Aij. The 0

H+1 and A,,+ 11 weights in w represent
the bias weights which have an activation of unity.

As prescribed by the backpropagation algorithm the weight vector w is updated according to the gradient
descent rule i.e. Aw = -,qVwE(w). where q represents the step size or learning rate.
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The weight update rules can be written explicitly as

P

P

=(2)

. is the activation for hidden node i and hT1 is the activation for the output node. h! is the output of hidden
node i and a' is the jth component of the input pattern. The terms h'+, and al+ are unity, for the update
of the bias weights. In addition, f() is the nodal activation function and f'(-) its first derivative. Throughout
this discussion it is assumed that f(.) is at least once continuously differentiable, bounded and monotonically
increasing. The sigmoid function f(a) = 1/(1 + e- 0) is an example of such a function. This function is used
in all simulations presented.

The update equations can be interpreted as a set of linear equations in the term (ti - o ). Let el(w) - ti - ol

and e(w) = [el(w) ... eP(w)]T. e(w) is the error vector. The weight update equations can now be rewritten
as

AD = tjAn(w)e(w) (3)
where [An(w)]€, = [f'(h;)h;], (4)

AA, = ,7A,,(w)e(w) (5)
where [AA,(w),, = [f'(,') ;f'(h:)nqI,, (6)

[A]q, = [apI is used to denote a matrix A, with element a., at row q and column r. These equations can
be further accumulated into one matrix equation for the simultaneous update of all the weights in w. When
equations 4 and 6 are combined, the result is

" Ap(w)

Aw= -A(w)e(w), where A(w)- AAL(W) A(w) (7)

AA M(w)

A(w) is the system matrix.
We assume that P < (H + 1) + H(I+ 1), that is, the number of training patterns is less than the number

of weights and biases in the network. This assumption holds for many applications in which artificial neural
networks have been used.

3 Condition Number of A(w) and Network Convergence

This section discusses the use of the condition number as a relative measure of rank in a matrix. The result
is an interpretation of the system matrix which is illustrated through simulation.

The condition number of a matrix is the ratio of the largest and smallest singular values of a matrix [6].
A large condition number corresponds to a matrix which has columns which are nearly linearly dependent.
This implies that rank of the matrix is nearly deficient. The condition number provides relative information
about the linear dependence of the columns of a matrix rather than the absolute information given by the
rank (i.e. either dependent or independent).

Using this linear dependence approach equation 7 can be rewritten as

P

AW= '(w)e'(w) (8)
l=1

where al(w) is the Ih column of A(w) and e(w) is the scalar error for the 1'h pattern. The term al(w)e'(w)
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Figure 1: Condition Number and Network Error Trajectories

represents the gradient of the cost function for the 1th pattern. Thus equation 8 is the vector sum of P
gradient vectors.

The linear dependence of the columns of A(w) (i.e. the rank) determines the number of directions that
Aw can take. If the rank of A(w) is deficient, then the directions of Aw are restricted, in fact there exists a
subepace of error vectors, e(w) $ 0, which will result in Aw = 0. The algorithm has become stuck in a local
minimum. If, however, the rank of A(w) is full, then Aw 9 0 for e(w) : 0 and the training error continues
to decrease. Note that if e(w) = 0 the global solution has been reached. For this analysis strict gradient
descent is always guaranteed, thus there is no possibility of limit cycle behaviour.

Because of the continuous nature of the activation functions, it is unlikely that the system matrix will
lose rank. However in the neighbourhood of a local minima, the columns of A(w) will become nearly linearly
dependent. Thus it is appropriate to use the condition number as a measure of the linear dependence of the
columns of A(w).

4 Simulation Examples

To study the linear dependence of the columns of A(w), the condition number of the system matrix and
the training error of an Exclusive-Or (one layer of two hidden units) network were tracked (see figure 1).
The graphs show that the condition number and error fall together. This is a result of the columns of A(w)
becoming more linearly independent. In trials where convergence was not attained the condition numbers
remained higher than those of the converged trials. Extended simulation runs revealed that high condition
numbers may be associated with local minima. Note that one of the trials showed an increase in condition
number with continued training and thus may be stuck in a local minimum.

Final solution optimality was also characterised using the condition number. A set of trials were run
for a fixed duration. The condition number of the system matrix was then calculated for each trial. The
convergence criteria was a sum of squared error less than 0.05. Five hundred Exclusive-Or networks (as
above) were simulated. Figure 2 shows the results of the simulation. Of the 500 trials, 299 converged and
201 did not. The bars represent the mean condition number of the final system matrix. Note that for the
converged trials the final condition number of the system matrix is much smaller. This indicates a strong
correlation between network convergence to a globally optimal solution and a low system matrix condition
number.
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5 Enhancing convergence by conditioning A(w)

Simulation results have indicated that there is a strong correlation between a low condition number and final
solution optimality. In this section algorithms that use this relationship are discussed.

5.1 Increasing the condition number of A(w)

Before examining the algorithms, it is useful to outline some of the properties of the system matrix that they
exploit.

In examining the rank of the system matrix only the columns were considered for linear independence.
The rank calculation can also be viewed as an examination of linearly independent rows of the system
matrix. In particular, many of the rows of the submatrix AA(W) are linearly dependent. To see this note
equation 6. The Ph column of AAi(w) shares the term f'(j)I(h')fl,. Since f'(.) > 0 for any finite

argument, f'(zi)j(h)fl4 can be eliminated from each column without changing the rank of AA.(w). Thus
*R(AA, (w)) - 'R[1z1],) where IZ(-) is the rank operator. Note that the simplified matrix is independent of i,
implying R(AA (w)) = R(AA, (w)). Thus, many of the rows of X(AA (w)) do not contribute to increasing
the condition number of A(w). This is an inherent redundancy in backpropagation that can be exploited to
increase convergence performance.

This simplification can also be performed for Af0 (w). However, the resulting rank is the same as that
of A0 (w). This is because the terms of the simplified matrix are functions of the network weights which
change over the training period. Thus no rows can be eliminated due to linearly dependency.

5.2 Derivative Noise

One ad hoc method of achieving the modulation of the elements of AA(w) is to randomize them by adding
noise. If the terms in the matrix are disturbed using noise more rows can potentially contribute to the
condition number. At the same time, however, the guarantee of strict gradient descent is lost. As a result
this method can be very sensitive to the magnitude of noise used. In spite of this, the noise method has
been shown to prove effective by Falhman [2] who used the noise to prevent saturation of the derivative of
the activation function. When a small amount of noise was added to the derivatives, the networks converged
faster and were less likely to get stuck in local minima. In other words, by keeping more rows linearly
independent, the algorithm could proceed without being impeded by local minima.

5.3 Cross Entropy versus Sum of Squared Error

Another method of increasing convergence performance is to increase the magnitude of the weight update
vector. Thus a larger step is taken down the error surface during each weight update, resulting in faster
convergence.

The system matrix, A(w), can be simplified by eliminating the term f'(hl.) from each column. This is in
direct analogy with the simplification of R(AA,(w)). The sigmoidal activation function, f(a) = 1/(I +e-0),
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has the property that 0 < f'(x) < 1. That is fJ(h.) has the effect of attenuating the matrix elements and
thus the magnitude of the weight update vector. The removal of this term should accelerate convergence.

This approach has been used in training algorithms that have a cross entropy [101 type cost function. The
cross entropy cost function has the form

Et'= in +  (1- })J (9)

for a single output network.
When weight update equations are calculated for this cost function, the result is a system matrix without

the F'(h*) term. These algorithms yield faster convergence when compared with the sum of squared error
cost function as shown in [10 and [11].

5.4 Increasing number of hidden units

The condition minber of A(w) can also be increased by increasing the number of rows. In particular, adding
rows to Aflkw) is equivalent to adding more hidden units to the network. It follows that more hidden
nodes should increase the possibility of obtaining a better conditioned system matrix. A similar redundancy
approach is taken by Isui and Pentland [5]. They show that when redundant nodes (input and hidden) are
added to the network they speed up convergence. In figure 3 the number of converged networks is plotted for
the Exclusive-Or example with varying hidden layer sizes. Note the increase in the percentage of converged
networks as the number of hidden units is increased. In fact, with four or more hidden units all the trials
converged. Figure 3 also shows the number of epochs required to achieve the convergence criterion. As the
number of hidden units increases the number of epochs needed to achieve convergence decreases.
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6 Conclusions

In this paper, a linear algebraic formulation has been described that is useful in predicting the convergence
performance of algorithms that are based on backpropagation of errors.

Simulations showed the correlation between the training error and system matrix condition number tra-
jectories.

The enhanced performance of algorithms with derivative noise [2] a nd cross entropy cost functions [10, 11]
were predicted using the matrix formulation. In addition, improved performance due to additional hidden
units was predicted by the formulation and illustrated through simulation. The approach is similar to that
found in [5].
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Speeding Up the Training Process of the MLNN by Optimizing

the Hidden Layers' Outputs
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Abstrat-A new rapid and efficient learning algorithm (OHLO Algorithm) is pro.
posed in this paper. In the process of learning, the hidden layers' outputs are optimized.
Experiments on XOR problem, 3 bit parity problem and circle decision area forming
problem show that the convergence stability and the training speed of the method pro-
posed are better than that of standard BP.

I. INTRODUCTION

In recent years, MLNN with the standard BP algorithm has been applied to many
scientific fields successfully. However, applications are limited because of the slowness
of learning process. Research for method of speeding up supervised learning for MLNN
is very important in both practice and theory. Many techniques have been studied to
speed up back propagation, such as dynamic adaptation of learning parameters [2,5],
optimizing weights based on Kalman Filter principle [4] and conjugate gradient
algorithm [1,3]. The convergence speed of all the methods presented which based on the
back propagation principles reported to achieve several to ten times faster than the
standard BP.

Here we address a new learning algorithm in which learning for MLNN can also be
regarded as parameters estimation for a multi-inputs and multi-outputs nonlinear sys-
tem. But the new method use different principles for learning compared to that of the
standard BP. Layer by layer optimization which optimizing both weights and inputs of
a certain layer is adopted, in which the optimized inputs are taken as the desired outputs
of previous layer. We name it the OHLO (Optimizing Hidden Layers' Outputs)
algorithm. This algorithm can perform simple computations and accelerate the learning
speed of MLNN considerably.

The new algorithm is introduced in detail in Section II; the simulation results tested
on XOR problem, 3 bit parity problem and circle decision area forming problem are
shown in Section III; In Section IV, some important conclusions are given.

H. LAYER BY LAYER OPTIMIZING HIDDEN LAYERS' OUTPUTS LEARN.
ING ALGORITHM

Let us assume any layer of MLNN, such as the mth layer, consisting of L inputs,
which are yP1, YP2, ... ,YpL, respectively. Denoted as:
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where p is referred to the pth pattern of training set. p = 1,2,3...P. Usually, YpL=--I

Outputs of the mth layer which are OPl,Op2,...,OPN, is denoted as:

0, = (O,,O,P2,..,O,,N) (2)

The mapping of input vector Yp to output vector Op implemented by the mth layer
can be expressed as:

o, =/(WY,) (3)

where W is the weights matrix of the mth layer neurons, it is a N x L matrix.
f(• ) is a nonlinear activation function of neuron, typically, it is sigmoid function,

as:

I
Ax) - _z (4)

Assume the desired responses of the mth layer for pth training pattern to be
dPI,d2,...,dpN, which is denoted as:

di, = (d,, ,dP2,...,d, ) (5)

The squared errors of the mtlH layer outputs for the pth training pattern is defined
as:

1 1"E= ld, 0I 1  (d, _ )2  (6)

The global error function E for all training patterns is:

1" 2 2"

E= b E,= id,-0,I = 2 E E (d, -0,. (7)
op-I D-I#mIIm I

Sub-algorithms and formulae used in this method are introduced as following:

A. Weights Optimizing

The function of this sub-algorithm is to minimize the output squared errors of a
certain layer, such as the mth layer, by optimizing this layer's weights when the inputs
are fixed. The steepest descent combined with line-searching technique is adopted here.

The weights adjustment formula is

AW= -pVE (8)
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Where >0, AE R.

aE- -(d - O,)O,(1-0 )y, (9)

i -- l,2,...,NJi = 1,2,...,L.

* in (8) is known as learning rate. It is a tuned parameter. Selecting proper p, we
can get local minimum of the error function along the gradient direction. Line-search-
ing technique is used for solving this problem

B. Inputs Optimizing

The function of this sub-algorithm is to minimize the output squared errors of a
certain layer by optimizing this layer's inputs when the weights are fixed. Then we take
the optimized inputs of the mth layer as the desired outputs of the (m-I)th layer.

Because the outputs of neurons take value in the range of (0,I), steepest descent
and constrained line-searching techniques are adopted here.

By the definition of gradient, we get

VEt= (aE aE aE (10)ay P, ay p2 ay p. -_I

Where

aE =- (d,,-O ,)O , (1-0 ,)W. (11)

p= 1,2,...P;I= ,2,...,L- I.

According to the steepest descent principle,the inputs adjustment formula is

Z2Y= -iVEY (12)

Where q > 0 , n E R.
q in (12) is named as inputs optimizing rate.
Use the line-searching technique to seek the optimal ol. Notice that the object func-

tion in line-searching procedure is different from that in weights optimizing procedure.
Constrained object function with a constrained term add to Equ. (7) should be used
here. We select the added constrained term Ec as

Ec- 0(,,-0.51)2 (13)
• -' I.,

C. Layer By Layer Optimizing For MLNN
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The first step of the training process of this algorithm is to optimize the weights
(W~a )) of the Mth layer (output layer). After this step, optimize the inputs (y(m)) of this
layer using the sub-algorithm discussed in section B with the newly weights, then take
the input vectors of the Mth layer (y(M)) as the desired output vectors (d(M- )) of the
(M-l)th layer. Do the same optimizations for the (M-l)th layer, the (M-2)th layer, ... ,
until reach the first layer. Because the inputs of first layer are the inputs of training pat-
tern vectors, only weights optimizing is needed to take into account. After one training
cycle is finished, if the output error of the networks is not satisfied with the requirement,
start a new training cycle from the Mth layer, iterate repeatedly layer by layer, stop
learning when networks is converged.

Learning algorithm can be summarized as following:
step 1: q > 0, i > 0, Emax chosen;

Weights are initialized at random value;
m = M; Set initial iterate number q = 0;

step 2: Training step starts here
The training pattern is presented and the layers' outputs computed.

btep 3: Optimize weights of layer m. Take optimized weights using-the method dis-
cussed in section A as the new weights of layer m.

step 4: If m = 1, then go to step 6; Otherwise, optimize inputs of layer m using the
method introduced in section B as the desired responses of layer m- 1.

step 5: Set m=m-, go to step 3;

step 6: Total error is computed, E = E;

step 7:The training cycle is completed, set q = q+ 1; If E > Emax, then set m = M, and in-
itiate the new training cycle by going to step 2; If E < Emax, stop training. Output
weights W( n), (m = 1,2,...,M), iteration number q and total error E.

It is very interesting to point out, owing to the independence of weights and inputs
optimization in every layer, all the iteration processes can be proceeded from the input
layer to the output layer, or vice versa, except for the first iteration.

11. EXPERIMENT RESULTS

The XOR problem, the 3 bit parity problem and circle decision area forming prob-
lem are used in our experiment for the comparision of the performances of the proposed
algorithm with that of the traditional BP algorithm. Table I- III are the results of our
test.

Circle Decision Area Forming (CDAF) Problem
The CDAF problem used in our tests may be defined as follows: if the input pat-

tern X fallen inside a certain circleof radius r F, the desired output is I; Otherwise,
when the input is outside the concentric circle with a little bit too large radius, say
r= 1.1, the desired output is 0. Let the training patterns be the points on the two circles
of every 45 degree. 16 sampled training patterns and their desired responses can be ex-
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pressed as following:
(xl,x2,d){ (I * cos(3.14/4, i), I * sin(3.14/4 * i), 1);

(1.1 * cos(3.14/4, i), 1.1 * sin(3.14/4* i), 0);
i=0,1,2,...7)

Three kinds of MLNN architecture have also been used in this experiment.
Simulation results are listed in table III.

Table I Comparing experiments results from the XOR problem

Networks Two layers Three Layers Four Layers

Structure 2->2->1 2->5->1 2->5->3->! 2->5->4->3->1

Algorithm OHLO BP OHLO BP OHLO BP OHLO BP

Iterations 60 16140 46 12120 65 12399 44 15422

MSE Error 0 10- 3 0 10- 1 0 10- 1 0 0-s

Table II. Comparing experiments results from the 3 bit parity problem

Networks Two layers Three Layersl Four Layers

Structure 3->3->1 3->8->1 3->5->3->l 3->5->4->3->l

Algorithm OHLO BP OHLO BP OHLO BP OHLO BP

Iterations 78 12566 71 6921 104 4910 66 53000

MSE Error 0 10- 5  0 10- 1 0 10- 1 0 10- 1

Table III Comparing experiments results from the CDAF problem

Networks Two layers Three Layers Four Layers

Structure 2->3->1 2->10->1 2->5->3->1 2->5->4->3->1

Algorithm OHLO BP OHLO BP OHLO BP OHLO BP

Iterations 2022 145300 1402 30156 1598 124520 541 67000

MSE Error 0 10- 5 0 10-1 10- 1 10- 1 10- 4  10 -4

The results show that the convergence property is more sensitive to the initial
weights in BP algorithm, than that of OHLO algorithm. Furthermore, in the OHLO,
learning process converges with higher speed and stability. Especially, when the squared
errors is less than 10-' in OHLO, learning begins to converge very quickly, As in the
learning process of BP algorithm, when the squared errors decrease to a certain degree,
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the convergence speed is getting slower and slower, and the error is hardly to become
zero.

Although the time required for one iteration by OHLO is about 6 times of that re-
quired by BP, The total number of iterations for convergence of OHLO is 2-3 order of
magnitude less than that of BP with the same MLNN architecture and initial weights.
So OHLO can yield an acceleration of about 1-2 order of magnitude compared to BP
tested on above three problems.

We can also conclude from the experiments that local minimum problem exists too
in OHLO as it does in BP. But the probability of meeting local minimum resolution is
less.

IV. CONCLUSIONS

In this paper, we proposed a learning algorithm for training MLNN by Optimizing
the Hidden Layers' Outputs (OHLO), which is different from Back Propagation Princi-
ple and get more effective than the standard BP algorithm. Simulation results show that
OHLO is an order of magnitude or more faster than standard BP and converge more
stably when tested on the XOR problem, 3 bit parity problem and circle decision area
forming problem.

OHLO is suitable for MLNN with any layers proved by our experiments. Optimiz-
ing layer by layer independently make the new method more simple to realize with par-
allel processing.

Another advantage of OHLO is full-automated, includes no critical user-depen-
dent parameters with respect to BP in which the values of these parameters are often
crucial for the success of the algorithm. So the new method is more easy for practical
applications.

Of course, local minimum problem can not be eliminated completely in OHLO, It
is a problem remained to be solved.
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Abstract: Designing and training neural networks are very difficult tasks, requiring much trial and error,
and the standard layered network architectures do not map naturally into hardware. This paper investigates
a novel genetic algorithm which is used to design the topology and find the link weights for a layered,
feedforward neural network. The topologies are not limited either in the number of layers or in the number
of nodes per layer. A robust, global search is conducted by the genetic algorithm over both the link weight
and topology spaces, after which back propagation can be used to quickly find the desired link weights.
Thus, both the GA and back propagation can be used to their greatest advantage: the global search of the
GA can find the approximate area of a solution, and back propagation can then quickly find the local
optimum. The point at which the GA should be terminated and back propagation should be employed is
illustrated for two example problems.

Keywords: neural network, genetic algorithm, multilayer perceptron

Introduction

Creating an appropriate neural network for a given application is a multivariate
optimization problem with few (if any) reliable guidelines. Typically, a guess is made of
the required topology, often using some rule of thumb, and training is attempted. If
training fails, it may be that the network is too large, too small, or the initial point in the
weight space was too poor to allow the network to learn the task. Therefore, the designer
has gained little knowledge to guide the next attempt, which can result in a large amount
of trial and error before success is obtained.

One multivariate optimization technique which has recently gained a great deal of
attention is the genetic algorithm (GA). The virtue of the GA is that the relationship
between the parameters to be optimized and the evaluation function need not be known
for the GA to be successful. This is very fortunate, since the relationship of neural
network parameters and the network's success in learning the task at hand is definitely
unknown. Another virtue of the GA is that the evaluation function can be crafted to
optimize those features of the solution which are most important. For more information
on GAs, see [Go189].

In the GANNet algorithm, the "parameter string" is a neural network. Each allele
is a node of the neural network with its input links. This includes the transfer function
type (which is either sigmoid or Gaussian), transfer function slope, scale, and offset, the
input link weights, and the index of the node of origin on the previous layer for each link.
Thus, each allele is a feature detector (since that node will respond to some set of features
in the input vectors) and therefore the search is conducted in "feature detector space",
rather than link weight space or topology space. In short, the algorithm searches for the
proper set of feature detectors to solve the problem at hand.
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Although the algorithm finds solution networks a large percentage of the time, the
time required to reach a solution is not bounded, and as with all GAs, no convergence
theorem exists. Therefore, it may be advantageous to terminate the GA before a
satisfactory solution network has been found, and use back propagation (or whatever
local algorithm is preferred) on the best network to find the solution more quickly. For
this purpose, two example problems were chosen: the well-known exclusive-or problem,
and a synthetic binary problem. A synthetic problem was devised which would be simple
enough to allow the results to be easily understood, yet pose enough challenge to rise
above the trivial. For this purpose, a binary problem with eight inputs and one output
was chosen, with the output being the following binary function of the inputs:

0 =1 7 & ((13 & 15) 1 (14 & 16))

10, ..., 17 are the individual inputs, "&" is the logical AND function, and "I" is the logical
(inclusive) OR function. Inputs I1, 12, and 18 are not used to compute the output. All
trials used whole population replacement, two point crossover, the "mutate nodes"
mutation operator [Whit93], and a distributed GA (as in [WS90]) with 20 subpopulations
of ten individuals each.

Results

First, the difference between the desired error (2%) and the best initial error was
calculated. The difference is divided by 10 to produce "checkpoints" at every 10% of
error reduction, from merely using the best initial network (0%) to allowing the GA to
reduce the error to the desired 2% threshold (which is 100% of the error to be
eliminated). At each checkpoint, the best performing network is trained using back
propagation. If the genetic operators are performing as desired, the number of hidden
nodes should show a decrease with the amount of the original error the GA is allowed to
eliminate, since the topology search of the GA will have had more time to find better
topologies. Table 1 presents the averages recorded over ten trials, and Figure 1 shows a
graphical representation (which is a bit easier to grasp).

Success Number of Number of Number of Number of
Error Rate (% Generations Epochs Layers Hidden Nodes

0 90 0 257 2.4 4.6
10 80 1.6 233 2.3 2.8
20 - - - - - *

30 50 4 519 2 1.5 *
40 100 4.5 4.5 1.5 0.5 *
50 100 15 11 1.8 1 *
60 100 17.3 4.7 1.7 1 *
70 100 5 4.6 1.8 1
80 100 13 3.7 1.5 0.8
90 100 21.6 2.1 1.7 0.9

100 100 39.5 0.3 1.7 0.9

Table 1
GA/Back Propagation Trade-Off for the Exclusive-Or Problem

An asterisk (*) indicates that there are fewer than five data points.
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These results indicate that the genetic topology search is performing as desired.
The graph shows a clear trade-off between the number of GA generations and the number
of back propagation epochs and network size. An optimal trade-off point seems to be
around the point at which the GA has eliminated 80% of the original error. After this
point, the GA spends a lot of time settling in on the final solution. There also seems to be
an optimum at the 40% mark, but too few data points exist in this region to reach any
conclusion. The major network size reduction seems to be in reducing the first 40% of
the error, which makes some sense, since a "cheap" way to increase fitness is to decrease
network size (thereby decreasing the node penalty used in the evaluation (or fitness)
function). It so happens that this problem is simple enough to be solved by the smaller
networks.

The virtue of allowing Gaussian nodes in the networks is also demonstrated by
these results, since 3 of the ten trials resulted in networks with no hidden layers at all
(using a single Gaussian node as the output), and five of the other trials had hidden layers
consisting of a single Gaussian node. Thus, in cases where a subfunction of the output is
of a Gaussian form naturally (as in this case), the ability to include Gaussian nodes in the
networks allows far more compact topologies than networks with only sigmoid nodes.

Next, the synthetic problem was used, with the same procedure as before. Table 2
presents the test data, with Figure 2 showing the graphical representation. The initial
networks tended to be small, because all of the networks performed rather poorly, so the
discriminating feature was the size of the network (via the node cost in the fitness
function). Unfortunately, these networks also tended to perform poorly, as evidenced by
the low convergence rates. Once the network performance became the discriminating
feature, the network size began to grow, and the convergence rate increased as well.
There seems to be a definite optimal crossover point at around 80% error reduction,
where the network size is still relatively small and the performance is good, as well.
After that, the GA is straining to find an optimum performing network, and increases the
size of the network to achieve it. This shows the tendency of the GA to find a
neighborhood of the solution relatively quickly, but to have great trouble in finding the
actual solution, as can be seen from the fact that the number of generations rapidly
increases as the GA converges on a solution. In Figures 1 and 2, the independent variable
is the percent of the original error the GA is allowed to eliminate before the switch to
back propagation is made.

Success Number of Number of Number of Number of
Error Rate (% Generations Epochs Layers Hidden Nodes

0 50 0 504 2 3
10 - - - -
20 - - - - |
30 38 1 633 2 3
40 0 1.6 1000 2 2.6
50 60 2.3 456 2 3
60 50 4.5 561 2 3.2
70 70 7.6 353 2.3 6.7
80 100 12.9 51 2.3 6.4
90 90 17.9 172 2.4 7.2

100 100 40.9 5.5 2.7 8.0

Table 2

GA/Back Propagation Trade-Off for the Synthetic Problem
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This paper has investigated a new genetic algorithm which develops neural
networks. The trade-off between the global genetic search and a local search algorithm
(in this case back propagation) was investigated, with the result that after 80% of the
original error has been eliminated, the rate of progress of the genetic algorithm decreases
rapidly, and a switch to the local algorithm yields faster solutions. In fact, on harder
problems, the GA will actually increase the size of the networks to reduce the last bit of
error, which is hardly a desirable effect.
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Abstract
Restart concept is found in Conjugate Gradient method to find the best error decreasing

vectors when it fails to reach a minimum. We applied this restart concept to the error
backpropagation with gains algorithm and obtained a good result. This paper reports the idea
and the experimental results. We apply the restart procedure to the error backpropagation with
gains learning not only periodically but also when the error did not decrease during the
previous learning epoch. The restart procedure resets the gains and the bias and the learning is
continued. The experiments using parity and encoder problems showed that the proposed
approach is about 10 times faster in learning time than the conventional error backpropagation
with momentum algorithm.

1. Background

1. 1. Summary of BPG

There have recently been growing interests in the extension of the conventional error backpropagation with
momentum(BP) algorithm[l]. Our interest here is mainly in error backpropagation with gains(BPG)[2]
algorithm and the neural implementation of the conjugate gradient(CG) algorithms[3,4]. Conjugate gradient
algorithm are generally much faster and can result in an impressively low error level. But these algorithms also
are particularly vulnerable to being trapped in local minima. Especially, line search efficiency and initial
weights set are critical to the success of conjugate gradient algorithms[4,5].

BPG algorithm has several advantages over BP algorithm; it is faster in lowering standard deviation of error
over the entire training pattern set than BP during the learning phase[6]. For some problems BPG is much less
likely to become trapped in local minimal7,6]. And it was shown that BPG is 2.2 times on the average faster in
some parity and encoder problems[21.

However BPG has a shortcoming too: its error-decreasing rate becomes slow in the later learning phase which
is the fact common to all gradient descent learning algorithms. The focus of our effort was directed to
overcoming the learning slow-down phenomena generally observed in the gradient descent learning algorithms
including BP and BPG.

1. 2. Restart procedure of CG method

The learning problem of neural networks can be formulated as an optimization problem in numerical analysis.
Among the techniques of numerical analysis which can be used to train the neural networks, conjugate gradient
method is relatively easy to implement and inexpensive in computational cost.

CO tries to directly reach a minimum on the error surface by using quadratic approximation, saving search
effort otherwise required by gradient descent calculations. But due to the gap between the real shape of the error
surface and the approximation of the weights of the minimum, this method usually fails to directly reach a
minimum and hence need more trials of approximation.

When it fails, this method uses restart procedure to again guess the best error-decreasing direction vectors
from the last gradient descent direction. Then the regular learning operation is continued. We apply this restart
concept of CG method to BPG by developing a restart procedure that is suitable to BPG.

2. Restart Procedure

2.1. When to restart and when to stop restarting

Resamt in BPG algorithm[2] is based on the idea from the restart in CG method; the improvement on
the nvit ions of error surface in weights space.

We use the BPG algorithm without momentum. A restart process is taken periodically for every 2N
epochs of learning where N is the number of the weights In the network. In addition, when the error did
not decrease during the last learning epoch, a restart process is also taken even during the period
mentioned above. The choice of a length of the period is heuristic, at this moment. We found after many

er Mthat 2N i about the optimal at least for those problems mentioned later.
Although restart process is taken periodically from the beginning of the learning as described above, it is not

always necessary to continue the process forever. More specifically, we can stop restarting as soon as the
learning reaches a classifiable state. A dassiftable state Is a learning stage of the network where every node
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of the output layer can claify all Input patterns into the correct pattern claimes according to the signs Of
their net inputs. For example, suppose that a node of the output layer is to classify the inputs to the class A and
the non-class A patterns, and that now the net inputs of the input patterns are grouped to the two separate sets as
shown in Fig. 1(a), then we say that the node is in a classifiable state. And further the network is in a classifiable
state of learning if all nodes of the output layer are in classifiable state. As soon s we reach a lasfble state
of learning, a certain large (fixed) momentum rate(eg. 0.9) is given to the pin of each node and each
weight so that the learning can be finished more quickly[1 1.121 to the desired error level At the same
time we multiply a certain constant(e.g. 1.4) to every weight so that we would not lose the route to a
minimum just found[9]. The value 1.4 above is justified as follows. If you take 0.9 for a momentum rate, then
the largest overshoot possible from the current position is 0.9 * 0.25 = 0.225 where 0.25 is the largest derivative
value of the activation function f(x)= I / (I+exp(-x)). Therefore any small value close to but greater than 1.225
can be used as the multiplier for weights. Here we picked up 1.4.

Here we assume that the initial weights are randomly generated from the real range 1-0.5, +0.5]. And each
weight vector is normalized in length. Also we assume that the network architecture is always 2-layer feed-
forwar. Let aS be the activation ofthe i-th node ofthe layer S, and let as = [ai ... aS T be the column vector

of activation values in layer S. The input layer is the layer 0. Let s be the weight on the connection from the j-

th node in layer S-I to the i-th node in layer S, and let w I = T...W be the column vector of weights
from layer S-i to the i-th node in layer S. The given weights set is partitioned into K vectors if there are K
processing nodes in the network. The net input to the i-th node of layer S is defined as

fets = 7, w Ga , and let net s = [net,- net I be the column vector of net input values

in layer S. Then theactivation of a nodeisgiven by thefunction of itsnet input, a = f(ginets ),wherefis

conventional sigmoid function[l], and gs is a real number called the gain of the node.
If the initial weight vectors am sufficiently small, then the distribution of the net inputs to an output node shall

be in the unsaturated region[10). An unsaturated region is an area where the derivative of the sigmoid activation
function f(x)= I / (1+exp(-x)) is not very small(e.g. not less than a tenth of the maximum value of the derivative
function) so that the error-correcting signal propagated back is significant and hence the learning proceeds
relatively fast.

Therefore we want to keep all net inputs to the output node in the unsaturated region until the network comes
to a classifiable state.

By varying the bias of a output node according to the range of its activation, the corresponding net input
distribution is stabilized and the center of corresponding net input distribution comes near the origin of the net
input axis of the activation function so that we can prevent a premature saturation in the early learning phase.
And at the same time we can also diminish the sensitivity of the initial weights.

Frequency/ Frequency/
Activation Activation

for not-A class 1.0 f(x)=1/(l+exp(-x)) 1.0

0.5 for A class 0.5patterns

0 Net input0Neinu

Unsaturated Unsaturated
Region Region

(a) Classifiable State (b) Bias Adjustment
Fig. 1. The net input distribution, unsaturated region, and the re-configuring the bias in a output node
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2.2 How to restart

We set the bias of each output node to the value 0.5 at the initial point of learning and, during each following
resm proces the bias is set to the median value of the activation distribution of the output node.

We set the gain of each processing node to 1.0 at the restart process as well as at the initial setting of the
learning. Now we describe specifically what to do for each restart. Let pat., be the i-th component of the q-th

input pattern pat., m be the number of components in an input patterns, and p be the number of input patterns
to be used for learning. Systematically,

pat = [pat,1 ... pat,,] ,pat, 3 {O,1}, Vi 3 {1,2,3,-..,m} A Vq 3 {I,2,3,.. -,p}.

Let the output of k-th processing node of the output layer according to the q-th input pattern be Q., and the

set of the outputs for all input patterns be {O }. A restart process consists of 2 steps: bias adjustment and gain
rent.

Step I: Set the bias of k-th output node bias, = (min {Ok) + max (Ok )/2.
Step 2: Reset the gain of each processing node.

gi = 1.0,Vi 3 {1,2,.-,l} (cf. I is the number of nodes in S-th layer.)

3. Experiments

We are interested in the comparison of the learning time between the conventional BP[I] and the BPG with
restart process proposed in this paper. For this purpose we used XOR, 5-bit parity, and 4-bit encoder-decoder
problems. We tried each problem 15 times with initial weights randomly generated within the real range of [-
0., +0.5] each time. The basic network architecture used is feed-forward fully connected 2-layer (hidden layer
and output layer for both cases). The notation of network structure x-y-z is used here to tell that the network has
x nodes in the Lut layer, y nodes in the hidden layer, and z nodes in the output layer.

For XOR and 5-bit parity problems, we used 2-2-1 and 5-5-1 network structures respectively. For 4-bit
encoder problem, we used 4-4-1 network structure. For the learning by conventional BP algorithm, we set the
learning rate to 0.7 and the momentum rate to 0.9. For the learning by the BPG with restart, we set the learning
rate for weight change to 1.0 and the learning rate for gain change to 1.0. And the momentum rates for both
weight and gain were set to 0's.

In case of the BPG with restart, we multiplied each connection weight by 1.4 and set the momentum rates for
both weight and gain change to 0.9 in order to accelerate the further learning, as described above, as soon as we
reached a classifiable state. We witnessed through three experiments that the learning always converged to a
lower error level without deviating from the point where a classifiable state was reached. The experimental
results are sunmuarized in 3 graphs and 3 tables. A failure means that the error level could not be reached within
3000 learning epochs starting with the given initial weights. From the results it is evident that the consistency in
good pedfonnance with the BPG with restart and that the learning speed with BPG with restart is about 10 times
faster than that of BP.

(Mean Square Error)
0.55

0.4

0.3 3

0.2 BPGR: XOR.Avg-

0.1
0.05

0 1

0 200 400 600 So 1000
(Epochs)

Fig. 2. The error curve for XOR problem
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Table. 1. XOR Problem Avg. Epochs (No. of Failures) / Std. Dv.

0.o 175.00 (14 0.0 _ 319.64(1T56.75
0.05r 375Mo (14M o I 319.W156.75

(Mean Square Error)
0.55 , ..

0.5 BP : Parity_5. AvV -

0.4

0.3
BPGR: Parity_5 .Avg -

0.23-3_Av

0.1

0.05
0 500 1000 1500 2000 2500 3000

(Epochs)

Fg. 3. The aio curve for 5-bit Prity problem

Table. 2. 5-bit Parity Problem, Avg. Epochs (No. of Failures) I Std. Dev.

Mean rror Conventional BP BPGR
. 0.50 =6.82 (4)11.23 41.67 (0y96.90

0.10 N.A.* 15Y NA. 1048.21 (1 X B&
0.05 NA. (15N.A. 1078.13 Q 85.80

(N NA. mans Not Applicable'.)

(Mean Square Error)
0.6

BP: 4-bit Encoder.Avg-0.5,

0.41

0.3 ..

0.2 . BPGR: 4-bit Encoder.Avg

0.1

0
0 200 400 600 800 1000

(Epochs)

Fig. 4. The ror curve for 4-bk Encoder proem

Table. 3. 4-bit Encoder Problem, Avg. Epochs (No. of Failures) I Std. Dev.

Mean Squaed Error Conventional BP BPGR
0.50 13.33 (0) /12.47 13.33 (0) /12.47
0.10 I N..*(,/NA1. 63.33 (0)/22.1
0.05 NA. (15)/N.A. 105.00 0 64.03

(S NA. means 'Not Applicable'.)
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4. Conclusion
We introduced a restart concept for BPG learning algorithm. We described when to restart the learning as well

is when to stop the restart operatioms.
We provided some of the reasons why such restart operations help speed up the learning. We introduced the

concept of a classifiable state in order to identify the learning stage where no more restart operations are
necessary. We showed that a further speedup can be attained by applying a different strategy from the point of
the classifiable state. Computer simulations indicated a significant improvement in the learning time with our
proposed method for XOR, 5-bit parity and 4-bit encoder problems. This preliminary results showed that the
new algorithm is about 10 times faster than the conventional BP algorithm.
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Abstract
A new classifier neural network architecture and corresponding learning
algorithm Is Introduced. The hypothesis space for this algorithm is the set of
all piecewise linear separations. Properties that are desirable In neural
network architectures in general are discussed and related to the present
design. The algorithm is shown to be consistent. A means for reducing the size
of the model produced by the learning algorithm, and a rationale for
performing such a reduction are given.

1. Introduction
In this paper, a classifying neural network and learning algorithm which

generate piecewise linear models Is presented. The learning problem to which this
algorithm is applied is that of learning concepts, about which no a priori knowledge
Is available, except perhaps that the concept Is representable as a open subset of the
input space. As is the case with most learning classifiers, the learning algorithm
accepts a set of samples from the input space along with the correct classification of
those samples and produces or configures a network which effectively partitions the
input space into regions which represent two or more classes. Configuration of the
net Includes actions such as determining the number of nodes or neurons,
determining the connectivity, and determining the synaptic weights.

The Introduction of any new learning algorithm or network should be
accompanied by a description of its desirable properties. The standard used to
evaluate the network introduced in this paper is summarized below. However, in
order to describe these properties, some preliminary definitions must be given.

Definition. Concept - A set of points in the network's input space. Given
samples and counter-examples of this set, a network's learning algorithm attempts to
set parameters or synaptic weights in the network such that novel points, which are
also in the concept, are recognized.

DDefinitio Sample - A point from the input space, paired with Information
regarding membership in some concept c.
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naftnitinn. Hypothesis - The set of all points in the input space which are
classified as belonging to the concept, after the network has been trained.

finitiQn! Hypothesis Space - The set of all hypotheses which can be
generated by a given learning algorithm when presented with concepts from a
given concept class.

finition: Consistent Learning Algorithm - A learning algorithm is
consistent if the network it configures is guaranteed to correctly classify all
members of the example training set.

Desirable properties of classifying neural networks may now be listed as follows:

P The hypothesis space of the learning algorithm should be large
enough to model a broad range of potential concepts. While the concept space of a
given problem domain need not match the hypothesis space generated by the
learning algorithm used, a large concept space does require a correspondingly large
hypothesis space. An example of a large hypothesis space is the set of all open sets.
In fact, it is doubtful that any neural net-like system can produce a useful hypothesis
if the concept space is larger than the set of all open sets.

An example of a small hypothesis space is the classic example of linear
separations or half spaces. Few problems with interesting applications can be
reduced to such simplicity. These limited hypothesis spaces can only be used to
construct models for small concept recognition problems. A small concept class is
indicative of having some specific knowledge of the nature of the concept to be
learned. In these cases, it may be argued that a generally applicable and powerful
learning system Is not required.

The size of the hypothesis space is determined by the nature of the network
architectures produced by the learning algorithm rather than by the specifics of the
learning algorithm itself. For example, it is known that multilayer nets with linear
units having sigmoidal activation functions have a very large hypothesis space
(Funahashi, 1989). However, this does not mean that there exists an algorithm which
can configure such a net so that it will reliably learn complex concepts. Therefore at
least one additional property is required.

frty The network, after training should have a high probability of
correctly classifying samples from its input space. This requirement is obvious,
although formulating it precisely and knowing when the requirement has been met,
is far from obvious.

One precise formulation of this property is the notion of polynomial learnability,
also known as probably almost correct (PAC) learnability.

finition: Polynomially Learnable - Let s be an upper bound on size(c),
where slze() is some concept complexity measure. A concept class C is polynomially
learnable if there exists a polynomial time algorithm A that accepts samples from c e
C according to an arbitrary probability distribution over the sample space, and
returns a hypothesis h (i.e. the network is trained), such that for all 0 < e, 8 < 1 and s >_
1, there exists a sample size m(e,8,s), polynomial in 1/s, 1/8 and s, such that given a
random sample set of size m(e,B,s), A produces, with probability at least 1-8, a
hypothesis h that has error at most e. (Valiant, 1984)
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In essence, the polynomial learnability requirement demands that reliable
learning can be achieved with a practical number of examples. Furthermore, it
sensibly allows the number of examples to grow as the complexity of the concept or
the stringency of the reliability is increased.

The definition of polynomially learnable concept classes is, of course, only a
definition and therefore it does not provide a means for determining whether a
particular algorithm can polynomially learn concepts from a particular concept
class. A theorem which may be helpful in this regard is provided by Blumer et al.
(1989). Blumer's theorem states, in part, that a concept class C is polynomially
learnable if there Is an Occam algorithm for C.

Dfnitin Occam Algorithm - A learning algorithm A is Occam if:

I) A runs in polynomial time p(m).

ii) A is consistent.

Ili) Let CA be the set of all hypotheses produced by A when A is given m
samples with respect to a concept c in C, where size(c) < s. The VCa
dimension (Haussler and Welzl, 1987) of CA must be less than p(s)ma .
p(s) is some polynomial in s and a is a constant in [0,1).

Em rty 31 The algorithm should run in an amount of time which makes use
of the algorithm practical. Convention from the theory of computing places the
boundary between practical and impractical as being between the polynomial time
algorithms and the exponential time algorithms. Time functions are measured in the
input size, which in our case is the number of samples provided for training.
Polynomial time properties are included in the definitions of polynomially learnable
and Occam algorithm above.

Combining desirable property (1) with Occam definition items (ii) and (iii), one
can see that a learning algorithmist seeks an algorithm with C., large enough so

that consistency with respect to a large concept class is possible, yet CA is not so
large that its VC dimension exceeds p(s)mG. In this paper it will be shown that, no
matter how large C is, the algorithm presented can always produce a consistent
hypothesis. Furthermore, in the spirit of reducing the VC dimension of C, the
learning algorithm includes a means of reducing the number of linear separations
which make up the entire piecewise linear separation. The number of linear
separations is related to the VC dimension. It is not difficult to show that the VC
dimension of the set of all piecewise separations, having k linear separations, is >
k(n+l).

2. Piecewise Linear Neural Networks
A piecewise linear separation is a suitable approximator of certain concept

classes. If the concept is an open set which is separated from non-concept points by
piecewise continuous manifolds, or hypersurfaces, then those manifolds may be
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approximated by multiple bounded hyperplanes. The resulting set of bounded
hyperplanes form a separation which is piecewise linear.

Algorithms exist for determining a single linear separation when the sample
points are so separable (Rosenblatt, 1962; Karmarkar, 1984). These algorithms are
well known. In the case of Karmarkar, the algorithm is polynomial time. The
primary difficulties in extending single linear separations to piecewise linear
separations lie in determining which linearly separable subsets of the sample set
should be grouped together and in determining which regions of the input space are
associated with each linear separation.

The simplest possible case one may consider is that of two samples, f a and X b, of
opposite class, one belonging to the concept and one not belonging. In order to
approximate the surface which bounds the concept and separates the point one may
employ the following observation: a line segment connecting any two points of
opposite type must include a point which is on the surface. A point on the segment
must be selected as well as a surface model type and orientation. Since the simplest
sufficient model of any phenomenon tends to be superior, the simplest possible
assumptions are made, namely: the model surface type is a hyperplane, the
orientation of the plane is given by normal vector fa- fb, and the point shared by
the hyperplane and the line segment is chosen to be (fa+ b),'2. Nilsson (1965)
generalized this idea from point pairs to point cluster pairs. The present algorithm
generalizes the idea of generating hyperplanes from point pairs to the case of an
arbitrary number of sample points which are not necessarily clustered and not
necessarily linearly separable.

3. Target Network Architecture
The network architecture which is trained by the learning algorithm is shown in
figure 1. The learning algorithm determines the number of nodes as well as the
synaptic weights. There are five node types in the net: m, z, g, n, and M. There is a
plurality of (m, z, g, n) 4-tuples while M is unique. The M, z, and n nodes each store
a vector having the same dimension, n, as the input space. Input vector I enters the
system and is distributed to all m and z nodes. z computes A = I - i while m computes
the magnitude JIj. Each m directs its output JI to node M where the minimum of all

1AIs is computed. The minimum is then broadcast back to the m nodes which compare

the minimum with JI. If m's output matches the minimum, m outputs an open-gate
signal to gate node g. Gate node g then passes z's output to node p which is a
perceptron. Only one perceptron receives input in response to net input 1. The
perceptron performs the usual dot product between its input and the stored synaptic
weight vector. The dot product is compared to a threshold which is always zero and
the network outputs zero or one depending on the comparison. The input to the
network is thus classified as belonging to a concept or not.
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4. Learning Algorithm
The learning algorithm proceeds as follows:

1) Acquire N sample points and their classifications:

S u (Ii, Ci) I i=1 ... N, C1 = A or B1, the set of classified samples

A i I jI C = A1, the set of all samples having type A

B a1 [ilI C i= B1, the set of all samples having type B

2) For each ( ka, Ca) e S, find ( lib, Cb) such that Ca * Cb and

I Xka- IXb I IXfa -XklIfor al k where Ca * Ck. In other words, find the
nearest neighbor of opposite type. Call the resultant set of pairs of
classified samples P.
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3) Order the elements In each pair [( Xa, Ca), (Xb, Cb)] such that the first
element is a class A pair and the second is a class B pair if not already so
ordered. Remove redundant elements from P.

4) For each [( 2a, Ca), (b, Cb)] e P, compute the normal

;i a( i - 4)

and the midpoints

m n =(e+ b

2

Define a set of 5-tuples called candidate posts

C -0 f (1a, l b, H, ',) I
comprised of the sample points from each pair in P with their

corresponding normals and midpoints.

5) Adjust the midpoint 1 of each candidate as follows:

At least one of the two following balls exists:

Ga= uniform ball about X a, where X a's NNOT is X b.

Gb= uniform ball about X b, where X b's NNOT is X a.

a) If they both exist then do nothing.

b) If the uniform ball Ga exists, set

s -min(( - Xb)•fleG.)

c) 1 is then changed to Tb + Si.

d) If the uniform ball Gb exists, set

S_

e) is then changedto . -- n.
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6) The candidate posts compete to be included in the final post set:

Defuniion- A candidate classifies a point .i as being in A or in B as follows:
If (I - ) 0 i > 0 then I is classified as being in A. Otherwise 1 is classified

as being in B. Note that I being classified as in A (or B) does not necessarily
imply that .I must actually be in A (or B).

DeflndLon- The popularity of a candidate Is equal to the number of samples in
the largest ball centered at in such that no sample in the ball is incorrectly
classified.

Definition - For a given 1, let G be the largest ball, centered at f , which
contains no candidates which misclassify .. A proxy candidate for .I is the
most popular candidate in G.

a) Compute the popularity of each candidate.

b) For each sample point .1, find a proxy candidate.

c) Remove any candidate from the candidate list if it is not a proxy for
some sample.

d) If some removals occur, go to (b).

e) The remaining candidate posts are the posts and are used to define the
weights of the classification network. The vectors ti are stored in the
network's m nodes, the vectors 1 are stored in the z nodes and the
vectors h are stored as the weights of the perceptron nodes n.

S. Consistency
Definition: NNOT - Nearest neighbor of opposite type.

Definitionz Uniform Ball of a Point- The open ball centered at a sample and
having radius equal to the distance from that sample to the sample's NNOT. Uniform
balls contain only samples of the type found at center, if any.

Definition: Candidate Post of a Sample Point - In the algorithm, each sample
point x generates a post P by first defining a NNOT for 2. 1 and the NNOT then
define a midpoint and so on. In this manner, each sample has assigned to it a unique
candidate post. P Is referred to as the candidate post of sample 1. If the candidate
survives the competition to become a post, then P is referred to as the post of a sample
point 1.

Defininn! Uniform Ball of a Post- Let -la and -Xb be the samples which
generate post P. From the algorithm for the construction of a post, we know that
there Is a ball of radius Ila-.bl and centered at either Yca or Xb which uniformly
contains points of the center type. This ball, of which there is at least one and
possibly two, is the uniform ball of the post.
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Theorem: The learning algorithm is consistent.

Proof:
By lemma 1, the network which may be generated using candidate posts defined after
1 adjustment and before candidate competition is consistent. It remains to show that
the process of candidate competition preserves consistency. To see that this is the
case, note that in the algorithm, for each sample the corresponding proxy is chosen
such that no other candidate which is closer to the sample will misclassify it.
Therefore, if some other candidate is chosen as a proxy for some other sample point,
and if that proxy is closer to the original sample than its own proxy, the new proxy
will also correctly classify the original sample. Hence, the closest post, as determined
by in, correctly classifies each sample. This is all that is required for consistency of
the network.
QE.D.

Lmma In the algorithm, following the adjustment of the Y vectors, a network
formed using the candidate posts as weights is consistent.

Proof:
A sample will always be correctly classified by its own post. Therefore, for
misclassification to occur, a sample must be closer to the AR point of another post and
that other post must misclassify the sample. Such potential situations may be broken
down into two cases.

Case 1) The uniform balls of P and lc, are of the same type. Let Pj be the post which

potentially misclassifies sample I. Both P, and f, have associated with them a

uniform ball. If these uniform balls are of the same type, then by lemma 2, 2.k is in

the uniform ball of P,. Since the Y vector of P, has been adjusted to ensure that all

points in P,'s uniform ball are properly classified, I,, is properly classified.

Case 2) The uniform balls of P and r., are of different types. By lemma 3, X.k

cannot be closer to i- than it is to iii. Therefore there can be no misclassification.

Since, in both cases there is no misclassification, the network is consistent.
QED.

Lemma 2: Let (!a,,,m ,t t) and (.*,'.j~mnjiJ) be candidate posts

produced by the algorithm. If has a uniform ball and if I, is closer to i- than it is

to ink, and if ., has a uniform ball, then i.t is in the uniform ball of .,.

Proof by contradiction: Let iM (x.j.,,...,x,.j,). Likewise for 1i-, -M' and j" Let
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*) Assume that jik is closer to in than it is to ink and , is not in the uniform

ball of &,.

By the definition of a midpoint,1) x Mjj = (x djj + Xbj ) / 2

Without loss of generality one may place i, at the origin. i., is closer to in than it

is to Ak may be expressed as:

2) < r / 2 or X,,.i <r 2 /4
i i

By the definition of "uniform ball":

3) >Xbri >r xbjJ >r

T.t is not in the uniform ball of I, can be written as:

X X.72 or X.ji >2 Xa~
4) ,j(xJ-xb) or 4 _ . -Xbj.j )2

Combining (1) & (2) gives:

5) [(x.ji + Xbji)/21 < r2 / 4 or .[(x.j.i + Xbj.i)2 < r/ 2

Expanding (4) & (5):
6) I.jx 2 >I(x.j. - 2 x.jjXbi + Xbji 2

i i

7) XIXajJ2 + 2xa.ixb.ji + Xb,.j.i 1] <r 2
i

Add (3) to (6):
8) X(X*.j*2 "Xbj.i 2 )>r 2 + *(X.32 - 2x., xbj, + Xb )

i i

Which implies:
9) 1: 2xa , xbjs. > r 2

i

Using (3), (9), and the fact that X. is positive, one has:

10) [X.jj2 2x.x&i + Xbh.ji2 ]> r 2

which contradicts (7). Therefore, statement (*) must be false.
QED.
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Lemma 3: Let ( -E,.iAjkmk,k) and (!r,.bjm-,nizj) be candidate posts
produced by the algorithm. If jt has a uniform ball and if Tcj has a uniform ball,

then j cannot be closer to mR than it is to A.

Proof by Contradiction:

The radius of g,,'s uniform ball must be less than 1. - XbjI. Likewise for

uniform ball. By the definition of midpoint, i, is on the sphere centered at 1. and

of radius 11, - 12 Call the Interior of this sphere B. If f., is closer to inht than it

is to ffi, then i must bein the ball B. However, i in B implies 1Xb - X1>

t, - 1. This would, in turn, imply that Fr. is in the uniform ball of ibi. Since this

Is impossible, Ik must not be closer to A, than it is to in'.

Q,0D.

6. Conclusion
A learning algorithm for a piecewise linear network has been presented. It has

been proven that this algorithm can consistently learn an arbitrary training set
from a large concept class. While this paper stops short of proving the algorithm is
Occam, it does show one means of reducing the model size. In forthcoming work, the
algorithm will be shown to be polynomial. Future efforts wil also include an attempt
to show that this algorithm, or a variant of it, is an Occam algorithm.

References
Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, K. 1989. Learnability and the

Vapnick-Chervonenkis Dimension. J. of the ACM 36(4), 929-965.

Funahashi, K. 1989. On the approximate realization of continuous mappings by neural
networks. Neural Networks 2, 183-192.

Haussler, D., and Welzl, E 1987. Epsilon nets and simplex range queries. Disc. Comput.
Geometry 2, 127-151.

Karmarkar, N. 1984. A polynomial time algorithm for linear programming.
Combinatorica 4,373-395.

Nilsson, N. 1965. Learning machines. McGraw-Hill, New York.

Rosenblatt, F. 1962. Principles of neurodynamics. Spartan Books, New York.

Valiant, LG. 1984. A theory of the learnable. Commun. ACM 27(11), 1124-1142.

111-600



PATTERN RECOGNITION USING A FASTER NEW ALGORITHM
FOR TRAINING FEED-FORWARD NEURAL NETWORKS

Mario Mastriani, Ph.D.

Secretaria de Investigaci6n y Doctorado (SECID)
Facultad de Ingenieria de la Universidad de Buenos Aires (FIUBA)

C.C. N" 4394, (1000) C.C., Buenos Aires - ARGENTINA
TELEFAX: (54-1) 97-5658

E-Mail: posmaster@ieeear.edu.ar

ABSTRACT - A fast and robust algorithm is presented for training multilayer feedforward neural
networks as an alternative to the backpropagation algorithm. The number of iterations required by the new
algorithm to converge is less than 10% of what is required by the backpropagation algorithm. Also, it is
less affected by the choice of initial weights and setup parameters.
The algorithm uses a modified form of the backpropagation algorithm to minimize the mean-squared

error between the desired and actual outputs with respect to the inputs to the nonlinearities. This is in
contrast to the standard algorithm which minimizes the mean-squared error with respect to the weights.
The new algorithm will be called "Predictor of Linear Output" (PLO), in terms of its function.
Estimated linear signals, generated by the modified backpropagation algorithm, are used to produce an

updated set of weights through a system of linear equations (which has an easy resolution) at each node.

1. INTRODUCTION

The feedforward neural networks are used in a number of applications, e.g., control, see [61 and [7].
Because of the hidden layers, they have overcome many limitations of single layer perceptrons. These
types of networks are trained ahead of time, using known input/output data. Once trained, the network
weights are frozen and unknown data can be run through the network.
The classical method for training a multilayer perceptron is the backpropagation algorithm 1 1-131 which

is an iterative gradient algorithm designed to minimize the mean-squared error between the desired output
and the actual output for a particular input to the net.

Although it is successfully used in many cases, the backpropagation algorithm suffers from a number
of shortcomings. One such shortcomings is the rate at which the algorithm converges. Many iterations are
required to train small networks for even the simplest problems. For large network structures and data
sets, it may take days or weeks in order to train the network. A training algorithm that reduces this time
would be of considerable value.
It is the purpose of this paper to present a new alternative algorithm which is considerably faster than the

backpropagation algorithm [11-[31 and has the added advantage of being less affected by poor initial
weights and setup parameters (another shortcoming of the backpropagation algorithm). Besides, the new
algorithm is robust and much simpler to build and to understand than another modifications of
backpropagation 141 with less computational complexity and more speed of convergence and quality of
output.

Estimated linear signals, generated by the modified backpropagation algorithm, are used to produce an
updated set of weights through a system of linear equations (which has an easy resolution) at each node.

Training patterns are run through the network until convergence is reached.

II. PREDICTOR OF LINEAR OUTPUT
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Before beginning with the functional description of the algorithm, let us state some pertinent definitions
on the basis of Fig. 1:
SAE = sigmoid' adaline element

p = learning rate. Its selection controls stability and speed of convergence

k = time index or the cycle number
Also (.)T denotes the transpose of a vector or a matrix.

For a sinile SAE: (in Fig. I (a))
d k = desired response at time k

W k = [Wo k'Wl, k ... ,w.,kI r is the weight vector at time k
Xk = I+l,x.k ... ,Xn,k IT is the present input pattern vector (IPV) at time k
sk = linear output at time k, being Sk= WkTXk= XkTWk (1)

Yk = sigmoid output at time k, being Yk = sgm(sk) (2)
k= dk - Yk is the sigmoid error at time k (3)

For an isolated SAE of a multdlaver met: (in Fig. 1(b))

Xk@ = (+ 1, Xlk(), x2 k')... , x., k))T is the pattern vector of it layer at time k; e. g., for the output of the j1h SAE,
will be

kg= sM(s, k) (4)
Wk 0 = (Wjc,k(i)1 Wj,.k('), wj2.k )l .... WI..k())T is the weight vector of 'h layer and jth SAE at time k.

? ' = (tik(i) , Z 2k€i) .... I, . k(i)) T is the back-propagated error vector to the i layer at time k.

sk' = (slk('), s2,k(i) .... Snki))T is the linear output vector of the i h layer at time k; e.g., for thej SAE, it will be

J.k= (Wjk (i))TX 0-i (5)

Note: In both cases, the first premise is to randomize all present weights.

I. - PLO applied to a single SAE: in Fig. I (a), we can see the implementation of the PLO-algorithm for
A

a single neuron in detail. The algorithm is sk+, A Sk+ I V k  (6)
A A

where Vk =-A k/t sk (7)

is the instantaneous error gradient for this element with respect to linear output "sk", and

Ek= /2(4)2 (8)

is the mean square of the sigmoid error. Therefore, replacing Eq.(8) in Eq.(7), we have:
A
Vk= - 'A 9(~ tS =

= ? sgm'(sk) (9)

This particular gradient is coincident with the square error derivative associated to a single SAE (see pp.

1434 in II), 8 k= - / ()2 /dS=

= 4 sgm'(sk) (10)

Such as, Eq(9) and Eq(l 0) are similars, substituting Eq(10) into Eq(6) gives

'The term "sigmoid" is usually used in reference to monotonically increasing "S-shaped" functions, such as the
hyperbolic tangent. The sigmoid function, will be represented with the term" sgm", while" sgm"' "will be its derivative
wich respect to s,(linear output).
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Sk. Sk+ 1 k:

k+ P~~ (Sk)( l

besides, Sk+1 - k+ 1 X W Xk1 W k+1 (12)

and being IXk W (Xk.I)TI a square and positive semidefinite matrix, then, by equational handling we will have

Wk+1 _ SK+I Xk~ l / I XkWl12 (13)

II.- PLO aR~lied to an isolated SAE of Multilayer net: in Fig. 1(b), we can see, in detail, the
implementation of the PLO-algorithm for an isolated neuron of multilayer net. This technique is based on
the square error derivative associated with the jth neuron in the i layer (see pp. 1433-1434 in I I),

6 ()= -Y E/s =

81.k~i 1/' k /'S,k~i

sgm'(sJikP) jk (14)

where V W c1) 8 1,1) (15)
j,k fiW1 rnj,k m,

is the back-propagated error up to the jth neuron of the iP layer; and
N" N"

Ek= (.)2= (lmk) 2 = (dr-1 r -VXk)2 (16)

The instantaneous sum squared error (6k) 2 is the sum of the squares of the errors at each of the N(n)

outputs of the network "x*)" and each one the desired responses "dmk" for the n layer, i.e., the last layer.
N(' ' ) will be the number of neurons of the layer (i+1) 1 . Finally, the estimate linear signal of the neuron
jth and of the i" layer will be s _0k+= s. + 8.k ).+ . k) (17)

Here too, being [Xk l(01) (Xk '(i-'))T ] a square and positive semidefinite matrix, then,

Wj,klC) =S Sjk+l ( ) X Wl('i1) / I Xk+l(i 1) 12 (18)

ii. PATTERN RECOGNITION

We consider the training of a neural network to recognize patterns presented to its input. Although many
different experiments were performed with several data sets and different networks structures, it is
presented here only a limited number because of space considerations.

The input pixels are set to a level of-0.5 or +0.5. It is important to note that these levels are considered
to be analog values rather than digital binary values. Although it is presented here experiments with
patterns of two levels, similar results are obtained with patterns of various gray levels.

The output is likewise treated as analog. Therefore, the network is considered traineo not only when the
output agrees in sign with the desired output but also in absolute value.

The 7 x 7 pixel patterns in Fig.2 are the inputs to a 2 layer feedforward perceptron with 16 nodes in the
hidden layer. The desired output of the network is a 2, 3, or 4 binary word depending upon the number of
patterns used to train the network.
Fig.3 shows the mean-squared error versus the iteration number for both algorithms during training for

the 7 x 7 example. Table I presents numerically the performance comparison of the two algorithms shown
in Fig.3. This comparison takes into account the computational efficiency of each algorithm as well as the
number of iterations required for the algorithm to reach a specified mean-squared error. The result is a
time ratio of the two algorithms when run on a sequential machine. A mean-squared error convergence of
slightly less than 0.25 was chosen since this value is the maximun that can be used and still produce correct
results, assuming that the outputs are eventually passed through a hard limiter to produce a binary word.

The algorithm has been implemented in TurboC++ 3.0 (C), Borland (R), on a PentiumT Processor-66
Mhz PC/AT.
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IV. CONCLUSIONS

It has been presented in this paper a new al,. ,,hm wich is faster and robuster than the standard

backpropagation algorithm in training in training aultilayer perceptrons.

The algorithm presented here convergences in less than 10% of the time it takes for the backpropagation

algorithm.
Testing performed on 3 layer networks and networks with more neurons per layer, had equally impressive

results. In one experiment (not shown) with 39 neurons in first and second layers and 1 neuron in the

output layer, the backpropagation algorithm took approximately 20000 iterations to reach the same mean-

squared error that the new algorithm achieved in 200.
Also, the new algorithm is more predictable in its training. In Fig.3, it be notice that the backpropagation

algorithm tends to reach a certain mean-squared error and remain there for quite a while making little or

no progress.

At some point, it either rapidly converges, or jumps to a new level where it would again make little or

no progress for quite a while. In contrast, the new algorithm continues to make steady progress toward

improving the mean-squared error throughout the training period.

Finally, the convergence of the backpropagation algorithm depends heavily on the magnitude of the

initial weights. If chosen incorrectly, the algorithm takes a long time to converge. The new algorithm

seems to be less sensitive to the initial weight setting.
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Fig. 2 - Seven-by-seven patterns used for training.

7x7Pattai 4 Patter B P&Uam= 12 Pattern 16Pam

16 1At Nod- (2 Outputs) (3 Oulpts) (4 Outpt)

Newaloritan 4 5 12 14
iteratows

Back-Porpation 64100 167800 21150 5300
iterations

t ratio ai 16025.00 33560X0 1762.50 3800.0
Comp. ratio 0.9391 0.9459 09526 09526

Total inwove. 15049.07 31744.40 167395 361913

Table I - Improvement Ratio of the New Algorithm over BackPropagation
with the MSE Convergence Set at 0.25.

M'$E . . . MSE

(a). Backpropagation algorithm (b). New algorithm

4 Patterns 
4* 4 Patterns

8 Patterns

41 
2 P a t t e r n s

S Patterns
12 Patterns 16 Patterns

16 Patterns

..0 200 250 300 3S50 x t000 i 0 50 1M 150 200 250 300 350 Wbi

Fig. 3 - Learning curves for a 2 layer pattern recognition network with 16 nodes
in the hidden layer. Seven-by-seven patterns were used for training.
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ABSTRACT:

This paper reports on computational experience with a quasi-Newton based strategy for the
supervised training of feed forward neural networks. Coupled with a generalized formulation of
the logistic function and explicit box constraints on network variables, it is shown that up to three
orders of magnitude fewer function evaluations than the delta rule, and up to an order of magnitude
fewer function evaluations than certain conjugate gradient implementations can be obtained.

INTRODUCTION

The ability of neural networks to generalize based only on a set of training data has been
extensively documented in the open literature in recent years (see for example Rumehart 1986
[5]). Supervised training of a feedforward neural network is usually achieved through the solution
of an appropriate nonlinear program. Subsequently training times are affected by the nonlinear
programming algorithms used. Some of these algorithms are (i) simulated annealing, (ii) the delta
rule, (iii) conjugate gradients, (iv) heuristics, (v) Kalman filter techniques and (vi) Newton-based
strategies.T e overall goal of this paper is to address the training of the feedforward network using

successive quadratic programming. In the suggested framework, one can handle network training
while incorporating explicit bound (or box) constraints on key network parameters such as weights.
In the oral presentation, I will also report on the implementation of the algorithm on a network of
workstations using Scientific Computing's Linda parallel processing software.

THE FEED FORWARD NETWORK

A typical feed forward neural network consists of s layers of neural elements (an input layer,
s - 2 hidden layers and one output layer) as illustrated in Figure 1 with s = 3. In the j-th layer
there are Mi processing elements which are interconnected with elements in the (j - 1)-th and
(j + 1)-th layers. Associated with the interconnection between the ki. 1-th element of layer (j - 1)
and the ki-th element of layer j is the weighting factor Wk_ 1 ,k,.

A generalized logistic function a which maps the cumulative input, X to the output, Y of a
processing element is defined as follows:

Y = o'(X) = (1 + eP(X))-1 - C (1)

In this paper, P(X) is restricted to the family of polynomials. Thus P(X) = j=0 aqX9. The
choice of m = 1, a, = -1 and C = 0.5 corresponds to the more conventional form of the logistic
function. Here c0 corresponds to the bias term. A subset of the a's together with the network
weights, Wi, may be used as training parameters (i.e. design variables).

The choice of m = odd integer results in a monotonic basis function. In contrast, the choice of
m, even integer, results in a non monotonic (bell shaped) basis function. The bell shaped function
(from preliminary trials) seems to do better on two dimensional pattern recognition problems in
which points (members) in a class span non contiguous regions (see for example Example 3). The
properties of the new basis are still being investigated and will be reported fully in another paper.

Let us define a as follows

Y = a(X) = (I + eP(X)) - 1 - C (2)

where P(X) is a function of X.
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Network training is achieved by solving the following nonlinear program for the optimal values
of Q which is a subset of network parameters, C, W (weights) and parameters associated with
P(X).Thus

N M,

minJ = E (Y.. 2(3)
Q n= kA.=l

subject to
Yn,A = a,,k, (4)

Y.,ki = a(Xn,k,) (5)

Xn,ki = E Wki- ,kiYn,hi-, (6)
ki- 1 =1

Q <! Q 5 Qu (7)

where a,*j = n-th training data set (input to k-th element) and [Q,, , Qp,-,] are bounds on
Q. In addition, the performance objective, J is the sum of squares of the deviation of the network
output, Yn.k. from the expected or desired output, . At the solution of the nonlinear program,
the two outputs are close to each other. There are several variations of the form of J. For example,
the root mean square deviation and the weighted residual have been used in the open literature.

The inclusion of the simple bounds on the training parameters leads to better conditioning of
the training algorithm since the weights, for instance, o not become excessively large.

QUASI-NEWTON BASED TRAINING

Typically a feedforward network is trained using the delta rule (or error backpropagation
(Rumelhart, 1986 [5]). A different approach is taken in this paper. Here, the analytic expres-
sions which have been derived for the gradients of the feedforward network (see Appendix) have
been used directly to solve the feedforward training problem as posed in Equation 3. Gradient in-
formation for the training algorithm was obtained two ways, by adjoints and by perturbation. The
adjoint method was at least an order of magnitude faster than perturbation by central differences.

The solution procedure uses a Successive Quadratic Programming algorithm (Han, 1977 (21,
Biegler, 1985 (1]) that employs low rank hessian updating schemes like BFGS. For convenience, I
will refer to the S9P training of the feedforward network with the new logistic function as SQPN.
The training algorithm is illustrated in Figure 2.

TEST PROBLEMS

Unfortunately, due to space limitations, only a selection of example problems are presented and
discussed. In the following test problems, a subset of the a's together with the network weights,
Wii, have been used as training parameters (i.e. design variables). In particula , i have consistently
employed a0 as a design variable since it plays the role of the bias. Each simulation was performed
on a SUN SparcStation, an IBM RS/6000 model 320H or model 530H. Unless otherwise stated, the
initial values for the design variables were randomly generated using the tire of day as the seed.

Example 1: Parity Problem

In the parity problem (Makram, 1989 [31), the output is required to respond with a positive
sign for an odd number (N) of +1' inputs and with a negative sign otherwise. Thus there are 2N

training sets for the N-parity problem. The problem was solved for N = 2, 3,4, and 5 respectively.
The network consisted of the input layer (N neurons), one hidden layer (N + I neurons) and an
output layer (1 neuron). For comparison, m was chosen to be 1 and a, was set to -1. In addition,
the weights and a0 were used as training parameters.

Table 1 summarizes the results of several training runs using N + 1 hidden nodes, the same
number used by Makram-Ebeid 1 et al. SQPN yields up to five times fewer function evaluations

'The values reported for SQPN are averaged over a few runs from random initial points. BCG is Bounded
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(network sweeps) than the Bounded Conjugate Gradients approach of Makram-Ebeid et al. In
addition SQPN results in up to 2300 times fewer function evaluations than their implementation
of the delta rule.

Table 2 compares the use of a0 to that of al as design variables, c0 does better than al for the
parity examples. This may be due to the greater sensitivity of the logistic function to al (second
term in polynomial tends to dominate first term) compared to ao. Thus the latter may lead to
better conditioned training than al.

Example 2: Nonlinear Identification

This nonlinear identification example was proposed by Narendra and Parthasarathy [4]. Here
the network is trained to identify the following nonlinear model of a plant.

yp(k + 1) = f[yp(k),yp(k - 1)] + u(k) (8)

f[yp(k), yp(k - 1)] - yp(k)yp(k - 1)[ye(k) + 2.5] (9)
1 + y,(k) + y(k - 1)

Training sets were made up by taking one hundred samples of u(k) (assuming that u(k) is i.i.d
random signal uniformly distributed in the interval [-2,2]) and evaluating the corresponding yp.
The network was trained to predict [yp(k + 1)] given [yp(k - 1), yp(k)] using a 2-20-10-1 network
(i.e. 2 inputs, 2 hidden layers with 20 and 10 elements respectively, and 1 output). Narendra et
al employed the same architecture and used only weights (total of 250 variables) as the decision
variables. Thus in order to do a fair comparison I used only weights as the decision variables.

I trained the network by repeatedly using data from the first 100 time steps. Thus the network
saw a smaller set of training data than was used by Narendra et al. who trained the network
for 100000 time steps in order to obtain good prediction. From Table 3, just over 300 function
evaluations, equivalent to 31100 (311 times 100) time steps, were needed to make the objective
(square error = 0.004) small enough for good prediction. The trained network was validated by
letting it predict yp for the next 100 time steps. From Figure 3, the prediction is very good.

Example 3s: 2-D Pattern Recognition

In this two dimensional example (Shah, 1990 [6]) points are classified as belonging to class A
or B as illustrated in Figure 4.

Five hundred training points were randomly generated for classes A and B respectively. This
pattern recognition problem is a nonlinearly separable problem that requires two hidden layers
according to Kolmogorov. The problem was solved using two hidden layers, and ten elements in
each hidden layer.

Shah et al. solved this problem 2 using three training methods, namely the error backpropaga-
tion (delta rule), the global extended Kalman filter algorithm and the multiple extended Kalman
filter algorithm. They used network output of 0.9 (0.1) for points belonging to class A (B).

In addition to using [0.9, 0.1] for [A, B], [0.5, -0.5] were used for another set of runs. Table 4
(also Figures 5 and 6) summarizes results from the literature (Shah et al.) and ours. Values had
to be estimated from the plots given in the literature in order to make specific comparisons. The
multiple extended Kalman filter algorithm erformed about as well as SQPN at the 25-iteration
mark. No data beyond the 25-iteration mart was provided in the literature.

The table shows that SQPN reduces the square error twice as much as either error backprop-
agation, the global extended Kalman filter and the multiple extended Kalman filter. The table
and Figures 5 and 6 also show that a polynomial index of 2 (in the logistic function) speeus up
convergence compared to an index of 1 for this particular example. Similarly, the use of [0.5, -0.5]
(C = -0.5 in logistic function) to represent membership in region A or B is worse than the use
of [0.9, 0.1] (C = 0 in logistic function). Since -0.5 and 0.5 are asymptotic values of the logistic
function, their use to represent class membership leads to relatively large values of the weights,
thus resulting in numerical problems.

Conjugate Gradients. Makram et al. attained Training Objective values close to 0.01.
2Account is taken of the fact that our objective function expression, J is twice that of Shah et al.
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DISCUSSION AND FUTURE WORK

The quasi-Newton training strategy have been shown to yield significantly fewer function it-
erations in the training of the feed forward network than similar strategies described in the open
literature. Since CPU times were not reported in the literature, and since invariably differer..
computing platforms were employed by various researchers for the simulations, it is impossible to
compare the performance of the algorithms in terms of CPU times. However, the number of func-
tion evaluations is an appropriate and acceptable measure of speed and for all practical purposes
independent of the computing platform.

The adjoint method of evaluating the gradients lends itself to implementation on a parallel
computer. The generalized logistic function introduced in this paper shows considerable promise
in this research effort into neural network speed up. The properties of this novel function are still
research issues that are being resolved.

Box constraints on the decision variables were included as explicit constraints for the following
reasons: (i) numerical difficulties, for example floating underflows due to large network parameters
and poorly scaled training sets, are minimized and (ii) since they are linear, once they are satisfied at
the first iteration, they will be satisfied for subsequent iterations. The main disadvantage with using
explicit constraints is the large set of constraints that may result. To get around the dimensionality
problem, logarithmic barrier function and penalty function approaches lump these box constraints
with the objective function. However, the log barrier approach will either avoid the bounds on the
decisions or get very close to the bounds at the risk of introducing numerical difficulties. With
penalty function approaches, often a trade off is made between satisfying the box constraints and
minimizing the original objective. If a proper adaptation scheme is not chosen for the penalty
parameter, then poor training will result.

One main disadvantage that one can anticipate in SQPN is that, since storage of Hessian
information is required in the SQP approach, it is expected that for large networks (on the order
of perhaps 1000 weights), the quasi-Newton based approach will not be feasible. Limited memory
quasi-Newton methods, as well as conjugate gradients with thrust region approaches are being
investigated for such large scale problems. I am also looking into decomposing the hessian into
reasonably sized submatrices.

Although not discussed in this paper, analytic expressions have been derived for the hessian of
the feedforward network. These are being used directly in SQPN to reduce the need to employ low
rank hessian updating schemes like BFGS.
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APPENDIX

Proposition 1 The gradient of performance objective, J, with respect to the decision variables is
given by

=J N ( ) (10)

Wkii j n=1I
a = /N .

N

O~k = - Ank, (12)

q = .. r
j 2 .
kp = ... Mp

with
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. = ,, ,a-, + (13)

ki L=l +

8J (14)

where

n ... N :k'= 1...M,
j .(s- =) ki = 1...M

In the interest of space the proof will appear in another paper, and can be obtained from
the author. The gradients obtained above have been compared with calculations via perturbation
(finite differences) and the accuracy of the results agree.
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NEURAL NETWORKS SHARING KNOWLEDGE AND EXPERIENCE
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Abstract

In this paper a new neural network architecture suitable for building robust neurocon-
trollers is proposed and tested. The concept of the new architecture is developed around
the idea of sharing intelligence of a neural network between knowledge and experience.
The architecture consists of two specialized sub-networks; one provides the knowledge
and the other provides experience. The two sub-networks are connected in a feedforward
configuration to form an intelligent neural network. The advantage of such a neural net-
work architecture is that the experience sub-network constantly updates the knowledge
sub-network with experience information creating dynamic intelligence. This makes the
overall neural network adaptively changing its knowledge to accommodate changes in the
environment.

I. Introduction

Noise and disturbance are the sources of problems in any control system. In the
control theory the problem of noise and disturbance have been studied and solution are
considered. A way to suppress noise in a control loop is to insert a filter in the path of such
noise [1]. Adaptive controllers have been successfully designed and used to compensate for
disturbance or minor changes in system dynamics [2,31. One of the shortcoming of filtering
the noise and adapting controller parameters is the limited range of operation over which
the scheme is valid. Other shortcoming is the robustness of such a controller. When the
level of noise or disturbance becomes high, the performance of an adaptive controller or
filter is expected to degrade [4].

In the past decade, use of neural networks has gained interest in the field of con-
trol systems [5,6]. Several neurocontrollers have been designed and implemented [7,8].
The pronounce features of a traditional neurocontroller are robustness and computation
speed. Neurocontrollers provide fast computation due to the fact that they are parallel
processing devices when implemented in hardware. Neurocontrollers are robust in the sense
that partial failure in their structure (processing element or connection's weight) does not
necessary lead to significant degradation in their performance. However, current neural
networks implemented as neurocontroller are sensitive to noise and disturbance. When the
level of noise or disturbance increases a neural network is expected to predict the target
with some uncertainty. Therefore building an adaptive neurocontroller capable of on-line
filtering of high level of noise and disturbance is of interest to control engineers. A purpose
for designing adaptive neurocontrollers is to implement an on-line learning procedure. In
such a training procedure a neural network learns as it predicts. Reinforcement learning
is one way for implementing on-line training of a neural network [9]. In the reinforcement
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learning a neural network learns from previous experience. However, several training cycles
may be needed before the network learns new changes in the environment. This make it
difficult to implement for complex control problems in real-time.

Our concept of building an adaptive neurocontroller is based on sharing information
between knowledge (constant intelligence) and experience (adaptive intelligence) neural
networks. In this architecture, first the knowledge is acquired by training a neural network
on the nominal behavior of the system. Then the experience is developed by training
anther neural network to learn the amount of adjustment of the knowledge needed when
the system is subjected to noise or disturbance. Finally, the experience network is used to
supplement the knowledge neural network. Hence, the overall neural network intelligence
is always up-to-date and will not render absolute as changes (noise or disturbance) take
place in the system.

II. Biological Learning

Intelligent biological systems, e.g., human beings and monkeys, accumulate their in-
telligence over periods of time. Some times, it is difficult to precisely identify the level
of intelligence of a person at a given instance of time. However, the performance of a
person can be observed over a range of actions. The measure of intelligence of a person
becomes more decisive when the complexity of the task assigned to the person increases.
Teaching a person to perform certain task is known as gaining knowledge. If the knowl-
edge of a person is enhanced with time, the person is said to be gaining experience. These
biological facts lead to the following conclusions: First, intelligence consists of two com-
ponents; knowledge and experience. A natural progression of the two components is that
knowledge comes first then experience is gained at later stage of time. Second, experience
should always supplement and not replace knowledge to maintain intelligence. Certain
amount of knowledge should always be kept constant without alteration. Finally, knowl-
edge is normally acquired during learning stage (off-line) and experience is gained through
out experimentation (on-line). Figure 1 illustrates our understanding of such biological
learning.

Figure 1. (a) Biological Intelligence, (b) Computational Intelligence
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III. Neural Network Architecture

The concept of biological learning is translated into a neural network architecture us-
ing reverse engineering techniques. The proposed neural network architecture is developed
keeping in mind the basic principles of biological learning. It is known in the sensory motor
control system, for example, a motor signal generated by a motor neuron and transmitted
through the neuron postsynaptic is influenced by another motor signal derived from the
same stimuli of the original neuron and transmitted though out an inhibitory interneuron.
The interneuron is connected in a loop with respect to the original neuron. This neuron
exhibits time delay, frequency modulation, and/or combination of both. It can influence
the original motor neuron in excitatory or inhibitory mode [101. The loop interaction be-
tween the two motor neurons is a form of implementation of knowledge and experience in
biological systems. The motor neuron represents knowledge and the interneuron is a repre-
sentation of experience. Figure 2 shows biological interaction between two motor neuron.
This biological interaction between neurons is translated into a computational neuron with
constant trained weights and variable biases. The actual value of the biases for a compu-
tational neuron is determined by another feedforward neuron similar to that of biological
system. The feedforward neuron acts on the same input data of the computational neuron
and predicts proper biases in accordance with the current input data.

Afferent neuron

innewating Extensor
extensor Muscles motor neuron

Inthbito y Extensors
interneu'of

(Courtesy of Kandel, "Principles of Neural Science")
Figure 2. Interaction Between Biological Neuron

IV. Adaptive Neural Network

Generalization of the knowledge-experience computational neuron can be extended to
a complete neural network architecture. An intelligent neural network with knowledge and
experience components is constructed from two sub-neural networks. A knowledge neural
network surrounded by an experience neural network. First the experience neural network
reads input data then it predicts the proper biases for the knowledge neural network.
The knowledge neural network in turn reads input data and the set of biases form the
experience network then it predicts the expected output of the intelligent neural network.
The following is a mathematical analysis of the proposed neural network to demonstrate
the interaction between knowledge and experience in a sharing intelligence neural network.

Traditional Neural Network- The performance of a multilayers neural network can be
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described in the testing (non-training) mode by the function

Y(t) = R(W x X(t) + B) (1)

where R define a neural network with weight matrices W and bias vectors B. The input
and output of the network are X(t) and Y(t) respectively. For a two layer neural network
with unipolar sigrmoid function in the 1st layer and linear function in the output layer
equation 1 can be expressed as a Matlab function

Y(t) = pureline(W2, (tansign(W1, X(t), B1), B2) (2)

where B1 and B2 are constant biases found during the training of the neural network.
Equation 2 can be simplified as

Y(t) = pureline(W2, A1(t), B2) (3)

where Al(t) = 1/(1 + e -" (0 ) with

a(t) = W1 x X(t) + B1 (4)

the final output of the neural network is therefore expressed by

Y(t) = K(W2 x Al(t) + B2) (5)

It is clear that the knowledge of the above neural network is stored in the weight matrices
W1 and W2. While the biases B1 and B2 contribute little to that knowledge. In the
followiibg section, we will show how these constant biases of a neural network can be used
to enhance the knowledge of a neural network.

Knowledge and Experience Neural Networr The knowledge of a neural network can be
enhanced by making the biases of the network dependent on the input data. In this case
equation 4 can be written in the following form

a(t) = W1 X X(t) + §1 (6)

where the bias vector H1 is a variable vector and can be predicted by the experience neural
network as follows

H1 = WEI x X(t) + BE1 (7)

where WE1 and BE1 represent the weights and biases of the experience neural network.
Substituting equation 7 into equation 6 results

a(t) = (W1 + WE1)X(t) + BE1 (8)

similar equation can be derived for the final output of the neural network

Y(t) = K(W2 x AI(t) + WE2 x X(t) + BE2) (9)

I1H-616



Equations 8 and 9 reveal the fact that intelligence of the neural network has been dis-
tributed between the knowledge of the network (W1, W2) and the experience of the net-
work (WE1, WE2). Furthermore, equation 9 shows that the experience of the network is
made sensitive to the input data (WE2 x X(t)) so that it can accommodate any change
such as noise and disturbance in the outside environment of the network. A disadvan-
tage of such neural network is that complete parallelism has been lost by the amount of
delay-time required by the experience neural network to reach steady state values of the
biases.

VI. Results Presentation

An intelligent neural network with shared knowledge and experience architecture has
been designed and trained. The knowledge network consists of one hidden layer with five
neurons, two input nodes and 41 output nodes. The experience neural network consists of
one hidden layer with 10 neurons, two input nodes and 46 output nodes. The knowledge
neural network was trained to predict a two-dimension function of the form F(xl, x 2) =

e-2 2 ) . This function represents a hat shape function. The knowledge network was
trained on clean set of input data and tested on input data corrupted with up to 15% noise.
The first test was done without adding the experience network, keeping the original biases
learned by the knowledge neural net constant. The second test was done by supplying
different set of biases to the knowledge network at different level of noise. Those biases were
predicted by the experience neural network. Results show no significant deference between
the two tests for low level of noise. However, the deference is the network performance
becomes more significant as the level of noise increases. Figure 3 (a,b, and c) shows the
prediction error of the intelligent neural network for the three cases with only 15% noise.
Figure 3-d shows the sum of squared errors for all levels of noise. An improvement of 100%
is noticed at 15% level of noise.

VII. Conclusion

This study indicates that intelligence of a neural network can be improved by training
two specialized sub-neural networks and connecting them in a feedforward form. The
proposed neural network architecture is proven to be more robust as the level of noise or
disturbance increases. This could be very useful in control applications such as designing
of neurocontrollers for systems that exhibit high level of noise or disturbance.
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Backprpagation feedforward neural networks have been applied to pattern recognition and
classification problems. However, under certain conditionLs the bacpopagation net classifier can
produce non-intuitive, non-robust and unreliable classification results. The backprdaation net is
slower to train and is not easy to accommodate new data.

To solve the dfficulties mentioned above, an unsupervised/supervised type neural net, namely,
ART2-BP net, is proposed. The idea is to use a low vigilance parameter in ART2 net to categorize
input patterns into some classes and then utilize a backprpagation net to recognize patterns in eh
class. Advantages of the ART2-BP neural net include (1) improvement of recognition capability, (2)
training convergence enhancement, and (3) easy to add new data. Theoretical analysis and example are
given to illustrate these advantages.

INTRODUCTION

Pattern recognition and classification are potentially useful approaches for interpreting data
generated by industrial systems such as chemical, manufacturing, and well testing processes. Possible
applications include sensor data interpretation, model identification and validation. Neural networks,
especially backpopagatio networksl, have been applied to many pattern recognition problems
including the classification of sonar targets2 and sensor inteMretafion 3.

Application of back-propagation networks to well test model idernfication. in reservoir
engineering has been studied by several researchers4 5. Thes results have shown that the feedforward
backpnopagation network classifier has the ability to learn a set of pressure derivative curves and can
often generalize to new cases of known models. Nevertheless, several difficulties were uncovered when
more models are included in the net decision space and whem more training curves are added to the
training set4 . For example, in our simulation, 16 models and 30 pressure derivative data curves per
model were used for training. It took more than 12 hours on a 486-PC for the backpropagation net to
learn6. Moreover, it can not correctly recognize models with similar features. Furthermore, the
backprpagation net is not robust since it is not easy to add new models.

This work is partly supported by TUPREP at University of Tulsa fluded by 12 major oil
companies in the world.
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In this paper, we propose a novel neural net to remedy the aforementioned difficulties. This
network, called the AR72-BP net, uses an ART2 net to sort a large number of input patterns into
several classes. Then the three-layer BP net associated with each class node in the output layer of the
ART2 net is trained using a 2id-order backpropagation algorithm 8 for further classification.
Advantages of the ART2-BP net include shorter training time, improved training and classification
abilities, and capability of easily accommodating new models.

Analysis on the advantages the ART2-BP neural net provide is given in Section II. The learning
algorithm using a conjugate gradient method is derived. A nonlinear mapping techniqueI I employed
for better classification will also be shown. A well testing model recognition problem is used for the
performance comparison.

6xl2x3 6x12x3 6x12x5 I
BP Layer

Winner Tak ADCutrn

ART2 Layer

Input Pattern

Figure 1. The ART2-BP neural net.

The ART2-BP NEURAL NET

The ART2-BP neural network is shown in Figure 1. In this architecture, backpropagation nets
are placed directly on the output layer of an ART2 net. First, top-down weights and bottom-up
weights of ART2 are modified by the training examples. Then the three-layer BP net associated with
each class node is trained using a 2nd-order backpropagation algorithm 8 for further classification. It
offers several advantages over the ART2 net as well as the backpropagation net. Advantages include
(1) improvement of recognition capability, (2) training convergence enhancement, and (3) easy to add
new data. These will be elucidated later on.

The training-recognition procedure of the ART2-BP net can be described as follows. Input
patterns are clustered into classes through the unsupervised leaning process provided by ART2 layer.
At this stage coarse classification was carried out such that patterns with similar features were
clustered together. Patterns in each class are then forwarded to the BP layer for fine classification. In
this phase, training is efficient because faster learning algorithm is employed. Furthermore,
classification is effective since fewer patterns are used.
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ART2 is a category learning system that self-organizes a sequence of input patterns into various
eognitiom categories or classes. For detailed mechanism of ART2, please refer to reference 7.

Vigilance parameter used in ART2 plays a pivotal role. High vigilance parameter will enable ART2 to
explicitly distinguish patterns with similar features, but the net will not be able to recognize or classify
patterns corrupted with noise or distorted features. On the other hand, if the vigilance parameter value
is too small, almost all patterns will be categorized as a single class.

The backprvpagation algorithmI, on the other hand, is a supervised learning. Tbough a great
deal of applications using feedforward neural networks with the on algorithm have been
reported, several disadvantages were also mentioned. These include slow training, convergence failure
during training, and inability for the trained neural net to accurately distinguish patterns with similar
features.

To lesson some of the drawback of using the delta learning rule or even with the momentum
term 9, a three-layer feedforward neural network with conjugate gradient learning algorithm is
employed. Using this methx, efficient learning rate can be selected and global minimum of the error
surface can be found Further, the least squared error can be reduced to less than 10-6 in a few
iterations. All these will improve the training convergence quality and reduce the training time
dramatically. The updated weights under the conjugate gradient method can be expressed as follows.

wt+ = wt+ kRk R =-E'(w)

PRk P+I = R I +-RR,
= prE(Wk)P. PkeR,

where Pk = [Plt, p.k,...,pk] is a conjugate basis with respect to the Hessian matrix E"(wk).

Advantages of this ART2-BP neural net6 are analyzed in the following.

1. Recognition capability improvement.

It is bwvwn I 0 that all the input patterns, exemplar patterns and synaptic vectors can be
normalized and mapped into a unit RR sphere. After applying a nonlinear mapping scheme developed
by Sammon I 1, those normalized vectors are mapped from an R' space to an R2 space as shown in
Figure 2. This nonlinear mapping the characteristics of preserving the inherent structure of the data.

In this figure, Dt, D2, ... , and D5 denote classes categorized by ART2 and m1 , in2 , ... ,and mn5 are

centroids of ,  , ... , and D5 , respectively. x denotes the test pattern and 0 is the angle between

5
the test pattem and the centroid of Class D3. Notethat Di c-Rn and R= U D), rD)Dj =0 if

j=1

1 j. By analyzing the competitive learning mechanism in ART2, we find that the winning synaptic
vector mj of ART2 equals the centroid of the Class Dj. This means that mj defines the deterministic
center of mass of the class Dj:

Jxp(x)dx

= p(x)dx' where P(x) represents a probability distribution of the pattern x.

j
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Fig. 2. Centroids of classes in ART2 net. Fig. 4. Ambiguous windows.

Ranges of this class is bounded by [x ,x,,]. These bounds depend on the vigilance parameter
used in ART2. Small vigilance parameter increases the range of the class. In other words, more
patterns will be clustered into the same class if a smaller vigilance parameter value is employed in
ART2.

At this stage, we apply a backpropagation net to classify patterns categorized in the same class.
Suppose there are six patterns t1,t2,t3,.,.,t 6 in Class D, which has centroid m1 as shown in Fig. 3.
Now we assign each pattern a specific vector in the output layer of the BP net. For example,
[0.9,0.1A,0.,0. 1,0. 1,0. 1] is used to represent tj and [0. 1,0.9,0. 1,0. 1,0. 1,0. 11 is for t2, etc. By using the

Sammon's nonlinear mapping algorithm, t1,t2,t3,.,.,t will be located around a circle as depicted in
Fig. 3(b). This means that these six patterns can be easily classified by the BP type neural net in that
explicit boundary can be formed.

~t

a I
2 S$

Fig. 3. Six patterns in Class O1 are mapped into explicitly classified pattern by Sammon's technique.

As elucidated in the above from a theoretic viewpoint, the ART2-BP net would significantly
improve the recognition performance. Figure 4 shows the case when two patterns are intertwined. The
proposed ART2-BP neural net can be trained to classified these two patterns, but not the ART2 net or
the backpropagation net

2. Training convergence eancmet.

Aft~er clustering by ART2, fewer patterns will be located n the same class. Thus, we
applying the BP net to each class, training time is dramatically reduced. Since explicit decision
surfaces can be found, problems caused by premature onvergence and convergence to local minima
are diminished. Therefore, in the recalling phase, the BP net being trained can produce satisfactory
results.
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3. Easy to add new data.

When a new exemplar pattern is added, it will be either categorized into one of the existing
classes or a new class by ART2. Then only the class having this new pattern need to be retaine. This
feature is very important from the extendility viewpoint. On the contrary, if only the BP net is
applied, it has to be retrained using the whole (old and new) patterns. This is very time consuming and
may cause som oonvergence problems. Furthermore, the larger the number of patterns, the worse the
performance of the ART2 or the BP net. From this point, we may claim that the ART2-BP net can
handle much more data than the ART2 net or the BP net does.

A Well Testing Model Recgnition Problem

In a pressure transient test a signal of pressure vs. time is recorded. This signal is plotted as
derivative curves which are used in the interpretation process. The signal on these curves is usually
deformed and shaped by some undelying mechanisms in the formation and the wellbore. Since mom
than one interpretation model can produce the same signal, this approach can lead to misleading
results. Thus to correctly identify these models from the signatures present on the derivative plot is of
great importance.

1.00

Modem-.*, Officet

data I model Parameter I 0.80
I1dentifiation Regression r

1o

a 0.60

No
li 4 ... .a = , .H....

0.40.S= f~lO

]tv S= tO Homo.90= 0 SlatbModule 02 .,, =5 Slab

Yes .... 0 W & R
-.. W.. = R

O.O0 ~ ~ ~ ~ 1 W & RTr~vr~vrr~

D 0.00 0.20 0.40 ,,.0o 0.130 1.00 1.2
Normil aliie(I Time

Fig. 5. Software implementation. Fig. 6. Pressure curves for training.

A software package in C++ has been developed in a PC-486 environmen This program is
interactive and user-friendly. Not only can it identify the model reflected by given data, it also provides
an initial guess of reservoir properties as the input to an analysis program. A schematic diagram for a
complete recognition process is shown in Figure 5. Time-dependent pressure data collected from
hardware module are fed into the computer for recognition. The ART2-BP neural net is implemented
in the Model Identification Module. After the model is identified, regression techniques are utilized for
parameter estimation. In the Confidence Interval Module, statistical characteristics of the identifed
model are calculated to verify the results.

For the well testing model recognition problem considered here, ten pressure curves shown in
Fig. 6 were used. They belong to three different models with various skin factors. The three models
are homogeneous reservoir and dual porosity reservoir (slab model and Warren & Root model). Each
pressure derivative curve in the training set was normalized and then sampled at 12 points as the input
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pattern. Note that the same normalization method must be used for all curves including the training
curves and the test unknown curves to avoid curves being shifted, enlarged or reduced. A vigilance
parameter of value 0.9 was used in ART2.

This ten-pattem data set was used to train the BP net and the ART2-BP net. The 12 x 24 x 10
backpropagation net did not converge after more than ten thousand iterations. This problem is also
encountered in the work of AI-Kaabi and Lee4. Nevertheless, the ART2-BP net did learn and
successfully identify those curves. ART2 categorized the first five curves in Fig. 6 into Class I and the
other five into Class 2. Then a smaller 12x24x5 BP net was utilized in each class. Three curves
were used for recognition. The test results are shown in Table I. The first row shows that the test
curve was recognized as a homogeneous reservoir with skin factor s equal to either 0 or 5.

TABLE I Test Results

Test curve Output of ART2 lass) Output of BP (Activation)SHomgeneous, s=3 1 0.010 0.822 0.944 0.002 0.003
Slab, s=3 1 0.002 0.002 0.317 0.322 0.705

Warren & Root, s=3 2 0.023 0.035 0.345 0.654 0.002

CONCLUSIONS

This paper has presented a new approach based on ART2 and BP neural nets to identify the well
test interpretation model automatically from the pressure derivative curves. The ART2-BP net has
better recognition capability .tnd is easy to accommodate new models. Moreover we have demonstrated
that the limitations of the backpropagation network can be relaxed from a theoretic viewpoint.
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Hauhua Lee
GE Corporate Research and Development Center, Schenectady, N.Y. 12301

Prabhat Hajela
Rensselaer Polytechnic Institute, Troy, N.Y. 12180

Abstract:
The present paper consists of two parts. In the first part, a unified geometrical interpretation of the behavior of
multilayer feedforward networks (MFN) is presented. The inputs and outputs of training samples can be repre-
sented as two separated matrices and an MFN is a mechanism that successively transforms the input matrix into the
desired output matrix, via the intermediate matrix (or matrices) associated with hidden layer(s). By thinking of the
matrix as a multidimensional pliable object, the successive matrix transformation can then be compared to a se-
quence of stretchings and squeezings of the imaginary object. This interpretation holds for both binary and continu-
ous function mappings, as well as for mappings where both input and output space are multidimensional, i.e., not
being limited to n-to-I mappings. More importantly, this interpretation provides a whole new perspective to sever-
al important yet still unanswered questions about MFN. In particular, the generalization capability of MFN seems
to be the result of certain symmetry within the underlying mapping function. In the second part, implications of the
interpretation will be elaborated specifically in regards to quantifying mapping nonlinearity. Novel schemes will
be suggested to quantify the mapping nonlinearity based upon the spatial characteristics of training samples, and
provide guidelines to avoid hard-leaming situations by reducing the mapping nonlinearity of training samples.
Illustrative examples and results of numerical experiment are presented in support of the interpretation concepts.

1. Introduction
Multilayer feedforward networks (MFN) have been the most widely explored of all neural network paradigms. In re-
gards to explaining the behavior of MFN, previous publications such as [Nilsson], [Lippmann] and [Pao]
have provided primitive interpretations in terms of decision boundaries and decision regions from a mapping
perspective. However, these interpretations are only good for classification problems, where the mappings
are n-to- I and with binary or discrete outputs. In this paper, a novel and unified interpretation of MFN is presented
to assign a more physical sense to the MFN. This interpretation is valid not only for both binary and continuous func-
tion mappings, but also for the mappings where both input and output space are multidimensional (not being limited to
n-to-I mappings).
The inputs and outputs of training samples can be represented as two separated matrices, corresponding to the input and
output states of an imaginary multidimensional pliable object. Geometrically, MFN can be thought of as a mechanism
that successively reshapes such an imaginary training object from its input state to its output state, via the intermediate
state(s) associated with the hidden layer(s). The weight matrix (including the activation function) between two adja-
cent layers corresponds to a reshape operation, which consists of two basic actions, stretching and squeezing. Mathe-
matically, stretching corresponds to the dot product, and squeezing corresponds to the processing through an activation
function. Each of the hidden and output node is associated with a weight vector that corresponds to a column vector in
the associated weight matrix. The weight vector indicates the direction of stretching and squeezing, as well as the
strength of stretching. Subsequently, the training of an MFN can be thought of as the process to find an appropriate way
that can successively reshape the training object from its input state to its desired output state. On the other hand, the
prediction behavior of MFN can be thought of as the result of a successive reshaping of the continuum training object.
This interpretation may shed light on several important yet unanswered questions in MFN, such as what constitutes a
hard learning case, why MEN can generalize, and what is hidden in the hidden layers. This paper does not intend to
tackle the problem of deciding the number of hidden nodes/layers; instead, it suggests certain guidelines for the prepro-
cessing of raw training samples. The distribution angle and maximum distribution gradient are introduced to gauge the
mapping nonlinearity. Prior to the training, one may preprocess the raw samples so that the mapping nonlinearity is
reduced in order to facilitate the training.
The paper is organized into two parts. Part I focuses on the unified interpretation of MFN, with an illustrative example
and discussions about the implications of the interpretation. Novel schemes for quantifying mapping nonlinearity will
be presented separately in Part II.
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2. MFN : Successive Matrix Transformation
MFN is often explained in biological terms such as neurons, axons, synapse, etc., for its analogy to the neural system of
living beings. Mathematical descriptions can be found in standard texts on the subject. [Lippmann, Kosko, Paon. Here,
MFN is first described from the perspective of matrix transformations and then associated with specific interpretations.
MFN is known to be able to approximate any mapping function, represented by a set of mapping samples (also called
training patterns), to any degree of accuracy[Honic]. Let the mapping function be denoted asf: R"--. R1, and the sam-
ples given as (Ii, 03), where Oi=jfI%), i=l,..,p, I E Re", and O E Rl!. (In practice, the input and output of samples are
usually scaled to either binary hypercubics [0,1]m/[0,] n, or bipolar hypercubics [-l,l] m/[-ll] n, rather than being
used with infinite spaces.) The input and output parts of samples can be represented as two separate matrices, denoted
as [ip xm and [Olpx respectively, where p is the number of samples, m and n are the dimensions of input and output
spaces. Suppose a single hidden layer MFN is trained with samples (Ii, Oi), i=l,..,p. It is clear that when an input vector
I, is presented to this MFN, 1, is first transformed into an intermediate vector Hi at the hidden layer, and then into the
output vector Oi. Similarly, when the entire input matrix [I]pxm is presented to the MFN, [Ilpm is first transformed
into the intermediate matrix, [Hipx q (where q is the number of hidden nodes), and then into the output matrix [O1p n.
Hence, an MFN is, in fact, a successive matrix transformation mechanism.
The successive matrix transformation in an MFN can be compared to "playing dough" in hyperspace. Each layer in an
MFN can be associated with a multidimensional space of which the dimension equals the number of nodes in the layer.
For a specific layer, a group of vectors (i.e., a matrix) can be thought of as a group of points in the associated multidi-
mensional space. One can imagine the whole group of points as a multidimensional object which is constructed by
connecting every point with each other using a rubber stick. The rubber sticks allow the imaginary object to be arbi-
trarily pliable. In this manner, the successive matrix transformation can be thought of as a successive reshaping process
of the imaginary pliable object. Mathematically, a matrix with dimension pxq represents a specific state of the imagi-
nary pliable object, where p is the total number of vectors and q is the space dimension (i.e., the number of nodes in the
layer). In this research, such object is referred to as training object, and the matrix is referred to as the state matrix of the
training object. Hence, in the MFN example above, the three matrices [I], [H] and [0], represent the three states, input,
intermediate and output, of the training object. The reshaping operation can be decomposed into two basic actions,
stretching and squeezing, which can be mathematically associated with the dot product and the processing through an
activation function, as elaborated next.

3. Stretching and Squeezing
The principle of the matrix transformation (or reshaping) between any two adjacent layers is identical, regardless of
any layer being an input, output or hidden one. Therefore, in Figure 1, two adjacent layers are used to explain stretching
and squeezing. The two layers are referred to as the source layer, SL, and the target layer, TL, instead of input/output
layer. Suppose there are p samples, and the numbers of nodes in SL and TL are s and t respectively. The matrices [S]p ,
and Tp~ t then denote the source and target states of the training object. Note that in practice, it is preferable to add a
bias node in SL to help the training, as explained later. Hence, [S]ps is augmented as [S]px(s+1), in which the last
column is a unity vector. Accordingly, the weight matrix between SL and I is denoted as [W](s+1),t.
Now one may look into the function of a target node. In Figure 1, the target node Nt is associated with a weight vector
Wt, i.e., a column vector of the weight matrix. Two mathematical operations performed inside a target node. First, the
dot product between the associated weight vector and an input source vector, Wt.Sp, and second, the processing
through an activation function of Wt.Sp. When a state matrix of a training object is presented to a target node, the effect

SL (source layer) TL (target layer)
s+1 nodes t nodes

Source state Weight Matrix...... Target state

1 J W12 G.W~
S11 S12 ... SIs. l

==W===21========== W1 r I t12 .. t
[S21 S22 ... S2s 42. ]

" W" "" " ,," ........

Dim wAw) N [
Figure 1. Operations between two adjacent layers.
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is equivalent to stretching and then squeezing the object along the direction of the weight vector associated with the
target node. The length of weight vector is equivalent to the magnitude of stretching.

Dot Product as Sbetching
Conceptually, applying a dot product between a weight vector and each point vector on the pliable object is equivalent
to stretching the object along the direction of the weight vector. This is explained in Figure 2, where there are a weight
vector Wt, a point vector Sp, and an imaginary neutral plane that is perpendicular to Wtand passes through the origin.
The dash line marks the location of the neutral plane, d is the distance from Sp to the neutral plane (i.e., the projection of
Sp on W,), and 0 is the angle between Sp and Wt. Then

d = LV~ cos 0.
On the other hand,

WtSp = 1Wtl IS1 Cos 0
= IW1l d.

Therefore, after applying a dot product between a weight vector Wt and every point vector on the training object, the
distance from every point to the neutral plane is scaled up by 1Wt1.In other words, all points are stretched away from the
neutral plane (in both sides of the plane), except for those points on the neutral plane being unaffected. Note that IWt1 is
often greater than 1, thus results in the stretching effect. In case FWt1 equals 1, the projected lengths do not change. If
1Wtl is less than 1, the projected length actually shrinks. In practice, if 1W,1 is relatively small (e.g., 1), one may
conclude that the associated node is redundant and can be removed. (Trimming redundant hidden nodes is a separate
subject and is not pursued in this research.)

To be more precise, the dot product between a weight vector Wt and every point vector on the training object essentially
converts every point vector into the value that equals the projected length of the point vector on Wt and enlarged by
1WJ. The multiplication between a state matrix, [Sip . (s+ 1), and a weight matrix, [W](s+ 1) . t, can then be realized as the
process that converts each s-dimensional point vsi into a t-dimensional point v via the dot products between each vYi
and the t column vectors in [W. Subiequently, the training object can be imagined as being stretched from s-dimen-
sional one to t-dimensional one, by stretching the object along t directions at one time. Such a simultaneous stretch is
referred to as hyperstretch, which is different from an intuitive stretch because of the change of object dimensionality -
one might need some imagination to perceive the hyperstretch. However, intuitively one can perceive that the hyper-
stretch can result in a nonlinear distortion of the topological appearance of training object, because of the nonlinear
change of the relative distances among training points.

The function of the bias node in SL now becomes clearer. Adding a bias node at SL is equivalent to placing the object in
an added dimensionality space where the stretch is made. For an s-dimensional object, the stretch can be made in
(s+])dimension (e.g., a 2D object is to be stretched in a 3D space). It is intuitively perceivable that given the extra
dimension for stretching, it should be easier to achieve desired distortions of training object.

Activation Function as Squeezing
Figure 3 shows a typical sigmoid activation function, y=l/(l +e--/I), where Tis a constant (referred to as temperature).
The activation function is also called threshold or squash function. This function converts a 1D infinite space into a unit
region [0, 11, and the origin is mapped into the center (i.e., 0.5). In Figure 3, the region marked by [-x, x] can be defined
as an effective region. The space inside the effective region is nonlinearly normalized to (0,1), while the space outside
the region is squashed nearly to the boundary of the region. For the activation function with T=I, the effective region is
approximately [-4.5, 4.5], which maps to [0.01, 0.99]. Note that the activation function only accepts a scalar input.
When it is applied to a state matrix of a training object, it is applied to each element of the matrix. Therefore an n-di-
mensional space is squeezed into an n-dimensional hypercubic [0, 1 In.

Schematical examples are helpful in visualizing the multidimensional squeezing effect. Figure 4 shows a 2D example,
where three arbitrary objects, A,B and C are squeezed to a, b and c respectively. Note the difference in scales as well as

S Wi y=l/(1 +e--IIT)- Wt ... ---,
.i region

\Neiaral plane

Figure 2. Dot product as stretching Figure 3. A sigmoid activation function
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Figure 4. 2D Squeezing Example.
The objects A, B and C are squeezed to a, b and crespectively.
Note the difference in scales and the nonlinear change of grids.

the nonlinear change of grids locations. The entire R 2 space (only region [-6, 6]2 is shown) is squeezed into 10, 1]2; the
origin (0,0) is mapped into the new center, (0.5, 0.5). The effective region in this case is approximately [-4.5, 4.5]2 .

One sees that the space distortion increases sharply with respect to the distance from the origin, and gets saturated
approximately around the boundary of the effective region. For example, object B has the least distortion, and object A
has less distortion for the portion closer to the origin. For objects A and C, the portions lying outside the effective region
are distorted dramatically, and are squashed to near the boundary of the effective region. Specifically, comparing A
with a, it seems that the portion of A lying outside the effective region is chopped off, although none of the points on A
are actually lost. Such a pseudo-chopping may help to perceive the change of topological feature when an over-
stretched multidimensional object is squeezed (overstretched pertains to those portions of an object that are stretched
to outside of the effective region).
As a scalar operation, the activation function really needs no direction to apply. In this paper, squeezing is associated
with the direction of stretching because conceptually squeezing effect occurs exactly in the same direction of stretch-
ing. Similar to the concept of hyperstretching, a hypersqueezing refers to a set of squeezings associated with the multi-
ple directions in a weight matrix.

4. Illustrative Example
The well-known 2-bit xoR problem is used to illustrate the successive hyperstretchings and hypersqueezings. The
problem is to approximate the mapping where the four points, (0,0), (0,1), (1,0) and (1,1) map to 0, 1, 1, and 0 respec-
tively. These four samples, labeled as pl, p2, p3 and p4, are trained by an MFN with two hidden nodes organized in a
single hidden layer. Figure 5 shows the various state matrices of the training object, Ma, Mb, M, Md, Me and Mf, to-
gether with the two weight matrices associated with the hidden layer and output layer, [W]() and [Wi2). Ma is the input
state matrix, where the last column is a unity vector associated with the bias node. Mb results from the hyperstretching
of Ma by [MM](). M, is obtained by squeezing M (i.e., each component in M, is processed through the activation func-
tion), and including a unity column vector for the bias node. Next, the stretching by [W( 2) is applied to M and yields
Md. Finally, Md is squeezed to Me, which is the predicted output state and is very close to the desired output, Mf.

As a counterpart of Figure 5, Figure 6 shows the successive reshaping process of the training object. The object is
marked by pl, p2, p3, p4, and dashed lines. The weight vectors applied to stretch the object are shown in Ma and Me.
(The weight vectors are not shown with exact scale, rather they show the approximate application directions.) Figure
6-Ma is a 3D view of the training object, where one can visualize the effect of the bias node: the 2D object is placed in
the space with an extra dimension and shifted to the unity location in that dimension. Figure 6-Mb and 6-M, show the
2D view of the training object, where p1 and p4 nearly coincides with each other. In 6-M, the third dimension is not
shown and corresponds to the axis that is perpendicular to the figure plane and passes through the origin. In 6-Mj and
6-M,, the object is shown on a straight line for the object has been squeezed to a ID space. One can observe that the
topological appearance of the training object is evolved gradually from the input state to the output state. Obviously,
visualization of the successive reshaping process would be difficult, if not impractical, when the object dimension is
greater than three.
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Figure 5. Successive matrix transformation of the 2-bit XOR problem
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Figure 6. Successive reshaping of the training object of the 2-bit XOR problem
The training object is associated with the state matrices i., Mb, K, Md. and i in Figure 5.
The weight vectors associated with [W](1) and [WJ(2) are shown in states MA4 and M.

5. Implications of the Interpretation

Although the illustrated xoR problem is an n-to-I binary mapping function, the interpretation also holds for mappings
that are continuous and multidimensional (i.e., n-to-rm). This is obvious since, firstly, the intermediate state matrices
actually possess real numbers even for binary mappings, and secondly, the interpretation is independent of the dimen-
sion of state matrix. With this interpretation, the training of MFN can be interpreted as the process to find out how to
reshape the training object from the input state to the desired output state, i.e., to decide the directions, strengths, and
perhaps the repetition times, of hyperstretchings and hypersqueezings. On the other hand, the use of MFN for predic-
tion can be thought of as the result of successive reshaping: a novel input is marked in the continuous input space, when
the entire input space is reshaped to the output state, the marked location represents the predicted output.

From Figure 6, one can observe that during the sequence of reshaping, the topological appearance of the training object
is evolving toward that of the desired state. The evolving principle is that after each reshaping operation, those points
that are close to (or far away from) each other in the desired output state tend to be pulled closer (or pushed further
away) to each other. This observation will be elaborated in the next section, where novel schemes for quantifying map-
ping nonlinearity are presented based on this observation. Discussed below are a few more implications of the inter-
pretation.

Generalization with MFN

The property of generalization in MFN has been particularly elusive. Mathematically, generalization is different from
interpolation in that interpolation always predicts an outcome based upon the neighboring samples, while generaliza-
tion allows the prediction to be made on the basis beyond the neighboring samples. Take the n-bit xoR problem as an
example. The interpolation tends to predict a wrong outcome due to the fact that in the input space, each point always
has an output value that is opposite to that of its immediate adjacent points. Hence if the prediction is based on neigh-
boring samples, it tends to yield an outcome that is similar to that of its neighboring points, i.e., a false one. On the other
hand, it is well known that the MFN can predict satisfactorily with such problems: it can overpass the neighboring
barrier to achieve the generalization.
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This property can be explained from the viewpoint of reshaping the training object. For the n-bit xoR problem, if one
marks each training point at input state with the corresponding output value (either 0 or 1), the mapping function must
exhibit certain symmetry. Due to this symmetry, those regions with insufficient number of training points will also be
reshaped in a correct manner and hence a novel input may get mapped into a correct output through the symmetrical
relationship with respect to the weight vectors. In other words, it is this symmetry that makes the generalization pos-
sible. Should the input state training points be insufficient to characterize the symmetry (if such symmetry exists) of the
underlying mapping function, generalization would not be possible. On the other hand, should the underlying mapping
function possess no symmetry, the generalization would be meaningless and the MFN would behave like a regular
function approximator.

Uniqueness of Weight Vectors
Another frequently asked question is "For a trained MFN, is the set of weight vectors unique? If not, what is the rela-
tionship between the feasible solutions?" The first question can be restated as "Is the set of intermediate states of a
trained MFN unique?" to exclude the situations where the weight matrices consist of different permutation of weight
vectors. From the perspective of successive reshaping, it seems that the answer must be negative, i.e., the set of inter-
mediate states is not necessarily unique. In the sequence of reshaping, one may distort the training object more strongly
in certain reshaping directions, while compensate with less distortion in other directions. Consequently, it would result
in different sets of intermediate states. From this point of view, redundant hidden nodes in an MFN can be thought of as
unnecessary stretchings/squeezings, which would obviously result in different intermediate states in addition to caus-
ing undesirable over-fitting effects.
The relationship between all feasible sets of weight vectors can be explained from the perspective of optimization (i.e.,
the minimization of the error function). Since the feasible intermediate states appear to be continuously reshapable to
each other, tha corresponding weight vectors must exhibit a form of ridges in the weight space. In other words, the
global minimum of the error function appears to be hyper-ridges that have infinite number of minimum, rather than a
valley with a unique minimum.

Linear Separability
With the presented interpretation, the linear separability[Nilsson, Pao] can be interpreted as the feasibility of reshaping
a training object from the source state to the target state with only a fixed number of stretchings and squeezings (i.e.,
one hyperstretching and one hypersqueezing), where the number equals the number of output nodes (or the target
space dimension). Obviously, if the topological appearance of input and output states differ from each other consider-
ably, the fixed number of stretchings/squeezings can not achieve the desired transformation. In such situations, the
successive reshaping is required where one has freedom to apply more stretchings/squeezings, and/or repeat hyper-
stretchingsihypersqueezings (the number of repetitions is corresponding to the number of hidden layers). For a trained
MFN, one finds that any two adjacent states automatically satisfy the linear separability.

6. Concluding Remarks
The essence of the geometrical interpretation is that the training samples are regarded as two states, input and output, of
an imaginary training object which is multidimensional and pliable. The weight matrix between two adjacent layers,
including the activation function, is associated with a reshaping operation: the matrix multiplication is thought of as a
hyperstretching and the activation function is thought of as a hypersqueezing. By successive hyperstretchings and hyp-
ersqueezings, the training object is transformed from the input state to the desired output state, through the intermedi-
ate states associated with hidden layers. This interpretation is valid for multidimensional (n-to-m) mappings including
classification problems, as well as for both binary and continuous mappings. A 2-bit xon problem was illustrated to
show the successive reshaping process. The evolving principle in a trained MFN is observed as follows: the points that
are close to (far away from) each other in the desired output state tend to get closer to (further away from) each other
after each reshaping operation. This interpretation may have solved many mysteries about MFN. In particular, the gen-
eralization of MFN seems to be the result of certain symmetry within the underlying mapping function. In the second
part of this paper, the interpretation will be extended to introduce novel schemes for quantifying mapping nonlinearity
based on the spatial characteristics of mapping samples.
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Abstract:
This is the second of a two-part paper. The geometrical interpretation of MFN presented in Part I allows the map-
ping nonlinearity to be quantified based on the spatial characteristics of training samples. The normalized object
distribution vector (ODV) is introduced as a generic representation of a multidimensional object. This representa-
tion is independent of the dimension, as well as the size, location and orientation, of the objecL. Based on ODV, two
types of measurement are suggested to gauge the mapping nonlinearity between mapping samples: the distribution
angle a, and the maximum distribution gradient P . To facilitate the training process (or avoid hard-learning
situations), one should try to reduce ot and JA during the preparation of training samples. The schemes are sup-
ported by results of numerical experiments, including an elaborated one-to-one and continuous mapping example.

1. Introduction
This is the second of a two-part paper. In Part I, a unified geometrical interpretation of the behavior of multilayer feed-
forward networks (MFN) was presented. There, MFN was shown to be a successive matrix transformation mechanism,
where a matrix can be thought of as representing a state of the imaginary training object The successive matrix trans-
formation was shown to be analogous to a sequence of hyperstretchings and hypersqueezings of the training object
This interpretation holds for both binary and continuous function mappings, and for mappings where both input and
output spaces are multidimensional. More importantly, the interpretation has opened up a new perspective to the prob-
lem of quantifying mapping nonlinearity, a perspective in view of the spatial characteristics of training samples. Con-
ventionally, efforts on quantifying mapping nonlinearity (also called mapping complexity) have been made from a
statistical view point. For example, [Baum] suggested a relationship between the number of training samples and the
number of hidden nodes. More recently, [Koiran] der.ived a stricter relationship between the two numbers by taking
into account a specific spatial characteristic of the training samples, the smallest distance between two samples that
have different outputs (for classification problems). Unfortmnately, these results do not help much in practice as one
still must struggle with determining appropriate numbers of hidden node4/layers and accommodate slow training (or
hard-learning) when dealing with complex applications such as (Lee]. In this regard, the second part of this paper con-
centrates on exploring how one can possibly facilitate a training process, or avoid hard-learning situations.
This paper suggests that the mapping nonlinearity which the training samples exhibit should be an effective indicator
for the degree of learnability (or trainability). Moreover, it is the spatial characteristics of the training samples that is
essential to the mapping nonlinearity, far more so than merely the number of samples. (In this regard, the work of [Koi-
ran] is more meaningful than [Baum]). In this paper, the mapping nonlinearity is used as an antonym of mapping simi-
larity, ie., the similarity between inputs and outputs of mapping samples. The normalized object distribution vector
(ODV) is introduced as a generic representation of a multidimensional object. Two types of similarity measurement are
suggested based on ODV: the distribudon angle, a, and the maximum distribution gradient, Am%. These schemes are
supported by results of nnwrical experiments, including a continuous one-4o-one mapping example.

2. Quantifying Mapping Nonlinearity
Part I has shown that during the sequence of reshaping, the training object is so twisted that its topological appearance
becomes moe and more similar to that of the desired output state. If such similarity between any two states can be
somehow quantified, the same schemes can be used to gauge the similarity (or nonlinearity) in any mapping set. How-
ever, it is not straightforward to quantify the similarity between any two states of a training object, for the dimensionali-
ty could be different in the associated states. In addition, the overall size of the object is scaled up and down by stretch-
ings and squeezings. In this paper, it is assumed that the similarity measure is independent of the size as well as the
dimensionality of the training object. Hence, to conduct the similarity measure, one has to first represent the state of the
multidimensional training object in a way that is independent of the object size and dimensionality. The normalized
object distribution vector (ODV) is introduced for this purpose.
Object Distribution Vector (ODV)
The ODV is defined as a vector to characterize the distribution of all point vectors on a training object. The components
of an ODV are obtained by sequentially enumerating all distances between every pair of training points. Given a train-
ing object V* that is represented by n point vectors:
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Figure 1. Euclidean distance vs. Angle. Figure 2. A hard learning case.
(a)souce state, (b)after stretching; (c) after squeezing.

Vabj = (pi Ii--,... , pi E R'"
then

ODV(Vbmj) dj I d( f= distance between pi and pi; pi, pj E Vbj; i > j; ij=,...,n J.

The number of components in an ODV equals n(n-1)12, where n is the number of point vectors in the associated object.
It is important to note that the ODV representation is independent of the dimensionality of object: an ODV essentially
transforms an m-dimensional object that has n point vectors into a point vector in an n(n-1)12 dimensional space, re-
gardless of the dimensionality m. Moreover, ODV is not affected if the entire object Vbj is translated or rotated in the
associated space. If all components in Vobj are scaled linearly, the associated ODV will also be scaled in the same man-
ner. Hence, a normalized ODV is a representation that is invariant to the location, orientation, and size, in addition to
the dimensionality, of its associated object. Subsequently, the similarity measure between two states of a training ob-
ject becomes the similarity measure between two point vectors (the associated ODVs) that have the same dimension.

In the numerical experiments conducted, it was found that the ODV can be modified in a specific way to improve the
performance of similarity measure. A siml :a approach is to subtract the minimum component in an ODV from every
component (ie., all components are down-shifted so that the minimum is 0). Such a modified ODV, denoted as MODV,
is more appropriate for the similarity measure with binary mappings.

Distribution Angle: a
The Euclidean distance is a common measume of the similarity between two point vectors.[Kohonen] Suppose V1 and
V2 are two ODVs; nj, n2 represent the normalized vectors of VI and V2 respectively. One can find that the Euclidean
distance between nI and n2 (denoted by d) is a function of the angle between V, and V2 (denoted by 0). This relation-
ship is explained in Figure 1, where

cos 0 = VIOV 2/(QVI IV21)
1 .V/ IVII

n2 a V2/V 21
i, - 212 = inP + W2 P- 2n42

= I + 1 - 2 (VI/lV0.(V2/V20)
= 2(1 - cos 0).

i.e., d2 = 2(1-cos 0).

Therefore, the similarity measure between two states of a training object is conceptually equivalent when using either
the Euclidean distance between the associated normalized ODVs, or the angle between the associated ODVs. The
angle measure is more intuitive and is adopted in this research, referred to as the distribution angle, cL. From the stand-
point of reshaping, the smaller the a between two states, the more similar the two, and the more likely that the trans-
formation between the two requires fewer number of stretchings and squeezings. (The distribution angle that is mea-
sured based on MODV is referred to as modified distribution angle, q..)

Distribution Gradient: [5
Apart from the distribution angle, the maximum distribution gradient is introduced as another type of mapping nonlin-
earity based on ODV. One can identify a specific hard learning situation as explained in Figure 2. Suppose pl, p2repre-
sent two points in the source state, and W is a weight vector. During the reshaping operation by W, the two points are
stretched to ploW and p2eW first, and then squeezed tof 3 (pleW) andf,(p 2eW), wheref, is the activation function:

f(x) = 1/(1 + e-Z). (1)
Let d,, d, and dt denote the distance between the two points at the source state, the state after stretching by W, and the
state after squeezing, respectively, i.e.,
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do - I Pt - P2 1, (2a) * x = l J e x

d, = I pl*W -p2eW I. (2b) .- -
and d =if ptMOW) -f(p 2 .W) . (2c) - d -=f.) -o.5
Equation (2b) can be rewritten as d 0..2--

d, = I p, - p2 IWI cos 0, (3) - -__- _

i.e,, IW = Ipj-P21cosO (4) Figure 3. Relationship between d, and 4.

The relationship between d, and d is explained in Figure 3. For an object with length d,, the maximum length after
squeezing should be dim" = 2(%,(d,12)- 0.5), which is obtained when the center of the object coincides with the origin.
If the center of the object is placed elsewhere other than the origin, the length after squeezing will always be smaller.
Therefore,

4 :g dg = 2Q;s(d./2) - 0.5). (5)
The equality holds when the origin coincides with the center point between Pl and p2. Substitute (1) into (5) and get

d, >2 In ((+ 4)(1- 4)) (6)

Substitute (2a) and (6) into (4),
2 In ((1+ )/(l- dg)) (7)

Sd, cos 0
Equation (7) shows the required magnitude of the weight vector that can reshape, by stretching and squeezing, two
points from source state to target state. This magnitude depends on the angle 0 and the distances between two points at
source and target states, d, and d. From the perspective of 0, one sees that the most efficient weight vector (i.e., with the
smallest magnitude) for reshaping the target points is in the direction parallel to the difference of the two point vectors
at the source state (i.e., when 0 = 0). In such cases, equation (7) becomes

2 In ((1+ 4)/(1- di))
ds

This equation shows that under two situations the magnitude of weight vector, IWI, will increase dramatically: (a) when
4approaches I for a fixed d,, and (b) when d, approaches 0 for a fixed d (note that 4 is within !0, 11 ond d, > 0).
Situation (a) is less sensitive to IW because the value of the numerator in equation (8) increases slowly % , respect to
d. For example, with tolerance 0.1%, a desired d, of value 1 can accept a predicted dt of 0.999. The numerator is then
2/m((1+0.999)/(1-0.999)) = 15.2, which is not too large. The major concern is with situation (b), which shows that if there
is a pair of sample points whose d, is small while the corresponding d is not small enough, it will require a very large
weight vector to reshape (i.e., separate) the two points. If such a weight vector is not offered by any weight matrix in
MFN, either one of the two samples will never be learned by the network, i.e., one or the other will be a stubborn
sample. On the other hand, if one purposely includes such an outstanding weight vector in a weight matrix in order to
learn the stubborn samples, it is likely that the overall performance of the hyperstretching will be deteriorated, as the
outstanding vector may tend to dominate the overall direction of the associated hyperstretching. Hence, it is clear that a
mapping with this type of stubborn samples is hard to learn. Note that in equation (8) the d could equal 1. To avoid the
problem of division by 0 and only emphasize situation (b), this research suggests using an alternative, the ratio between
4 and d,, as a rough and quick estimation of equation (8),

IWl > d /ls. (9)

Equation (9) expresses the hard learning situation as when the ratio between d and ds is large. In other words, it is
difficult to reshape two training points whose distance at source state is small while at desired output state is large. This
is consistent with one's intuition: if similar inputs yield similar outputs, it is easy to learn; if similar inputs give rise to
quite different outputs, the learning would be difficult. Based on equation (9), the Distribution Gradient Vector, DGV,
is introduced below for the purpose of checking the existence of stubborn samples. The "gradient" refers to the ratio of
the similarity (in terms of distance) between the source state and the target state. Let V, and Vt represent the ODV of a
training object at source state and target state, i.e.,

Vf=fi Isi ieR, si >0,i=l . n),
Vt= {In tRj O,i=l ... n).

Then the associated DGV is defined as the vector which consists of the ratio between every pair of source state distance
si and target state distance t4:

DGV (V,Vo = (gi I gi= IdSj, t CVt, sj Gv,, £=).n}.
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In this research, the gi is convened to an angle by the function tan -J (arc-tangent) and is denoted as P. The maximum
component of DGV is denoted as Pou,, and is suggested as the second type of measure for mapping nonlinearity. Em-
pirically, it was found that during the preparation of training samples, one should avoid a large (e.g., no more than
a threshold, 88 degrees).
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Figure 4. Successive Reshaping Example for a Ix2x2xl MFN.
a. input state; b, desiredoutput state; e, predicted output state; d input/output mapping;
e, the first intermediate state;f, die second intermnediate state.

label Inpa Inter. State I Iter. State 2 Predicted Desired A B , N 0
State O oqm A

A 0.0429 (0.2543 0.0162) (0.8306 0.7719) 0.6078 0.5879 B 0 "tgk0272 ... 0.8637 0.90351
C 0 , . 0.8365 0.87631,

B 0.0793 (0.2729 0.0214) (0.8677 0.7347) 0.6284 0.6403 ... 8365

C 0.1064 (0.2872 0.0263) (0.8905 0.7052) 0.6145 0.6414 AU ' 0694 0.10921

D 0.2009 (0.3402 0.0537) (0.9417 0.6027) 0.4325 0.4257 N 0 -%%,,,.03981

B 0.2062 (0.3433 0.0559) (0.9435 0.5976) 0.4200 0.4093 0 4

F 0.3284 (0.4185 0.1339) (0.9647 0.5337) 0.2714 0.2412 Figure 5. Distance Matrix and ODV for the input

G 03740 (0.447 0.1811) (0.9643 0.5496) 0.3255 0.3371 state of the lx2x2xl example.

H 0.3939 (0.4606 0.2054) (0.9626 0.5651) 0.3772 0.4014 I nt Qu u

I 0.4427 (0.4924 0.2750) (0.9530 0.6250) 0.5797 0.5871 Input 8.9 25.8 41.2 41.6

J 0.4816 (0.5178 0.3398) (0.9375 0.6901) 0.7534 0.7291 Interl 20.4 41.0 41.4

K 0.6181 (0.6054 0.6005) (0.7708 0.8970) 0.$07 0.8013 Inte12 3 8. 3862

L 0.7919 (0.7U72 0.8547) (0.5178 0.9634) 0.0866 0. 1253 OU! 6.2---~----
Table 2. Distribution angles for the lx2x2xl ex-

M 0.8735 (0.7494 0.9178) (0.5279 0.9649) 0.1058 0.0512 ample. (Interl and Inter2 are for the 1st and

N 0.9429 (0.7819 0.9506) (0.5834 0.9606) 0.2418 02351 2nd intermediate state; Outp and Outd are

0 0.9827 (0.7991 0.9634) (0.6253 0.9562) 0.3986 0.4141 for the predicted and desired output state.)

Table 1. Raw data of 15 training samples

3. Numerical Experiments and Discussions
Extensive numerical experiments have been conducted to validate the proposed schemes for quantifying mapping
nonlinearity. Selected results of the experiments are presented here: an MFN model that approximates a continuous
one-to-one mapping is used to illustrate the evolution of training object. In addition, the distribution angle ar is verified
with several MFN models.

Evolution of Training Object
Figure 4 illustrates the successive reshaping of a one-to-one and continuous mapping. There are 15 training
samples, trained by an MFN with a configuration I x2x2x 1.The use of two hidden layers and each with two
hidden nodes was intentional - in this manner, the intermediate states of training object are 2D and therefore
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Figure 6. Evolution of ODVs.
a input state; e the first intermediate state;f the second intermediate state; c predicted output state.

can be visualized easily. The 15 samples, labeled from A to o, are listed in Table 1 with the input state, the
desired output state, the predicted output state, as well as the two intermediate states at hidden layers (after
stretching and squeezing).

The data in Table I is shown schematically in Figure 4, where there are 6 curves (including 3 straight lines) marked as a,
b, c, d, e andf. Curves a, b and c represent the input, the desired output and the predicted output states, respectively -
they are shown with straight lines since they are associated with ID space. The minor deviations between b and c are
negligible, i.e., the desired output and predicted output are considered equivalent to each other. Curves d, e and! are
drawn inside a unit square. Curve d shows the mapping relationship between the inputs and outputs (solid line marks
the desired outputs and squares mark the predicted outputs). By taking the horizontal axis as the input state and the
vertical axis as the output state, one can visualize the mapping relationship. In this case, it shows a wave-like form. (In
fact, the underlying mapping function is in the form ofy=x-sinx. The samples are randomly chosen from within (0, 4U1
and both inputs and outputs are normalized to [0,1]). The mapping relationship is not always visualizable - it is easy to
visualize only when the output space is ID and the input space is below 3D. At this point, one is advised to not be
distracted by the mapping curve, since the mapping relation is indeed unrelated to the explanation of successive re-
shapings. Instead, curve e andfare what need to be emphasized: e andfcorrespond to the first and second intermediate
state of the training object respectively.
In Figure 4, the imaginary training object is shown with a single dash line connecting all training points sequentially,
from pointAto point o. Note that on curves e andfonly the first three points, A, a and c, are labelled and one can easily
trace the remaining points. Now the successive reshaping of the traiaing object can be represented by four curves se-
quentially, i.e., a -4 e -4f-4 c. One may observe how the training object isfolded and twisted from the input state to the
output state - the points that are close to (or far away from) each other at output state tend to get closer to (or further
away from) each other during the reshaping process. This is exactly the evolutic 'iciple observed in the previous
section.
The reshaping process can be also visualized from the perspective of ODVs. Figure 5 shows how the ODV associated
with input state is obtained. By listing all the distances between every pair of points, one can come up with a distance
matrix. (Figure 5 only shows a portion of the entire distance matrix for the input state.) Apparently, this matrix is sym-
metric and its diagonal elements are all 0. Hence, essentially the ODV is defined as the upper (or lower) triangular
portion of the distance matrix (no need to include the diagonal). One can display this triangular matrix in a 3D view,
e.g., by attaching two axes along the directions of row and column of the matrix, and the third axis to show the magni-
tude of elements. In this manner, the ODVs associated with curves a, e,f, and c in Figure 4 are shown in Figure 6, where
each ODV is shown as a 3D view as well as a 2D contour plot. The sample sequences are the same at both column and
row directions, i.e., from point A to point o, as shown in Figure 5. Such sequence resulted in a single smooth hump in the
3D view of the input state ODV. Obviously, the appearance of ODV is directly affected by the sample sequence in both
the row and column directions. It is important to note that, in Figure 6, the evolution principle can be recognized more
easily in view of the heights of elements. The elements that are high (or low) in output state tend to become higher (or
lower) during the reshaping process.
a,6 and N
The distribution angle a is defied for measuring the similarity between two ODVs. Table 2 lists the a values between
each pair of ODVs that are associated with the five states of the I x2x2x I MFN. The notations Interi and Inter2 refer to
the first and second intermediate states; Out, and Outd refer to the predicted and desired output states. The a i- listad in
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degree. The smaller the a, the more similar the two ODVs. The data on the first row exhibits a trend of increasing (from
left to right), which means that the input state is most similar to its adjacent state, the first intermediate state, and be-
comes moe and more dissimilar to the states after more reshapings. In fact, the data on same rows and columns all
follow the same trend (decreasing from top to bottom in a column). Therefore, it appears that a is a rational measure for
the similarity between two states of a training object.
In Table 3, the same set of training samples are trained by two different MFNs. With the IxlOxI MFN, a follows the
uniform increasing/decreasing trend well. However, with the I x8x8x I MFN, the trend is disturbed by data such as 19.6
and 39.7. This disturbance must be due to the fact that the lx8x8x I MFN indeed contains too many redundant hidden
nodes that lead to the undesired over-reshaping effect (recall that lx2x2xl is sufficient with two hidden layers).
Table 4 shows a for a binary mapping example, the 4-bit xoR problem. The training samples 'sed are the full set of
mapping points (i.e., 24=16 samples). The net configuration is 4x3x1. Both the regular distribution angle a arid the
modified distribution angle o; are tabulated and the convergence trend is better with a.. In fact, in several other ex-
periments with boolean mappings, oM always performs better than a. However, for continuous mappings, the differ-
ence in performance between a and a. is not significant.
In another experiment, the 4-bit xoR problem was trained by a 4x2x1 MFN, where an insufficient number of hidden
nodes were intentionally used (i.e., 2 hidden nodes) in order to obtain an under-fitting intermediate state. It was found
that during the training process, the maximum distribution gradient & of output state vs. intermediate state increased
sharply when the training process was reaching a saturation point - in terms of gradient angle, Pm was approaching
90 degrees.

Inter. Ou- OUrd Inter/ Intei q Ouid O__
Input 10.1 41.5 41.6 X Input 7.0 17.1 41.4 41.6
Inter. 38.6 38.7 X Inter 19.6 39.7 39.,
Ou 2.6 Inter2 41.0 41.1

Table 3. Distribution Angle a for MFNs IxIOxI and Ixx8xl.

Regular Distribution Angle Modified Distribution Angle
Inter. Ou p Outd Inter. Ou, Out

Input 38.0 46.85 46.9 Input 46.4 59.5 59.6
Inter. 50.7 50.8 Inter. 50.7 50.8
Outp, 0.3 Out, 0.3

Table 4. Distribution Angle a and ac, for 4-bit XOR mapping (MFN: 4x3x 1)

4. Conclusion
Based on the geometrical interpretation presented in Part 1, this paper introduced the normalized object distribution
vector (ODV) as a generic representation of the multidimensional training objects. This representation is independent
of the dimension, size, location and orientation of the associated object Based on ODV, two types of measurement are
suggested to gauge the mapping nonlinearity between any pair of source/target states. The first type is the distribution
angle a and the second is the maximum distribution gradient &m. With a and &=, one can then try to reduce the
mapping nonlinearity within the mapping samples so as to facilitate the training process or avoid hard-learning situa-
tions.
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Abstract

We describe an extension to the Associative Reward-Penalty, or AR-p, algorithm for solv-
ing nonlinear supervised learning tasks utilising multi-layer feed-forward networks. We in-
troduce a variant of the AR-p algorithm, called the 'Unbounded' reinforcement AR-p. The
method utilises a quantised real-valued reinforcement, which is a payoff metric optimised by
an associated Critic Net.

1 Introduction

The underlying principle of the Associative Reward-Penalty, AR.p, algorithm is that a binary
(scalar) reward signal is broadcast globally across a network. The reinforcement signal "r" is
then utilised by each unit in the net, to determine their weight updates. The premise is that the.
stochastic nodes in the net are given credit or reinforcement if the net gives a 'successful' output.
The net is given a debit or penalized if its output is wrong [1). The initial research of Barto [2]
defines the reward signal r E [0, 1) in his P-model as:

r = I with probability 1 - e. or r = 0 with probability e. (I)

where the error c0 is the mean-square output error of the net.
This means the reinforcement is deduced solely as a function of the output error and the present

input stimuli, which we term primary information. The scalar reward has a very low information
content and as such can not give credit to a good action as precisely as Barto's (2] S-model, where
the reward signal 0.0 < r* < 1.0 is a real-valued variable, defined by:

ry = 1 - co (2)

The S-model requires a large bandwidth signal to be broadcast to all the units in a net. This
has significant repercussions if one is considering mapping the S-model to hardware, as the reward
signal would not be a single binary control line, if one considers a network as being supervised
by an external training environment (R) that provides input stimuli to the network and monitors
the output action of the net. It is of interest to note that the At-p algorithms do not utilise
secondary information, such as past data obtained from the environment R. In this paper, we
describe an extension to the AR._p algorithm which uses secondary information which is based
on tracing the frequency of 'stimuli' occurrence and then using this to derive a prediction of the
reinforcement.
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2 The Sigma-pi Neuron Model

The neuron model we utilise has previously been termed a Sigma-pi unit [3) , these units are
similar to pRAM units [4] and as they are RAM based they may be placed in the same category
as PLN units [5] or the more recent GNU units [6]. We use the stochastic model Direct Output
Node (DON). The activation of the DON, for the Analogue case, is defined as:

a 19 0(. T + Fliz,) (3)
it i=l

where zi defines a set of probability distributions for an input address formed from a set of Boolean
variables {Xi), given by

1+ 1Z) (4)

Given x E {xI, x2, ...Xi} is a binary input vector which may be represented as a set of bits in
positions x, to xi. The site address p E {pl ,12, ...p.} is represented by a set of bits in positions
it, to pi. The site value S,, is addressed by the binary string p. The site value S. stores a value
Sp' E {-S,,, S,,}. Then for the stochastic model

a = Z (Sp)P(,) =< SS'.) > (5)

The output y of the DON is defined as equal to the activation a and

P(F = III) = ,(S) (6)
l+e

Then the output y =< a(S,) >. The output behaviour of these units is similar to that of
Boltzmann units [7].

3 Training Artificial Neural Networks by Error minimisation

The goal of the learning regime is to minimise a mean-square output error term:
1

V4. Nv -V 2 (7)
VIv

where [.]2 is the square error per input stimuli, defined on the output. This is summed over all
Nv output units or visible units. The sum is over the set , of these visible units. The error is
the difference between the target response V, of output j for a given input/output pattern pair,
and the sigmoidal value of the site. a(Sj), where p specifies a site address.

3.1 Unbounded Reinforcement AR.-p Training

The external reward has been previously defined in (1), where r0) E [0, 1] is a binary scalar value.
The external reinforcement, in the case of unbounded Reinforcement, is then scaled:

rQ) = (2 •(e)) -1 (8)
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where ?() E [-1,+1] is of the form utilised by Barto, Sutton and Anderson [8]. The scaled reward
signal is then used to derive an improved or internal reinforcement signal, given by:

f(t) = r) + 7 P(t) - PV(t -,) (9)

where P,(t) is the presenat prediction and P,(,-,) the past prediction. It should be noted that this
is not the same as Barto's [8] original work, where he uses the prediction values P(t) and P(-1).
We use the present and previous prediction values for the given site address v. The coefficient
0.0 < - < 1.0 has previously been termed the "discount factor" by Barto et. al. [8]. The
prediction value is updated by:

Ap,,(:+l) = fIr(t)4v(t) (10)

where 0 < / < 1 is a positive constant deteimining the rate of change of P,(.). All the input
eligibility traces are updated using:

V. Zu(t+1) = Ai(i) + (1 - A)x,, (11)

for all input addresses 0 < u < il, where il is the maximum input address (i.e. for an 8-tuple
It = [(28) - 1] or 255 decimal or FF hexidecimal), and where lambda 0 < A < 1 determines the
eligibility traces decay rates. The binary value x,, is a trigger for the eligibility trace, and when
the site v is addressed xv = 1 and all other non-addressed traces are updated with x5 = 0. The
internal reinforcement r(t) is then re-scaled

= + 1.0) (12)

which denotes a quantised real-valued reinforcement -1.0 < r*,) < +2.0, that is defined as the
unbounded r*,) internal reinforcement which permits penalisation even when A = 0.
The net is then trained substituting r(t) = r() which is the unbounded internal reinforcement,

wHile the standard AR-p regime utilises r defined in (1). Then each node j, given site address
/1, updates its site value according to the following equation:

= a[yrl - (S )Jr(1) + aA[1 - - a(S?0)](l - r(t)) (13)

4 Discussion of Theory

In the original work of Barto [2] he utilises a scalar Reinforcement signal. In the above we replace
this with a quantised Reinforcement signal based on the present external Reinforcement and past
and present prediction values. We utilise the Adaptive Critic Element (ACE) of Barto, Sutton
and Anderson [8] to inaximise r(j) over time by maximising rT,) in the immediate future. Barto's
method may be thought of as a 'temporal difference' (T.D.) method [9] as he utilises data that
relates to the past and present events to enable a payoff metric to be optimised, where the payoff
was used as a "prediction" or "expectation" of a future Reinforcement [10]. The prediction values
are calculated with reference to the ACE's input eligibility traces, where the eligibility is a trace
of events over time [8].

The eligibility trace may be described as follows; given a pathway between two neurons, the
pathway is said to reach maximum eligibility a short time after the occurrence of a nonzero input
signal on that pathway. The input eligibility traces are averages (i), where the bar (7) denotes an
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exponential average over time. Each input to the Adaptive Critic Element is given its own trace
in Barto's original study.

In our case we store the eligibility values in an n-tupte. The input eligibility (q) is interpreted
as; given an 'i' bit input vector {x 2, .... X}, which addresses location 'v in an eligibility U-

tuple, giving an eligibility v(t) E [0, +i,], that is specified as a 'q' bit number, having D = i,, + 1
discrete levels. Heice if , = 8 then ;cv(,) = {0.125n I it = 0, 1,.. N) where N = l.t/0.125 =
These inpi't eligibilty traces increase when the inp;at is active, and decrease to zero with time in
the absence of future activity.

The adaptive critic is utilised to predict an internal Reinforcement, the procedure the adaptive
critic follows is; given an external reward r(g) signal at time t, the critic then deduces an internal
Reinforcement r*e) signal based on the external Reinforcement r(t) and the present P(t) and
past P,,(t-i) predictions. The future prediction value is then derived as a function of the input
eligibility trace. Finally all the input eligibility traces are updated. One should note that the
predictions are quantised and stored in an n-tuple in the same manner as the eligibility trace.
Where P(.) E [0, +I',], giving D = P, + 1 discrete levels, which are stored as a q bit number.
Hence if Pi = 8 then P(.) = f0.125n I i = 0, 1, ...N} where N = 1.0/0.125 = Pi. The internal
reinforcement r) is calculated using P(e) and Pg-1), hence the unbounded reward signal is defined
as r*.)E [-r,, +2r,], giving D = 3r,, + 1 discrete levels, which is a q bit number. Then the
unbounded reward utilised in (13) is defined as r*.) = {0.125n I= -N, ...0, , ...... 2N}, given
N = r, and for all our simulations P = tit = r, = 8.

5 Simulation Results

5.1 The 8-3-8 encoder

We utiise the 8-3-8 encoder of Hinton et. al. [11], which they used for their research into the
Boltzmann machine, it is a simple abstraction of the recurring task of communicating inforia-
tion among various components of a parallel network. We use this to benchmark the learning
algorithms, because it is clear what the optimal solution is and it is non-trivial to discover it.

The encoder is made up of two groups of visible units, designated v1 and v2, representing the
two systems that wish to communicate their states. It should be noted, that the vi units are
passive, just used to communicate their inputs to the next layer of the encoder. Each group has
V units. In the simple formulation we consider here, vi and v2 are not directly connected but
both are connected to a group of H hidden units, with H < V, so h may act as a limited capacity
channel through which information about v1 must be transmitted with optimal coding. In all
our simulations we begin by setting all the site values at the start of the training to S,. = 0, then
a(S,) = 0.5, giving P(Y = 1 Ip) = 0.5, i.e. 50% probability of the output Y obtaining a value
"I", i.e. no prior information has been bestowed on the network. Hence finding a solution to such
a problem requires that the two visible groups come to agree upon the meaning of a set of codes
without any prior conventions for communicating through h.

5.2 Experimental Delimitations

The results presented show a graph of the error eo where

=~ C =M kN (14)
,&=-I k=1
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is the average error over Ni, = 100 trained networks, after 6000 training cycles have elapsed, over
all N, training patterns, where co is the mean-squared o:tput error (7) of each training vector.
The training vector set used were hexidecimal numbers {FO,78,3C, IE,OF,87,C'3, El, hence
N; L 9. The training set was randomly ordered for each sample and a different seed was given to
the stochastic operator of the net at the start of each training session. The training vectors each
have four adjacent set-bits. This means that there are 192 valid codes, which represent 0.0011%
of all possible code solutions. For all the experiments p = 0.3, A = 0.0, S... E [-10,+10] and

, =it,L =r,, =8.

Error

I I

0.1 0. 050 3060

Figure 1 Average log error C, versus log a, for Sigma-pi based 838-encoder
with 8 training vectors having four set-bits. (The graph shows the average er-
ror e-,, over 100 nets, after the networks have been trained for 6000 cycles. The
lighter solid line shows the error for the standard scalar r E [0, 1] Reinforcement
AR..p. The heavy solid line shows the error for the unbounded internal reinforce-
mtent -1.0 < rM +2.0.)

The plot of log error e- against log a is shown in Figure 1. The learning rates used were.
a= 0.1,0.25,0.5, 1.0,2.0,5.0, 10.0 & 20.0 . The graph shows that unbounded Ast-p reduces the

average percentage error over all eight learning rates, when compared with standard AR..p, by
10%.

6 *Concluding Remarks

The unbounded Reinforcement Associative Reward Penalty AR-P gives increased efficiency of
training when compared to the standard AR..P. This we hypothesize is due to the fact that the
unbounded reward signal is able to reward/penalise the net to a higher degree. If, for example,
the external rewardl is a penalty signal and the temporal difference between the predictions is a
negative quantity (i.e. Pq(i) < P,,(,_1.)), then the internal reinforcement is reduced, and the net is
then penalised to a greater degree. The converse is also true, as the internal Reinforcement would
be increased if the external Reinforcement sigiial is a reward and the temporal difference between
the predlictions is p~ositive (iLe. P,(t) > P,,(i-..) ). It is of interest to note that the unbounded
AR...) training methodology permits penalisation of the net even when the penalty coefficient is
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set to zero, as the internal reward signal may be negative, normally the net is only penalised if
the penalty coefficient A is non-zero.
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AwSFKACT
Fuzzy encoding is the process of determining the respective degrees to which a datum belongs to a collection of

fuzzy sets and subsequently using these membership grades in place of the original datum. This procedure is
similar to 1-of-n intervalization encoding except that gradual transitions occur at interval boundaries.

This paper examines the efficacy of fuzzy encoding the input data presented to artificial neural networks
employing the back-propagation algorithm. A general problem is described and defined in two, three, four, and
twenty dimensions. Performance results obtained from two groups of trained artificial neural networks are
compared and contrasted: one group used non-encoded data and the other used the corresponding fuzzy encoded
data. The networks using the fuzzy encoded data consistently attained superior classification rates compared to
their non-encoded countziparts. Moreover, these results were achieved using significantly fewer iterations.

Finally, performance results obtained using this process on a set of "real-world" data, namely, 1-dimensional
magnetic resonance spectra of thyroid biopsies, are discussed and compared with results obtained using other
techniques. Once again, the fuzzy encoded networks outperformed the corresponding non-encoded networks.
However, when some conventional enhancements were made to the networks, the performance of the non-encoded
networks improved appreciably while the fuzzy-encoded networks suffered some performance degradations.

1. INTRODUCTION
The artificial neural network (ANN) paradigm has consistently demonstrated its effectiveness as a robust

classification technique. The back-propagation network (BPN) [1] has served as a workhorse and a touchstone for
many fruitful inquiries. This paper investigates the utility of fuzzy encoding as a preprocessing method for BPNs.

The BPN architecture that is used in this investigation has the following characteristics. The transfer function,
tr, is the logistic function,

tr(x) = (1+ )-1  (1)
and the global error function, E, is

E = 0.5X((dk -o )2) (2)
k

where the dk's and ok's are the respective components of the desired and actual outputs and the weight changes are
calculated using the standard gradient descent strategy

Awj t° = -cc(aE/ faw,") (3)
where x, the learning coefficient, is set to 0.9. No momentum term is used.

Fuzzy set theory is an extension of Boolean set theory developed by Zadeh [2]. Fuzzy encoding involves taking a
single input value and intervalizing it across a collection of fuzzy sets, thereby producing a list of degrees of
membership for each of the fuzzy sets. In other words, if we have n fuzzy sets and fi is the membership function for
the ith fuzzy set then the list of values for an input value x is {fl(x), f2(x), ..., fn(x)). Selecting intervals for the
fuzzy sets is usually an experimental or heuristic process and is similar to the techniques used In standard 1-of-n
intervalization encodings. The purpose of intervalization is to reduce the effects of noise in the data as well as to
transform the problem in such a way that a non-linear regression model such as BPN can provide better solutions.
The fuzzy membership functions are easily defined once the intervals have been selected because the definition
corresponds to 1-of-n intervalization with the addition of gradual transitions at the respective interval boundaries.

2. TEm CLASwmCAI'ON POBtLEM
Data were generated that fell into two classes: those points that were bounded by a set of hyperplanes and those

that were outside the region. Figure la illustrates the problem in two dimensions. A point, (xI , x2 ), is considered to
be class I if -0.75<xl<0.75 and -0.75<x 2<0.75, otherwise, it belongs to class 0. Four lines, HI through H4,
perfectly separate the two classes. For an n-dimensional problem, a point (xI , x2, .... xn) is considered to be class I
if -0.75<xi<0.75 for all i=l, 2, ... , n or class 0 otherwise. Further, 2n hyperplanes will perfectly separate the two
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classes. In the ideal case, a BPN will find the 2n hyperplanes. It should be noted that (at least) 2n processing
elements (PEs) in the hidden layer are needed, corresponding to the 2n hyperplanes.

However, in practice a BPN may not find these hyperplanes. Figure I b illustrates a suboptimal solution for the 2-
dimensional problem using three lines. In this case, one of two events will have occurred: one of the hidden PEs
will have weights that are similar to one of the other three PEs in the hidden layer (in which case it will duplicate
the functionality of the other PE); or, the weights of one of the PEs are near zero in which case it contributes
negligibly'to the outcome. It should be noted that even when only three hyperplanes are used, a BPN may converge
to a point where a majority of the vectors will be correctly cOnssified. However, this benefit may also be considered
a disadvantage - when it begins to converge to a solution, a BPN is not able to escape from the associated local
minimum to determine if better solutions exist. This is a result of the gradient descent strategy - the error cannot
increase, thus when the algorithm begins to converge towards a solution it cannot diverge from it.

-0.75 0.75

000.75 H43

o o o

HI H2 "I H2

Figure 1: a) The Problem in Two Dimensions b) A Non-Ideal Solution

3. CONVENTIONAL ENHANCEMENTS TO THE BPN
A number of enhancements may be made to BPNs that: increase the rate of convergence; increase robustness; or

improve the accuracy of the final results [3]. Using the hyperbolic tangent function as the transfer function instead
of the logistic function typically improves the performance of a BPN. The transfer function's output is a multiplier
in the weight update formula. The logistic function's range of [0, 1] may cause a bias towards learning larger
values. However, the hyperbolic tangent function is bipolar, hence this will not occur. A gain term, g, may also be
introduced into the sigmoid,

tr(x) = (I+ e-xg )-1 (4)
A large gain value may increase the rate of convergence but at the same time makes the BPN more susceptible to
pitted error suifaces and may cause wild oscillations during learning.

Different learning and momentum rates may be used for each layer and/or after each of a set of predetermined
number of iterations. A typical scenario is to use large learning and momentum values for the initial layers and/or
the initial sets of iterations and successively smaller values for subsequent layers and/or sets of iterations. The end
effect of this modulated learning strategy is to search for gross data features at the initial layers and/or during the
initial sets of iterations and successively refine these detected features by subsequent layers and/or sets of iterations.

A number of preprocessing techniques may also be applied to the data before presentation to a BPN. Data may be
scaled and normalized in order to avoid saturation of the sigmoid by large input values (with respect to other input
values). Uniform or gaussian noise may also be added to the ANN in order to make the system more robust.
Principal component analysis may be performed. Fuzzy encoding falls into the preprocessing category of
enhancements and its efficacy will be examined in section 6.

4. IDEAL SOLUTIONS
Figure I a suggests that the ideal solution for the n-dimensional problem requires exactly 2n hyperplanes. If a

step function is used as the transfer function

tr(x) = 0,x > 0 (5)

then the solution is straightforward. For each dimension, i, we have a pair of hidden PEs corresponding to the pair
of hyperplanes used for that dimension. The weights for the corresponding coordinate, xi, are set to 1. The weights
are set to 0 for the remaining coordinates. The weight value between the first PE and the output node is I and -1
for the second. The bias for the first PE is 0.75 and -0.75 for the second. Finally, the bias for the output PE is
-(n-e), where e is a small real. III xi is bounded by the corresponding hyperplanes then the sum of the pair of PEs is
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large, otherwise, it tends towards 0. If all coordinates, xt, x2. ..., xn, are bounded by their respective hyperplanes
then the sum of the outputs of the 2n hyperplanes is large.

Of course, a BPN cannot use the step function as a transfer function because the gradient descent strategy
requires a differentiable transfer function. Moreover, because the logistic function produces continuous values
between 0 and 1, it smoothes the output values instead of providing a discrete, non-continuous jump from 0 to 1.
The smoothing nature of the sigmoid tends to affect the results such that data points near the boundaries become
misclassified. One way to compensate for this is to use a gain term with the logistic function. As the gain term
approaches infinity the logistic function tends towards a step function. Unfortunately, large gain terms usually
cause the BPNs to wildly oscillate. However, if we use the logistic function without any gain, we can still get an
ideal solution if we change the bias values and input weights for the hidden PEs (figure 2). In fact, the larger
values (two orders of magnitude) tend to produce the same results as those where a large gain term is used. The
advantage, though, is that this approach does not tend to cause wild oscillations.

I H2 H3-
Hi 1ol 143 144

75 .7 7 75

100 0 1 S 0 1O 0 10

Figure 2: An Ideal 2D Solution Using the Logistic Function

5. FUZZY ENCODED BPNs
In the experiments, four triangular fuzzy sets were selected at intervals of [-l ,-0.5], [-0.5,0], [0,0.5], and [0.5, 1],

respectively. The fuzzy membership functions are:
f1(x) =v(1-21x+.7J), f 2 (x)=Ov(1-2x+.21), f 3(x)=Ov(l-21x-.251), f 4(x)=Ov(1-2x-.71) (6)

where x is the input, and v and A are the max and min operators, respectively. Figure 3 shows the architecture of a
fuzzy encoded BPN comparable to the non-encoded BPN shown in figure 2. Additional runs were made using 8
triangular fuzzy sets for each input value (see section 6). It is fairly straightforward to derive a formula to generate
a collection of fuzzy membership functions. First, select the number of fuzzy sets, n, that are to be used. Let li be
the left boundary and ri the right boundary of the ith fuzzy set. Let b be the boundary value at the intersection of the
fuzzy sets. For simplicity, b is constant for each intersection. Let w be the width of the top of the trapezoid of the
fuzzy sets. Finally, let x be the non-encoded input value. Then,

fi(x) = lA(Ov(l+w-2 l+w- Ix-0.5(l, +r)I)) (7)

It should be noted that if w=0 then the fi's correspond to triangular fuzzy sets (see figure 4).

Figure 3: A BPN with Fuzzy Encoding

When b is at least 0.5 then there exists a strict 1-1 correspondence between the fuzzy encoding and the original
input value. Since a particular fuzzy encoding can be produced by only one input value, the fuzzy encoding of the
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data does not change the nature of the problem. If b is less than 0.5 then we have a 1-many correspondence and
the information content oz the fuzzy encoding is reduced and hence the nature of the problem is changed.
Furthermore, because of the relationship across each fuzzy set, tl.e encoding does not introduce any extra degrees
of freedom into the problem. As a matter of fact, there are situations when the dimensionality of our specific
problem can be reduced. Also, even though more connections are introduced into the BPN than with the associated
NE experiments, no additional data are required to train it.

w1.0

b
0.5

0.0
1 1rr2

Figure 4: Fuzzy Set Construction

6. EXPERIMENTAL DETALs
The generated data were neither scaled nor normalized. For each specific n-dimensional problem, one hidden

layer was used that contained 2n PEs. After some initial trials, the number of iterations was fixed for each set of
experiments in order to more accurately compare the performance of a BPN using non-encoded (NE) data versus
the corresponding BPN using fuzzy encoded (FE) data.

The data range for the classification problem is [-1, 1) and is discretized in intervals of 0.1. Apart from ensuring
that vectors were randomly selected from the entire pool, the overriding constraint was to ensure that there was an
equal number of class 0 and class 1 vectors in the training sets. For each 2-, 3-, 4-, and 20-dimensional case, 100
training and testing sets were generated in order to provide a more statistically accurate set of observations. Each
set was then fuzzy-encoded and paired with its corresponding non-encoded set. For each experiment, a fixed
number of iteration was used. After the training phase stopped, the test sets were run through the BPNs to
determine how well they performed. The weights were also recorded for subsequent analysis. For purposes of this
discussion, some representative experiment pairs were selected from the 2--dimensional cases.

In the 2-dimensional case, the NE version of experiment 87 (figure 5a) that yielded perfect clssifications, is
very similar in structure to the BPN found in figure 3. That is, the relative magnitudes re similar and the signs
identical for each respective weight and bias value. This suggests that each hidden PE corresponds to a unique and
significant hyperplane. The NE version of experiment 31 (figure 5b) produced an accuracy rate of 86%. Note that
the PE, H4 (shaded), contributed little to the final outcome. In this case only three hyperplanes are used thereby
degrading overall performance. The NE v.ersion of experiment 23 produced poor results. This is to be expected
since three of the hidden PEs duplicate the functionality of the remaining hidden PE and this implies that only one
hyperphne is used. In the FE versions of all the experiments, perfect results were achieved. The structures of the
corresponding BP s suggest that the information content is more uniformly distributed through each BPN.

Tables li-iv list the overall classification rates (averaged over 100 runs) and the iteration count for several
different experiments. In all cases the FE BPNs that used four fuzzy sets attained their classification rates with an
iteration count of roughly an order of magnitude less than their NE counterparts. Moreover, when eight fuzzy sets
were used an additional order of magnitude reduction in the number of iterations was achieved. These significant
reductions do not precisely translate to corresponding increases in speed because there are roughly 4 times the
number of computations that have to be performed for the FE BPNs using four fuzzy sets (8 times for the FE BPNs
using 8 fuzzy sets). Nevertheless, taking this fact into account, the FE BPNs performance were still many times
better. It should also be noted that when 8 fuzzy sets were used the FE BPNs were somewhat sensitive to
overtraining. That is, as the iteration count increased, their performance with respect to classification success was
slightly degraded.

Table Ii clearly indicates that the FE BPNs outperformed their NE BPNs counterparts for the 2-, 3-, 4-, and 20-
dimensional cases.

Table I ii lists performance results when varying amounts of gaussian noise were added to the first coordinate of
the 2-dimensional data sets. The FE BPNs produced comparable or more accurate classifications with far fewer
iterations. It should also be noted however that NE BPNs tended to produced better results than their noise-free
counterparts. This suggests that the introduction of noise is indeed a useful enhancement to BPNs.
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Figure 5: a) NE BPN with Four Hyperplanes b) NE BPN with Three Hyperplanes

The distribution of the training data in all of the previous experiments was uniform. Additional experiments
were run for the 2-dimensional case to determine how well the two types of networks performed if the training data
were not uniformly distributed. Training data were carefully reselected to ensure non-uniform distributions: two
distinct bimodal distributions and two distinct skewed distributions. Results in table liii indicate that FE BPNs
again consistently outperformed NE BPNs and with far fewer iterations.

NE Iters FE-4 1ters FE-8 Iters
i) 2 dimensions 86 300 100 50 100 5

3 dimensions 83 600 100 100 99 10
4 dimensions 90 2000 100 200 99 100
20 dimensions 85 5000 98 500 98 200

ii) 2DNoise (5%) 100 400 99 90 99 9
Noise (10%) 99 400 99 90 99 9
Noise (20%) 81 400 99 90 98 9
Noise (30%) 92 1500 92 400 97 50
Noise (40%) 88 1500 90 400 90 50

iii) 2D Bimodal I 39 2000 97 60 99 5
Bimodal 11 95 2000 92 60 98 5
Skewedl 80 2000 100 60 97 5
SkewedII 87 2000 100 60 97 5

iv) Choline 1 64 1400 92 3 84 0.1
Lipid 1 80 4000 88 5 88 0.4

v) Choline II 96 600 96 10 76 1
Lipid i 100 2000 92 25 80 3

Table 1: Classification Resu!ts (as percentages) averaged over 100 runs
(FE-4=fuzzy-encoded data using 4 fuzzy sets, NE=non-encoded data
FE-8=fuzzy-encoded data using 8 fuzzy sets, Iters=number of iterations (xl ,000))

7. A REAL-WORLD PROBLEM
One-dimensional magnetic resonance (MR) spectra were obtained at 360 MHz for 25 thyroid biopsies: 16

papillary carcinomas and 9 normal. Two spectral regions were analyzed: the main lipid CH2 and CH 3 peaks,
0.64-2.59 ppm; and the choline-like species, 2.59-3.41 ppm. Analysis was based on 170 input points for the
choline region and 400 input points for the lipid region. It has been demonstrated in [4] that an ANN can be
constructed that produces a robust classification of thyroid biopsies given their MR spectra. The inputs to the ANN
were the ten best principal components of the original data that accounted for 97% of the total variance. In this
paper, BPNs using the original spectral regions are used without any preprocessing (principal component analysis)
and compared with BPNs using the corresponding FE spectral regions. Twenty experiments were run for each case
described below. Unlike the results discussed previously that were based solely on the test data, the average
performance results listed in tables 2iv-v are based on all of the data (due to the scarcity of the data).

Four fuzzy sets were constructed for each input coordinate and the FE data were generated (680 and 1600 input
points for the choline and lipid regions, respectively). In order to effect uniform coverage, quartiles were computed
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for each coordinate and the fuzzy sets were constructed around them (see figure 6). The intersection, b, was set to
0.5 for all sets. Subsequently, eight fuzzy sets were constructed by dividing each quartile in half. Table 2iv lists the
performance results. Once again FE BPNs outperformed their NE counterparts. What is particularly surprising is
the rate of convergence for the FE BPNs (for instance, the NE BPNs used to classify the lipid regions are 800 times
slower than the corresponding NE BPNs).

0.5

S m Qu

Figure 6- Fuzzy Sets for Magnetic Resonance Data

Finally, comparisons were made using BPNs with some enhancements: momentum term; modulated learning;
hyperbolic tangent function instead of the logistic function; and data scaling. In this case, the FE BPNs using four
fuzzy sets performed as well as their NE BPN counterpart for the choline region but slightly poorer results were
obtained for the lipid region (table 2v). Although convergence still occurred much more quickly with the FE BPNs,
the NE BPNs converged approximately twice as quickly with enhancements as without, whereas the FE BPNs
converged roughly 3-5 times more slowly. Moreover, when 8 fuzzy sets were used, the overall classification rates
were significantly poorer. Since data scaling occurred after the data were fuzzy encoded, the information content of
the FE data may have actually changed, thereby affecting the nature of the problem. It was noted that when at least
one of the BPN enhancements was deactivated, the FE BPNs performance results approached those found in the FE
BPNs without any enhancements. This sensitivity of FE data to conventional BPN enhancements warrants further
study.

8. FUTuRE AcTviTS
A number of research activities need to be pursued to further test the effectiveness of fuzzy encoding, not the

least of which is further experimentation employing "real-world" data. Trapezoidal fuzzy sets may be used to
determine if they are of any additional benefit. The 1-1 correspondence is lost and this will affect the information
content of the input values bui the resulting BPN may become more robust. Further analysis is required concerning
the sensitivity of FE data to BPN enhancements. Methods, other than uniform coverage per input unit, need to be
examined for the selection of the type and number of fuzzy sets. For example, a clustering method such as fuzzy c-
means (5] or Kohonen self-organizing maps [6] may be used to intervalize the data.

This paper has demonstrated the efficacy of fuzzy encoding input data for artificial neural networks that employ
the back-propagation algorithm. Compared to their NE counterparts, FE BPNs consistently produced superior
classification results with dramatically improved rates of convergence. Additional areas of inquiry need to be
examined, especially employing "real-world" data, but the initial results are extremely promising. In parti,
since the volume of M,,. spectral data used for clinical diagnosis is growing rapidly, a variety of multivariate
techniques such as ANNs need to be used in order to quickly and accurately classify them. Fuzzy encoding should
be considered as another tool in this arsenal.
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Improving Generalization with Symmetry Constraints

by

N. Scott Cardell, Wayne H. Joerding, and Ying Li
Washington State University, Pullman, WA 99164

Abstract'

This paper presents research on the benefits of using a priori information about the symmetry
of cross-partial derivatives to improve generalization. We show how to impose the symmetry
constraint on a global training algorithm and demonstrate its efficacious use with a problem
in economics.

1. Introduction
This paper presents preliminary results from our research into imposing a priori informa-
tion on feedforward neural networks. We take as an example the imposition of symmetry
constraints suitable when using a feedforward network to approximate a system of nonlinear
equations derived as the gradient of some known or unknown function. This problem can
arise in many fields. For example, in geology detection of magnetic anomalies depends on
the gradient of a gravitational potential function. In economics, the condition for profit
1iaaximization sets the gradient of the production function equal to the real input prices. In
electrical engineering, the non-linear behavior of a MOSF.-T device depends on the gradi-
eat of the device response function with respect to drain and gate source voltages. In each
of these cases observations on the gradient of a non-linear response function can represent
important, or even the only, information about the phenomena of interest, such as in the
magnetic anomaly example.

The universal approximation capabilities of feedforward networks make them good can-
didates for a semi-nonpararnetric approach to modeling non-linear functions, but traditional
implementations ignore a prori information about the problem implied by the symmetry of
cross-partial derivatives. In this paper, we show how to impose symmetry constraints and
demonstrate their usefulness in an example taken from economics.

2. Symmetry in gradient vector equations
Let V," R"* - R represent a twice differentiable function of k0 inputs, and %'(x) = VO*(x)
its k0 dimensional gradient vector. If we were to observe a sample (on,xn), where o, =
tV*(x,,) + e,,, n = 1. N, e,, a mean zero noise term, then we could use the data to train a
network to approximate the unknown function and its derivatives on a compact set (see, for
example, Hornik, Stinchcombe, and White (1989, 1990)). Sometimes, however, we do not
observe a number o,, but instead observe a vector y, = t'k(x,) + e, where en represents a
vector of mean zero noise terms. In other cases we observe both o,, and y,.

'This research was partially funded by National Science Foundation Grant No. SES-9022773.
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In either of these cases, approximating the unknown response functions T, and/or %P can
benefit from using the a priori information that the Hessian matrix for tp*(x), defined by the
k0 x ko Jacobian V%'P(x), must be a ko x ko symmetric matrix. In other words, the symmetry
of cross-partial derivatives defines a property that a network approximation of P'P(x) should
also satisfy.

In this paper we consider using a single hidden layer feedforward network to approximate
'P when one only observes y,. 2 Let 'P(x) represent a feedforward network with k0 inputs,
k2 = k0 outputs, and connection weights W. We seek to approximate "P* : X - R"" for
qome set X C Rk using the network 'P. The above reasoning demonstrates that we should
require %P(x) to satisfy symmetry for all x E X. We define 'P(x) - WIF(Wox) as a single
hidden layer network with k, hidden units and connection weights IV = (W0 , WI), where
the W6's represent kj+j x ki weight matrices, F(WOx) (f(Wo, 1X),. .. ,f(wo.kx)) T , a vector
of activation functions, and woA represents the hth row of Wo. Let wk,e.j represent the (1, i)
element of Wk, f' = L and f[ -f'(wo,ix) for some x E X. Then

as
OF

V'P(x) = F(Wox)W
T , where V =- x

Ox
= I f2 0.2

(0 0 .. f)W (")

Let v,,j(x) define the (?,j) term of V*(x). Then

0.,(x)= wol'(wox)waj. (2)
tI

Therefore symmetry requires that

41
,(x) - ,,,(x) = 3 f(wolx)[ 1?,,j.,. - ulot..,i = 0 (3)

for i = 1,., ko - I and) = + l, ,k0 . We can express the 4-(4-1 constraints defined
by (3) more con' ctly by

wTF'(W ox) - 0 for all E x{' 1  (4)tj(i=,I+1 i....ko

where F'(x) = (f'(wO1x),.... ,'(wO x))T and w, represents a ki x 1 vector of the
[wo.gtwl..j - wo~rtjwi terms from (3).

3We defer the more general problem in which one obserms both o,, and y. to future work.
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Cardell, Joerding, and Li (1993) show that under fairly general conditions (4) can be
satisfied if and only if wj =0 0. From the definition of wij we see that this requires

Wo,eawi,,,e = Wot,,wi.ji for i = 1,...,k 0 - 1, (5)
j = i+1,...,k0.

Or, alternatively,

wit =/1w0f, for { ,...,, (6)

for some k, x 1 vector of constants/1 = (#1,.,)T
The universal approximation capabilities of feedforward networks, as described in Car-

roll and Dickinson (1989), Cybenko (1989), Hornik et al. (1989, 1990), and Ito (1991, 1992),
explain much of their usefulness. Thus, we do iot want to lose these capabilities when
imposing the symmetry constraints described in (6). The Symmetry constraints require sat-
isfying equality conditions, and so pose somewhat more danger of reducing the universal
approximation capability than do inequality constraints. (See Gallant Gallant (1982), p307,
for an example using inequality constraints.) This derives from the reduced dimension of the
function space that satisfies the symmetry constraint. That is, because functions satisfying
equality constraints occupy a lower dimension subspace of the unconstrained function space,
there may not exist a network that satisfies the symmetry constraint and comes arbitrarily
close to any function with a symmetric Hessian matrix. Fortunately, it turns out that net-
works satisfying the kind of constraints defined in (6) possess the same type of approximation
capability described in Hornik et al. (1989, 1990), see Cardell et al. (1993).

Finally, we note that one can use results in Cardell et al. (1993) with the results in
White (1990) to show that a constrained network that minimizes the sum of squared errors
converges consistently to the gradient system V**(x). Thus, there exist appropriate growth
rates for the number of hidden units to insure that trained networks converge almost surely
to the true gradient system.

3. Training
Training seeks values for the weights that minimize the sum-of-squared errors SS = v, (y. -

q1(x,.))T(y - *(x.)) subject to the constraints (6). The constraints in (6) provide a straight-
forward extension for many training methods but especially so for hybrid methods such as
described in Li, Joerding, and Genz (1993) or Webb and Lowe (1988). At each iteration
these hybrid methods update the W0 matrix and then solve k2 systems of overidentified lin-
ear equations, (y,. = wi,,F(Wx,.), n = 1.... , N), i = 1 k2 .. to compute the W, weights
given Wo.

We can take the same approach to the constrained problem by altering the nature of the

linear least squares sub-problem. Specifically, we solve a system of linear equations with the
typical equation

(#Te VT)U,ff(WO. X. + ')" f w (Wok. X. + Uk,) (). 4,(0)j T, (7)
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where n = 1,...,N, i = 1,...,k 2 and p, represents a bias parameter for the iZ' hidden
unit and 0 = (06,. ) represents bias parameters for each of the output units, and
11(i), .. ., I(i) form a vector of indicator variables such that Ih(i) = 1 if i = h, 0 otherwise.
Thus, instead of having k2 systems of equations with N equations each and a total of k, (k0 +
1)+k 2 (kl+1) parameters, the constrained sub-problem has a single system of k2 x N equations
and kl(ko + 1) + ki + k2 paraneters. Since computation time in the sub-problem increases
as the square of the number of parameters, each iteration of the constrained algorithm takes
more time than the unconstrained algorithm.

4. Example
Presumably, the use of a priori information can improve the ability of a network to generalize
out of sample. (See Joerding and Meador (1991) for more discussion.) To demonstrate this
effect we take an example from our own field of economics. A well-known result in economic
theory concludes that a profit-maximizing firm sets the gradient of the production function
with respect to factor inputs (such as capital and labor) equal to the real input prices.
Sometimes economists do not observe output levels of a firm but do observe input levels
and real factor prices. From these data economists can recover some characteristics of the
unobserved production process by relating input prices to factor input levels, in other words,
by approximating a relationship of the form y. = '(x,) + e.. To make the best use of
expensive data and to improve generalization the network approximator to ip should satisfy
the symmetry constraints described above.

Of course, the a priori information must be correct for it to benefit generalization. We
also expect a priori information to have the most value for small sample sizes. Thus, for
our demonstration we generate a modest amount of data from a known data-generating
process (DGP) and then seek to approximate that process with various single hidden layer
feedforward networks. Specifically we generate 10 different samples of 50 observations each
from the gradient of V(x) - xi42x where x, represents capital and X2 represents labor inputs.
The input data come from random selection of points in the square [1,20] x [1,201. Ve then
use these data to train networks with 2,4,6,...,28 hidden units, measuring the approximation
error (AE) of the resulting networks by summing the absolute deviation of the network from
the true value at each point on a mesh covering the domain of the input data. Lines on the
mesh have a .5 spacing.

As noted above, the number of free weights grows more quickly in the unconstrained
networks than in the constrained. Thus, we limit training of unconstrained networks to
26 hidden units. This results in the number of free weights varying from 12 to 132 for
the unconstrained networks and from 10 to 88 for the constrained. We train the network
using a hybrid algorithm based on simulated annealing to find a global minimum to the
sum-of-squares function, see Li et al. (1993). Taken together we have 130 observations on
the approximation error for unconstrained networks and 140 observations on constrained
networks. We then fit these AE values to quadratic and cubic equations in the number of
hidden units, H, and the number of free parameters, K. Plots of these fitted polynomials
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are displayed in Figures 1 and 2. Note, although this is not clear in the picture, the N line
lies everywhere above the N, line in the right side panel of Figure 2. Also, the N cubic lines
decline for very low numbers of hidden units and free parameters, an anomaly that does not
appear in a quartic polynomial.

The plots show that the symmetry constraint lowers the approximation error almost
uniformly and postpones the onset of degraded approximation as the number of hidden
units increases. The postponement effect shows up most strongly when plotted against the
number of hidden units (left side of figures). Because the number of hidden units is the
only complexity control parameter in a feedforward network, this represents an important
advantage for constrained networks.

10 N AE N
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Figure 1: Quadratic approximation of approximation error, AE, for unconstrained N, and
constrained, No, networks as a function of the number of h:dden units, H, and the number
of free parameters K.
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Figure 2: Cubic approximation of approximation error, AE, for unconstrained N, and con-
strained, N~, networks as a function of the number of hidden units, H, and the number of
free parameters K.

MI- 653



References
Cardell, N. S., Joerding, W. H., z Li, Y. (1993). Symmetry constraints for feedforward net-

work models of gradient systems. Tech. rep., Washington State University, Department
of Economics, Pullman, WA 99164.

Carroll, B. W., & Dickinson, B. D. (1989). Construction of neural net using the radon
transform. In Proceedings of the International Joint Conference on Neural Networks,
Vol. I, pp. 607-611.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematical
Control Signal Systems, 2.

Gallant, A. (1982). Unbiased determination of production technologies. Journal of Econo.
metrics, 20, 285-323.

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward netN
universal approximators. Neural Networks, 2, 359-366.

Hornik, K., Stinchcombe, M., & White, H. (1990). Universal approximation of an unknown
mapping and its derivatives using multilayer feedforward networks. Neural Networks,
3(5), 551-560.

Ito, Y. (1991). Approximation of functions on a compact set by finite sums of a siginoid
function without scaling. Neural Networks, 4(6), 817-826.

Ito, Y. (1992). Approximation of continuous functions on rl by linear combinations of
shifted rotations of a sigmoid function with and without scaling. Neural Networks,
5(1), 105-116.

Joerding, W. H., & Meador, J. L. (1991). Encoding a priori information in feedforward
networks. Neural Networks, 4 (6), 847-856.

Li, Y., Joerding, W. H., & Genz, A. (1993). Global estimation of feedforward neural networks
with hybrid uls/simulated annealing. In Proceedings of the World Congress on Neural
Networks, pp. 443-447 New York. IEEE Press.

Webb, A., & Lowe, D. (1988). A hybrid optimization strategy for adaptive feed-forward lay-
ered networks. Tech. rep. 4193, Royal Signals and Radar Establishment Memorandum,
Ministry of Defence, Malvern, UK.

White, H. (1990). Connectionist nonparametric regression: Multilayer feedforward networks
can learn arbitrary mappings. Neural Networks, 3(5), 535-549.

111-654



The Error Absorption for Fitting an Under-fitting (Skeleton) Net

Zhengrong Yang
Shanghai Institute of Metallurgy, Academia Sinica, 865 ChangNing Rd., Shanghai, 200050. P. R. CHINA

Absract
The macro and micro mechanism of error absorption have been developed for fitting an under-

fitting (skeleton) net in this paper. The theoretic analysis and experimental results are also given in this
paper,

I. latroductia

In past few years, a lot of researchers have paid attention to the improvemem of the
generalisarion performance of neural networks. For example. Mozer [I) proposed a skeletonization
method at the Colorado University in 1989. He determined the functionality or relevance of individual
hidden and input units using the knowledge in the net. His basic idea was training the net to a certain
criterion, computing the measurement of relevance, and trimming the least relevant units. Yann [21
developed a method called the "Optimal Brain Damage" at the AT&T Bell Laboratory in 1990. He
derived a nearly optimal schemes for adapting the size of a neural network using the information-theoretic
ideas. Weigend (31 introduced the information theoretic idea of minimum description length into the
weight elimination of the neural network at the Staffoni University in 1991. Ramachandran [5) removed
the superfluous hidden units bsed on their information measures, which borrowed from decision tre
induction techniques at the Texas University n 1992. Zimmenmann [6] designed the active and deactivate
test variables for elimination process at the Siemans Coperation in 1992.

All methods mentioned above skeletonized an over-fiting neural network with different
measurements. Ther are two problems associated with them. The first is how to choose an initial (over-
fitting) net, which will affect the process of skeetonizatim. For example, if 100 hidden units is an optimal
solution, the initial net with 0 hidden units will have longer process of skelewnization than the initial
net with 200 hidden units. In general, it is difficult to choose the suitable initial net, although there wer
some papers describing how to choose the optimised structure. The second is that there are some abysses
and many local minimum's in the training Icess [71. If one chooses a larger initial net, there will be
larger possibilities that the training sinks into an abyss or sticks at a local minimum such that the final net
still has lower generalisation performance.

Sethi (8) has developed a new type of skeleton neural network. This net has no redundant
weights for erro absorption. If one trains this skeleton net, the generalisation performance will not be
higher because of the absence of redundant weights for error Absorption. Our experiments have shown that
if we train this skeleton net with some added redundant weights. the generalisation performance will be
improved to some degree. A skeleton net is called the under-fitting net and the process of adding some
redundant weights on the skeleton net is called the fitting process In this paper, a detail analysis of the
eror absorption mechanism and the experimental results a presented.

L. The Macro Melaaias of Error Abmrpioms
The mechanism of error absorption is composed by two parls: mcro mechanism and micro

mechanism. Most back-propagtion neural networks use the algorithm proposed by Rumehart [9) for
their weights updating:

AW -

i w
The structure information of a net is described as:

a=f -(x,)=7
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I u

where. A=a,, .lu 1al.uj Il is the activat-space of the input units, hidden units, and output units.

W = I I w,,(w,, is the weight-space of the weights between the input layer and hidden layer and the

weights between the hidden layer and output layer, and F = {{fh ,{1 f, I is the function-space of the
hidden units and output units. The uniform activate function is the sigmoid function:

-~I

A' = f = I+-
Ji l+e_1

The deduced weight-updating formulas ame:

aE M M

M 1(w-E k, fa.

From these weight-updating fomulas, one can find out that the error occurring at an output unit
will be absorbed through the weight-space by the units at the lower layers. In fact, the error occurring at
any output unit is synthesised from the units at the lower layers through the weight-space during the
forward-propagatit. The weight-updating is a back-error propagation process. which propagtes the
errors occurring at the ouut units back k the units at the lower layers and modifies the weight-space by
the gradient descent method.

h I h2  h3  h I h2  h3

Wo .1 W1 I (b) W v st W 2 W Vl

Figure I

Consider a net, which just has one output and two layers as shown in figure I. In figure I (a) the

output error e, L% absorbed by the hidden units h, and A2 through the weight-space W.. While in figure I

(b), the output error e. is absorbed by the hidden units h,. k and It through the weight-space W,. Thle

activate values o( x. and x. at the next time step can be obtained as follows:

u'. = fIl(w) +,Aw, )u,,, +(w2 +&w2)a, 2 = - I _____,_=

I+e _
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I ia =f(w 1 i+ Aw1 )a~ +(w2 +Aw2)aA2 +(w 3 + Awl)Ukij= . -x = ~~

I+e e

here. k. and k, are weigit-independen coefficients. Because of

kb, > k, >I! if (-W < 0)

kb <k. < Iif(->O),

then
el* t*I

That is, the error at xb will decay faster than at x. it can he concluded that larger weight-space can

improve the error absorpion mote than inaller weight-space. This was supported by experimental results

shown in figure 2. It is clear from figure 2 that the redutmdant net (the net with some redundant weights)
converges faster than the one without redundant weights. This is called the macro mechanism of error
abwyrptxwi.

j1W cm io Scomme Sheid md Redm Neft

0.3

0.2 - Skeiciom

f". -4---- RedfddamD

rraliim 40%6

Figure 2

3. The Mk-m M dams of Error Abeorpfom
If that are mor than one outwp uuts in a net. the output unit with the largest crrw will have

the largem conaiutitm io the net emmor and, this kind of ouqmt unit shtmk be selected for adding
reduin weight at first. Thi is becmai Otmugh the rmdunam weight. the error at this output unit can
hc absorbed pwltiadly by a unit at the loer layer. After the output unit is chsen, which unit at the k)wcr
layer has t, be .,dected i omeet &o this otpa unit hkd ctmsidered. Ctsider the muation shov'
in figumr 1:

x

h, h2  h1  h4
Figure 3
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Given the wated activate values of h, and h4 are a, and a4 respectively. if da > da,. a will havek , /1 14 is, 4

* *

larger deviation from a and a, will have smaller deviation from a^ (The derivatives on the units at

the lower layer can be obtaid by BP method). In qualitative view. h4 has less ability to let the error on x

parasite in it or has less "bty io absorb the error on x because its error is already larger. In quantitative
view, we can deduce a derivation on x:

1"* (w, -2a )Oda
(I+k k *e-Y )A

Given the appoxiumai condition that thert is no big difference among %4 s and among a s. Because of

ida 4 > d4, then.

,a'," ()<,,,' d",,).

Tha is, connectmg t) the unit with the mallest derivation al the lower layer will result in better error

4. Tie Perfermace M 0reuemt
In dus paper, two imporwv mea men used to measure d performance were:

(a) Training Error.

where. x is the Uv ouup voc of theu i training puterns and x is the actual output veLtrs responding

(b) Gencmahsabon Puformamne:

(;P-(I- fa .'r" )-100 ,

total tfew

where, the "faam*s is the number of the deciso failun when a urained net is used for diagnosis or

S. A*rian
The alsonrith is shown as hlkOWS:

Step I. Cont ung a skeleton net wA expert knowledge:
Sup 2. Pvepmag training daua and test dam
Step 1. Deetrwwuag &ie opfimised training pmeer
SWp4. Training;
Stp 5. If the #enmbmim performawce is .isfied. io step 7. else go on:
Sup 6. Applying the error absorption aw the neL Sot s p 4:
Step 7. Stop.
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6. The Experimental Results
Below, we present three experiments and their simulation results. The first and the last ones are

classification problems. The second one is an optimisation problem. All of them have the same
characteristic in that the initial skeleton net can be obtained by some expert knowledge.

Figure 4 gives the experimental results of partitioning the plane points into two fields and the
problem itself is a XOR problem 18]. Figure 4 (a) presents the simulation result with the error absorption
mechanism. Figure 4 (b) gives the simulation result without this mechanism. The fitting epochs are five
for both them. Clearly, with the error absorption mechanism, the generalisation performance has
increased up to 90%. as shown in figure 4 (a). But without the error absorption mechanism, the
generalisation has decreased down to 76%. Meanwhile, the training error decays with the error absorption
mechanism more than without the error absorption mechanism. For example, the training error reaches
0.008 in figure 4 (a), while one just reaches 0.017 in figure 4 (b). Figure 5 shows the results of finding a
minimum value among some values. Figure 5 (a) and (b) illustrate the simulation results with and without
the error absorption mechanism respectively. The fitting epochs are six both for them. In figure 5 (a), the
total tendency of generalisation performance has increased up to 98.5%. while in figure 5 (b), the
generalisation performance oscillations greatly. Figure 6 presents the same experiment as figure 4, but
with the momentum factor in the net. Figure 6 (a) and (b) present the simulation results with and without
the error absorption mechanism respectively. Because of the function of momentum, the difference is
smaller between the methods with and without the error absorption mechanism. However, adding
momentum factor means increasing the computational cost and space cost.

10.5 10.51
01 - lr - 0 -

1 2 3 4 5 1 2 3 4 5
Vkdft Epoch Fkft Epoch

(a) (b)
Figure 4 The experimental results of the plane point partitioning

10.5 10.5%
0 5 - u whu0 3

1 2 3 4 5 6 1 2 3 4 5 6
Fuin Epc Fm Eoc

(a) (b)
Figure 5 The experimental results of finding minimum value among three values
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0 I 0.8
0.6 0.6
0.4 0.4
.0.2 02.

1 2 3 4 5 1 2 3 4 5
FBwg Epoch inng Epoch

(a) (b)
Figure 6 The experimental results of the plane point ptrtitioning with the momentum factor

7. Conclusion
This paper has presented a new method for improving the generalisation performance of neural

networks. The mechanism of error absorption was developed for fitting an under-fitting (skeleton) net.
The experimental results have shown that it is very useful for one type of problems. where the initial
skeleton net can be constructed by the expert knowledge, and the training technique is used to overcome
the drawback of incomplete knowledge of expert. With this new method, sinking into the abyss can he
avoided and the generalisation performance improvement time is obviously reduced.
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Abstract

We propose a neural network system that sequentially obtains I/0 sample data. The sys-

tem selects useful sample data as training data, in what we call active data selection
(ADS), and interpolates errors between training data and the network output, called sub-
sequent revision (SR). ADS removes sample data if doing so only causes small errors.
To speed up ADS, we ignore errors generated by the network and consider only those
from SR.
We found that ADS steadily decreases errors and that SR gives suitable output, even if

the neural network's learning is still not adequate. Simulation demonstrated the ability of
the network to learn a sine function from sample data distributed unevenly in the input
space.

1. Introduction

Adaptive 1/0 systems that interpolate sample data are classified to two typical techniques -- storage or
learning. Storage techniques, e.g., the k nearest neighbors method, simply store sample data without learn-
ing until the data is interpolated and output. Although techniques of this type dispense with learning,
memory and processing requirements and the response time tend to increase with the amount of sample
data. Although learning techniques, e.g., the gradient descent method for a layered neural network, express
I/0 relationships compactly and shorten the response times, more time is needed for adaptation due to the

increased learning worldoad.

Combined techniques with sample data selection have also been proposed. In some studies [1, 2, 3],
the output is superimposed Gaussian functions associated with the sample data and constants or linear func-
tions. If the system performs well with new sample data, the parameters are updated using the gradient
descent method. If the system performs poorly, the data is used to add new Gaussian functions. The

criteria for selecting useful data is studied in other situations [4, 51. Oka proposed the system which
chooses the appropriate output of back-propagation or memory-based learning sub systems [6].

We combine a layered neural network, which learns by back-propagation, with storage techniques.
Active data selection (ADS) selects useful training data from sequentially given sample data. The training
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data is used for neural network Icaming and subsequent revisions (SR). which adjust the network output by
interpolating errors between the training data and network output. ADS selects training data based on the

principle that more errors occur when useful data is removed. ADS limits the amount of training data

stored, which prevents memory and processing requirements from increasing. The training data chosen by
ADS steadily decreases errors. SR adjusts the network output, to compensate for insufficient network

learning and enable the system to adapt quickly. The single-layered superposition of Gaussian functions

[1. 2. 31 is sufficiently easy to enable sample data to be evaluated for selection. The complex output of a
layered neural network, however, makes it difficult to evaluate sample data. To speed up selection, ADS
considered only SR errors and ignored those of the neural network to reduce the network learning workload.

2. System

2.1 SR

The proposed system generates an input-related output while adapting itself to sequentially given

sample data (Figure 1). When input vectorx is given, adjustment e(x) is added to the neural network output

f (x) in the adder to give an adjusted output Ax).

Neural network Aix) =fN(X) + e(x)

Input Comparison unit Output
P, ei

e(x)

~' I / " "Interpolation
'I I unit

I ,,Yi-N~i
30 Interpolation

A S Input
P,(x.Y..... ., Q,(X,. y) Sleep-data

ps '. *storage unitP a ir s -. . N p ai r s j

Active-data storage unit

Figure 1. Proposed systcm
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.Ax) = fN(X) + e(x) (1)

The three-layered network learns by back-propagation [7J using dataset A which is stored in the active-

data storage unit. Dataset A = (P, P2..... PM) is the set of sample data P, = (x,, y,) that represents up to M I/

0 pairs.
The comparison unit generates a set of errors e, (i = I to M),

e, = Y, -fN(x,) (2)

e= .ej Ws(x)expI x)
e(x)}= e(x: P. Pl..... F= -W(X) (3)

(x * x,)

e(x) = e, (x = x)

W,(x): Weight of error e, at x

x.x; Input of sample data

0: Exponential damping coefficient of output

which arm the differences between the neural network outputfN(x ) and the output y, of data P1.

To make the outputftx) equal the sample data y,. the interpolation unit derives the adjustment e(x) for

any input x from the set of output errors er The adjustment e(x) is the weighted average of e.

The wight W(x) is proportional to inverse distance from sample data's input x, to x (lx-xl) with expo-

nential damping (Figure 2).

W 1(z)= exp(D- +I) rfrx- , -Xfix9 - x,2)

D: Exponential damping coefficient of weight

The subjoined multiplication modulates the W i(x)
weight W(x) to make the adjustment e(x) smooth

in the neighborhood of the sample data's input. X

The weight W,(z). corresponding sample data P1.

is seriously affected by the other sample data P. X
when x exist between x, and z. The exponential

danping in Eq.(3) suppresses the adjustment e(x)

in the distame from any sample data.

This interpolation method is suitable for J

multidimensional inputs, and follows the sample Figure 2. Interpolation method
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data smoothly. Because of the storage technique, the response process and time of the interpolation unit

increase with the size of dataset A, but adapts rapidly.

2.2 ADS
The active-data storage unit holds dataset A = (P1 , P2 ..... P), which contains up to M pairs of sample

data P = (xeY) (i=1 to M), for use in the neural network learning and SR. As the network fetches new data,

it removes no longer needed data to maintain the size of the dataset. This is supported by the sleep-data
storage unit and dataset S stored in it.

If the sample data does not include noise, we must consider the difference between the output and

sample data output, selection criterion I, and the ease with which the output is estimated from adjacent

sample data, selection criterion 2. Squared error AC12,

Ae,= Ie,,- e(x,: P, P2.... ', P : .... P )2 (5)

which is the squared difference between the errors e, of the data P. and the adjustment e(x) without data P,
was used as the evaluation criteria (Figure 3). This includes the two selection criteria avove. The larger the
value, the more useful the data is. ADS is fast, because this does not involve the workload associated with

network learning.

y YP j A X) = f,%<X) + e(X )

P pi

0

e(xi: Pl, P2, .... Pi-l, Pi+ 1, .... PM

Input X

Figure 3. Evaluation critcria

3. Experiment

Simulation demonstrates that ADS enables the neural nctwork to rctain data with a suitable distribu-
ion, even when sample data is unevenly distributed. Our simulation involved learning a single-input,

single-output sine function:

y = (I + sin(2xx))/2 (6)

where input x and output y are in the range (0.0, 1.01.
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The simulation used 500 sample data (x,, y) satisfying Eq. (6); 90% of the sample data appeared in
input area A [0.0, 0.51 and the remaining 10% in input area B 10.5, 1.01. The data distribution in each area
was uniform. As the control a network system without ADS was tcstcd. The control discarded data on a
FIFO basis.

Tlhe neural network consists of three layers with a 1-6-1 structure. The active-data storage unit holds
up to ten sample data and the sleep-data storage unit up to five. Each time the neural network fetches new

data, 30 network learning iterations follow.

4. Results

Squared error E, relative to output
f(x), is represented by:

If [Ax) -f,. (x)]2 dV SR

where A~x): Output

f.(x): True function output .01

Squared errors of the system with %_
ADS decrease steadily. Without ADS, J

the errors do not decrease as much (Fig-
ure 4). SR also decreases the errors and .001
so compensates for slow learning in the _XDS

neural network. The system outputs
were measured based on 500 sample

data (Figure 5). Without ADS, large .0001
differences from f.(z) occur in input

area B (0.5, 1.01, where the probability

of data appearing is low. ADS, how-
ever, decreases errors in both areas. 0 100 200 300 400 500

Sample data

Figure 4. Squared errors

D,2 = 0. l0. =0.10
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5. Conclusion Ax) ADS + SR

We proposed a neural network system 1.0 .... f(x) SR

which is combined with storage technique. ()

Active data selection (ADS) selects useful 0.8
training data from sequentially given sample

data. The training data is used for neural net- 0
work learning and subsequent revisions (SR). 0 ==6='

which adjust the network output by interpolat- CL A.

ing errors between the training data and net- 0.4
work output.

Simulation demonstrates abilities of the 0.2
system. The training data chosen by ADS - -

steadily decreases the errors. SR adjusts the

output to compensate for insufficient network 0.0
learning and gives an adequate result. The pro- 0.0 0.2 0.4 0.6 0.8 1.0
posed neural network system responds and Input x
adapts rapidly to sequential learning.

Figure 5. Outputs after obtaining

500 sample data

D2 = 0.10, (= 0.10

REFERENCES

[ 1 J. C. Platt (1991). "A resource allocating network for function interpolation," Neural Computation, 3(2),
213-225

[2] J. C. Platt (1991). "Learning by combining memorization and gradient descent," In R. P. Lippmann, . E.
Moody and D. S. Touretzky, eds., Neural Information Processing Systems 3. Morgan Kaufinann

[3] V. Kadirkamanathan and M. Niranjan (1992). "A function estimation approach to sequential learning with
neural networks," CUED/F-UNIFYINGTR.I 11.

[41 M. Plutowski and H. White (1991). "Active selection of training examples for network learning in
noiseless environments," Dept. Computer Science, UCSD TR 90-011.

[51 D. J. C. MacKay (1992). "Information-based objective functions for active data selection," Neural
Computation, 4(4), 590-604

[6] N. Oka, and K. Yoshida (1992). "Combining back-propagation and memory-based learning,"6th
conference of Japanese Society for Artificial Intelligence, 8-5, 377-380, (in Japanese).

[7] D. E. Rumelhart, G. E. Hinton, and R. J. Williams (1986). "Learning internal representations by error
propagation," in Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol 1,
D. E. Rummelhart and J.L.McClelland (eds), MIT Press, Cambridge MA

111-666



INPUT DATA TRANSFORMATION FOR BETTER PATTERN
CLASSIFICATIONS WITH FEWER NEURONS

Yasuhiro Ota
Bogdan Wfanowski

Electical Englneedng Department
University of Wyoming

Laramie, WY 82071, USA

Absract:
Ordinary discriminant functions for pattern separations are normally linear. Neural

networks with one-layer architecture can classify only linearly separable patterns, and thus
multilayer neural networks are required for separation of nonlinearly separable patterns.
In this paper, an improved formulation of discriminant functions with fewer neurons is
proposed. This is accomplished by introducing an additional dimension to a set of input
patterns.

L Introduction:

A pattern is the quantitative description of an object, phenomenon, or event. A
classification of patterns can be spatial or temporal. Examples of the former case are
pictures, video images, and characters. Examples of the latter case include speech signals,
seismograms, and electrocadiograms, which normally involve ordered sequences of data
appearing in time. The goal of pattern classification is to assign a physical object,
phenomenon, or event to one of the prespecified classes. The mechanism of pattern
recognition (classification) in the human brain seems to be almost impossible to reveal it.
However, an artificial intelligence classifying system consists of an input transducer which
provides the input pattern data to the feature extractor [1]. Typically, inputs to the feature
extractor are sets of data vectors that belong to a certain category.

Several designs have been presented in the past for classifying patterns using n-
dimensional discriminant functions. The efficient classifiers, in general, are described by
discriminant functions that are nonlinear functions of input patterns [2][3]. As was
described by Marvin Minsky and Seymour Papert one-layer neural networks have very
limited ability for pattern classifications [4]. They can classify only linearly separable
patterns; therefore, multilayer neural networks are required for separation of nonlinearly
separable patterns. This paper discusses how to reduce the number of neurons with an
effective nonlinear pattern classification. The formulation of the input data transformation
method is described in Section H, and the simulation of a proposed network design is
shown in Section II. Section IV concludes the design and gives suggestions of possible
future studies applicable to this design.
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IL Structure Of Pattern Csuldfatlom

First, the assumption is made that both a set of n-dimensional input patterns
{x19x2...-, p } and the desired classification for each input pattern (d1,d2,.-.,d,)are
known. The size P of the pattern set is finite and usually much larger than the
dimensionality n of the pattern space. In many practical cases, it is assumed that P is much
larger than the number of categories (classes) R. The goal is to classify input patterns into
R categories. For given input patterns (x,x 2 ,...,x A with R categories, each category of
input patterns normally has a center of gravity, and it can be found by

xaI +xa1 +'"+1a 1

X CG = "- k (1)

where the subscript CG, stands for the center of gravity for the R-th category with k input
data in that category. Once the centers of gravity for each category are defined, the radii
r, of circles (or spheres) that enclose all the input data that belong to a certain category
can be found from the following equation:

r. =IxRA -xcG. (2)

One more parameter, DMAX, must be defined in order to transform n-dimensional input
data into (n+ 1)-dimensions. The maximum distance of an input point from the origin,
DmAx, is used to scale all the input data in transforming them into new (n+ 1)-dimensional
input arrays. Finally, the series of the following equations is utilized for the transformation
of input patterns.

z1 = COSaX1
z 2 =sina I cosz 2

Z3 = sina sina 2 cosa 3

z =sna sina 2 .sina _ ... coscsa.
z.+ = sina, sina2 ...sina_ sina. (3)

where zi (i = 12,-.- ,n+ 1) are the new (n+ 1)-dimensional transformed input data space
and the arguments a. (j = 1,2,.-.,n) are defined by

y iD L ) (4)

Notice that (n+ l)-dimensional input data are mapped such that

=1i (5)
iM6
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By employing relations (3) and (4) all the n-dimensional input data including the centers of
gravity of all the R categories can be transfomed. In order to find discriminant functions
for the separation of patterns, equations of decision surfaces (separation planes) are
required. Notice that the (n+ 1)-dimensional data at the center of gravity represent the
normal vector of a separation plane; i.e.,

fiR =[z[CG ZCG% "' ZcG. l  (6)

Once some point which lies on this separation plane is known, the equation of the plane
can be established. The point which lies on the boundary, rt, of the original n-dimensional
pattern should be mapped onto the edge of the boundary in the (n+ 1)-dimensional pattern,
and hence this point, z.,, shoucid be used in formulating the equations of the

discriminant functions. Thus, the discriminant functions can be given by

The above transformation can be used, not only for the condition with linear separability
of patterns, but also for the case of linearly nonseparable patterns. The analytical weights
for the neuron being activated for the R-th category can then be given as

= .. - (8)

Ill Simulation Results

The following simple example will allow the reader to gain better insight into the
discussion of the pattern classification issue. Now consider looking at two-dimensional
patterns (n=l) with two categories (R=2). Initially, seventeen patterns were assigned in
two-dimensional pattern space according to their membership in sets as follows:

Class 1 (di = +1): {J [5 Q [:1 4564 [1 E;] }

{~~[001 [21 [91[i): 81 2:51 L4 12] 

Class 2 (d2= -1): { 1Ei1 3 [ 01[~ I 8A10[01 [L 4I
In order to classify the given patterns into two categories with the ordinary decision lines,
discriminant functions, at least four decision lines and a two-layer neural network are
necessary as shown in Figure 1. On the other hand, only one neuron is necessary to
perform the same function if the proposed design is employed since it is possible to
separate the two categories with one circle as shown in Figure 2. Figure 3 illustrates the
given input data after they have been transformed into three-dimensional patterns.
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The popular error back-propagation training algorithm [5][6J (delta training for a sngle-
y network) can also be utilized to compute the optimal weight vector. The

performance of the neural network will then be compared with both the analytical and the
delta training weightL Initial weights for mining are randomly chosen as in the normal
procedure, and the total ouput error does converge towards zero as shown in Figure 4.
After the training of the network with 500 iteradons, the delta-trained weight vector is
found to be

W . =[ 0.4448 0.5034 0.7408 -0.7890]

Testing of pattern assifications is achieved with the two weight vectors listed above, and
the results ar tabulated in Figure 5. Figure 6 illustrates the mesh plots of the actual input-
output nonlinear mappings in the original pawn space.

!03
1t

10#

104

10"4
0 50 100 10 200 250 300 350 400 450 50

Numb of heNiMM

Figure 4. Total Output Error of the Neural Network with the Delta Training.

Ten a Desired A, yicM Wthod Delts Trai *in
Purn Owvw 2 % Error Ouu % Error

14 51 1 0.9226 7.74 0.9141 8.9
[12 11J -1 .1.0000 0.00 -1.0000 0.00
t0 101 -1 -0.9847 1.53 -0.9959 0.04
[9 11 -1 -0.9963 0.37 -0.97 0.73
[5 61 1 0.8857 11.43 0.9923 7.78

Figure 5. Test Results of the Neural Network.
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As can be seen from this simulation the proposed design of input data
trnFoitk for pattern clIfiatns works well and is superior to the ordinary pattern
clsificationim

IV. CAuckuiom

An improved technique of input damtans1-formation for effective pattern
clasifcatonwith a mnmm number of neurons has been presented in this paper. The

siMUMlaio results clealy demF rted that the number of necessary neurons could be
effectively minimized with accurate caifatosof input patterns by introucing an
adtional dimension (freedom) for the input patterns. The simulation revealed that even
with a simple linealy nonseparabie example the number of neurons required was reduced
by using the improved method. In fact, the number of necessary neurons for the example
cane used was reduced by four.

Some possible further studies include testinig of this design to higher dimensions
with mor e complicated patterns that have a greater number of classifying categories
although this input tra-sformation technique can be virtually applied to any pattern

clsfia problemns of any dimensions..
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Abstract.
Neural networks and bootstrap methodologies were combined into a single system

(NNB), creating a powerful predictive neural engine together with the means of statistical
estimation of the accuracy of the prediction errors. The NNB system was tested on clinical data
obtained from a clinical trial of implanted artificial heart valves. The system correctly predicted
78% of the valve related deaths in the time period of 1981-1991, for a patient sample of 789,
based solely on the information available preoperatively. Distribution of the prediction error and
its variation in relation to selection of the training set was observed and analyzed, based on 1300
bootstrap replications of the neural net's cycle of training and testing. Expectation of the
prediction error along with the confidence intervals and prediction intervals for the error were
computed.

Introduction.
Artificial adaptive neural networks provide a powerful tool that has been used

successfully in image processing, pattern recognition, natural phenomena prediction and signal
processing [1,3,5,6]. The encouraging results of application of the neural techniques to a number
of problems poses a question of estimation of reliability of the neural networks' performance.
Because of the neural systems' nonlinearity and structural complexity, the classical statistical
theory provides little help in analyzing the performance and accuracy of predictions of neural
nets. This gap may be successfully filled using such methods of computational statistics as
bootstrap.

The bootstrap is a computer-based method of statistical inference for assigning measures
of accuracy to statistical estimates[8,9]. Bootstrap methods can assess accuracy measures such
as biases, prediction errors and confidence intervals[7,8]. The bootstrap algorithm generates a
large number of bootstrap samples, obtained by resampling with replacement of the original
data. For each bootstrap sample a corresponding bootstrap replication of the statistic of interest
is calculated[7-10]. The accuracy measures of interest are then estimated from these bootstrap
replications. For instance, if s(r) is the statistic of interest, and its standard error is to be
estimated, then the bootstrap estimate SEboot can be computed according to the following
formula:
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B

se = {J [s(b)-s2(B-l)1/2 ()

b=!

Where s()= is(Xb)/B (2)h-I

B is the number of bootstrap replications, and xb is a bootstrap resampling of the original data
X =(xx2,...,X.)

Application of the bootstrap methodology provides the means of estimating the standard
error and computing prediction intervals, as well as confidence intervals for the estimated mean
of the error of neural network's prediction [2]. This approach combines powerful prediction
capabilities, provided by the neural networks, with the ability of estimating the results of
prediction and prediction errors, which in its turn enables us to optimize the predictive
mechanism, minimizing the error and maximizing its predictive power. Additionally, this
approach allows for further optimization of the neural network and increasing its predictive
capability and accuracy of prediction.

Bootstrap estimation of prediction errors.
Available data 0 consists of pairs (input, expected output) (I,!). Q is randomly divided

into two non empty subsets Qtr and Ots, such that
0 , U i = ( 3 )

n, I l,=0
Bootstrap training and t-.;ti,,g samples cotr(j) and ots(j) are generated from Qtr and Ots, where
j is the index of the bootstrap replication.
A neural network is aefined by the vector of its parameters u, and the output F of the neural net
is a function of the net's input and parameters: F = F(u, x).
For each bootstrap sample of the training set ofr(j) the neural net is initialized and trained to
minimize the approximation error

(u,,j) = II F(u, x,) - z,II (4)

The parameter vector uj of this neural network is defined by the following characteristic
equation

E (uj, j) =Min c (n,j) (5)

The corresponding bootstrap estimate of the neural net's prediction error computed over Ots(j)
is

(uj) - IIF(uj, x) - z, 1II2  (6)
-,e o,=,(j)

After generating bootstrap samples a)tr(j) and ots(J) of the training and testing sets for
j e[l, J], and estimating the network's prediction errors 4 (uj), random variable statistics may
be computed per (1) and (2) and distribution parameters for 4 (uj) may be estimated and
analyzed.
The expectation of the prediction error may be estimated as the average of bootstrap estimates for

(uj)
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S(7)

Standard error of the prediction error may be estimated as

sebo. - /(uy -f/Cj-I)1 /2 (8)

Depending on the size of the training set and the empirical distribution of the estimate of the
measure of interest (prediction error 4 (u,) in our case), confidence intervals for the actual value
of the estimated parameter may be estimated by different methods. In this study the bootstrap
percentile method was used. If 4") is the 100.a percentile of J bootstrap replications 4' (J)
j=l ,...,J, then the interval of intended coverage 1 - 2a is obtained by

(41., 4,)= (Va), VI-0) (9)

Neural network architecture.
A fully connected feed-forward backpropagation neural network was integrated into the

NNB system for this study in the manner described in the Experiment Design section. Eight
variables, available preoperatively on both the patients and the implanted devices, were used as
the network's inputs. Since the neural net had to be able to train on small samples, the cost
function C(A), characterizing the efficiency of the net, had to be modified into C'(A), where

C(A) = F{N(Xk)-D(k) 2  (10)

C'(A) = C(A) + 8211A11 2, (11)
A is the vector of the neural net's parameters, X, is the k-th vector of input parameters, N(Xt) is
the output of the neural net, and D(k) is the expected output of the net.

Experiment Design.
The neural net -- bootstrap methodology was tested on clinical data obtained from a

clinical trial of patients implanted with artificial heart valves. Seven hundred eighty-nine (789)
patients implanted with Carpentier-Edwards ® Pericardial bioprosthesis have been followed
from 1981. The aim of this study was to predict which patients would develop device-related
complications, serious enough to cause death, in the time interval from 1981 to 1991, based only
on preoperative patients' information and the implanted devices' characteristics.

Patient records were divided into two groups -- Qt containing patients' records indicating
a "positive" response, i.e., death from a valve related complication between 1981 and 1991; and
02 containing records with "negative" responses, i.e., no valve-related death. A predetermined
number (30) of "positive" responses were randomly selected with replacement from El and
assigned to the training set. An equal number of "negative" responses were randomly selected
from f2 and added to the training set. From the remaining records, both "positive" and
"negative", random sampling with replacement was used again for selecting testing records.
Sampling of "negative" and "positive" responses for the training set was performed
independently, in order to compensate for the relatively small proportion of the "positive"
responses (60 out of 776). The neural net was synthesized using data from the training set. The
data from the testing data-set was then used for estimation of the neural net efficacy, errors of
prediction and optimization of the neural net. Then training and testing sets were reselected, the
network retrained, and the prediction error estimated. A single NNB cycle included a bootstrap
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network retrained, and the prediction error estimated. A single NNB cycle included a bootstrap
generation of the training and testing sets, synthesis of the NN, testing NN and estimation of the
prediction accuracy. After repeating the process for 1300 cycles, the calculated errors were
accumulated and analyzed. Since the NNB system included the neural network, which had to be
synthesized, trained and tested hundreds of times, the process, being very computationally
intensive, called for a very efficient adaptive neural network. The neural net for the NNB system
was designed and developed by MultiSpectrum Technologies, Inc. of Santa Monica, California.

Classification methodology.
When the trained network predicted a valve related death, where no such event was

indicated by the clinical records, we called it "false alarm". On the other hand, if a patient died
from a valve related complication and the event was not predicted by the network, we called it
"missed event". Two separate errors of prediction were computed for each cycle of NNB. The
errors were calculated as ratios of incorrectly predicted events (either "false alarms" or "missed
events") to the expected number of events of the same type, as indicated by the clinical records.
These two errors were then averaged to obtain a single score representing the prediction accuracy
for a given NNB cycle.

A step-function S(h, z), taking values 0 and 1, was used for evaluating the networks'
output. It transformed the networks' continuous output into a dichotomous variable -- predicted
event or predicted no-event.

S(h,z) = 1, z > h (12)
S(h,z)=0, z<h (13)

Then correct predictions are defined as
S(h,z)=l forx EQ or S(h,z)=0 forx Ef 2  (14)

False alarms, according to our definition are then described as
S(h,z)= I for x E C 2  (15)

and missed events
S(h,z) = 0 for XE Qf, (16)

The threshold of the step-function -- h -- is one of the networks' parameters, and modifying its
value, the error rates may be adjusted.

Results.
In Figure 1 the rates of "false alarms" and "missed events" are plotted against the step-

function's threshold h. As the value of the threshold increases, the number of "missed events"
increases as well, while the number of false alarms goes down. In Figure 3 the relationship
between the averaged error of prediction and the step-function's threshold is investigated. In this
case the averaged error of prediction attained its minimum when h = 0.44, and the value of the
error is below 0.23, which gives us approximately 78% accuracy in prediction. Figure 2 presents
a histogram of the averaged errors, obtained from 1300 NNB cycles for a fixed value of the step-
functions' threshold h = 0.44. Based on the values of the bootstrap replications of the NNB-
generated averaged error, parameters of the error distribution were estimated and both the
prediction interval for the NN error and confidence interval around its mean were constructed
[2,7,8,10). The mean of the averaged error was estimated at 0.22 (SE mean = 0.0015) and the
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Conclusion.
Neural networks and bootstrap were combined into one algorithm to bring the best of the

two worlds together: a powerful predictive engine of the neural nets' paradigm and the proven
ways of statistical methods for assessing prediction accuracy. This combination of the two
methods also proved to be effective for further optimization of the neural network and increasing
its predictive power. Based on the preoperative information only, 78% of patients were correctly
classified by the neural network into two groups: those that would die from an implanted device
related cause and those that would not. The averaged error of prediction was 22% (+/-5%) and
the prediction interval for the prediction error was estimated to be (14%, 32%) at the 95%
confidence level.
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Abstract:

It is con-r only accepted that the modification of the weights during training of an Artificial Neural
Network can be augmented by addition of a random element chosen from various distributions. This technique,
commonly referred to as Noise Injection, allows the training process to stochastically traverse a larger area of the
sample space, as well as escape from local minima. Numerous noise distributions and intensities are used and
training can be shov, experimentally, to be more reliable.

T1 origin.l paper examined the effect of noise injection on the training cycle of feed-forward neural
networks. Emphasis was placed on the gradient descent weight modification technique of the Backpropagation
model. Statistical e.amination was made of the distribution of the effect within the topology of the weight space,
upon the outputs of 'ndividual units, and on the total error of the network. Since the weights of the network can
be considered togethe as an n-tuple, injection of noise can be statistically examined within that n-dimensional
space. It was shown that for stochastically independent random distributions, the effect on this weight space is
dependent upon the number of weights in the network. The multivariate distribution of the vector modification
during training beccmes increasingly distorted as the network size increases, such that noise injection has a more
significant, and less stable effect, as network size increases. For each individual nodal output it can be shown that
the random distribuion of change in the output of the node is a function of the multivariate distribution of all
weights preceding t;he neuron, the applied pattern, and the neuron activation function. This distribution was also
shown to be depende t upon network size,

The effect (.n error output of the network is a composite function of the effect on each output unit This
distribution was exc mined in detail. The paper looked at the common independent uniform and normal noise
distribution injection in detail. Problems with these traditional approaches were examined and an alternative noise
injection method baed on an n-tuple vector modification was proposed that was less dependent on network size.
The study found tit uniformly distributed noise led to faster convergence but less reliable than that of normally
distributed noise. A.dditionally, generalization of the sine wave provided (overall) better approximation when the
noise was normally (istributed than when the noise was uniformly distributed.
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Abstract
In the present paper, we propose a minimum information principle for the improvement of

the generalization performance. This principle states that the information about input patterns
must be as small as possible for improving the generalization performance under the condition
that the network can produce targets with appropriate accuracy. The information is defined
by the difference between maximum entropy or uncertainty and observed entropy. Borrowing a
definition of fuzzy entropy, the uncertainty function is defined for the internal representation and
represented by the equation: - v logvi - (1 - vi)log(1 - vi), where vi is a hidden unit activity.
After having formulated an update rule for the minimization of the information, we applied the
method to a problem of language acquisition: the inference of the past tense forms of regular
verbs. Experimental results confirmed that by our method, the information was significantly
decreased and the generalization performance was greatly improved.

1 Introduction

Many techniques have been developed for the improvement of the generalization performance. One of
the most popular methods consists in the reduction of complexity in network architectures, for example,
addition of weight decay or weight pruning, [4], [6], [7]. If network architectures are too complex, they can
store everything including noises in addition to the necessary part of input patterns. If the complexity is
too small, it is impossible to learn input patterns. Thus, it is necessary to adjust the complexity of network
architectures to given problems.

Let us see the complexity problem from an informational theoretical point of view. Suppose that the
complexity represents a kind of information capacity of networks. If the information regarding training
input patterns is excessively stored, meaning that networks store every details of training patterns, the
generalization performance is not improved. Thus, the reduction of complexity shows that the information
about training patterns is appropriately stored in network architectures so as to improve the generalization
performance.

In the present paper, we would like to show that for the improvement of the generalization performance,
the information to be stored in network architectures should be as small as possible, under the condition
that networks can learn the training input patterns with appropriate accuracy. This statement is referred
to as Minimum Information Principle for the improvement of the generalization performance.

For demonstrating this hypothesis of the minimum information principle, let us define the information,
stored in network architecture. Information can be defined by the difference between maximum entropy and
observed entropy:

I = H m  - (1)
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Figure 1: Entropy as a function of hidden unit activity vi.

where H"' is a maximum entropy and H is an observed entropy. The information means how much
uncertainty is decreased by training networks with training patterns. Using this information, our objective
is to show that the information must be as small as possible for the improvement of the generalization
performance, under the condition that networks can produce targets with appropriate accuracy.

2 Theory and Computational Methods

We have defined an entropy for the internal representation. Following Bridal and Deco [1), [2], we suppose
that an activity of a hidden unit represents a probability that a given input pattern belongs to a certain
class. If vi represents an activity of ith hidden unit, this activity means the probability that a given input
patterns belongs to the class i. Suppose that the ordinary sigmoid activation function (0,1) is used to produce
outputs. The most uncertain state is a state in which the hidden unit produces an activity close to 0.5. In
this case, it is impossible to tell whether the input pattern belongs to class i or not. On the other hand,
the most certain state is a state in which the hidden unit produces an activity close to 1 (the input pattern
certainly belongs to the class) or 0 (the input pattern does not belong to the class). If Hi represents this
uncertainty, one of the possible candidates is formulated as follows:

Hi = -vi log V - (1 - vi) log(1 - vi).

This equation is equivalent to the well-known fuzzy entropy [3]. As you can see from Figure 1, the function
Hi reaches the maximum, when the activity vi is 0.5, the most uncertain state.

With this entropy function, the information is defined by

Ii = Hia - Hi.

This information means the information content, stored in a hidden unit for an input pattern. Using this
definition of information, our objective is to minimize this information as much as possible, under the
condition that networks can produce targets with appropriate accuracy.

Our entropy function is defined with respect to a hidden unit activity and shows uncertainty or ambiguity
of the function of the hidden unit. Our learning rule is to maximize this uncertainty or ambiguity as much
as possible.
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Let us formulate an entropy function for the internal representation. Suppose that a network is composed
of three layers: input, hidden and output layers. Hidden unit activities are denoted by v, and input terminals
by ti. Then, input-hidden connections are denoted by wj.

A hidden unit for kth input pattern produces an output

V, = f(U

where f is a sigmoid activation function, defined by

f (4) =
1 + eC"

and where ui is a net input to ith hidden unit and defined by

U kjt

where f4 is ith element of an input pattern. An entropy is defined by

K M
H = - Z 2[vi log,,4 + (1 - v,' log(o - v')], (2)

k

where K is the number of input patterns and M is the number of hidden units. Using this entropy, the
information content is defined by

I = I -H
= KMlog2+ '-"[vklog v + (1- vt)log(1 - vt)], (3)

k

where M is the number of hidden units. Now, suppose that the squared error function can be defined by

E= I E ,
k i

where Qk is a target for an output o . Using this error function, total function to be minimized is formulated
as follows:

F = oiI+PE,
where E is the squared error function. Differentiating both sides of this equation, we have the following
update rule:

Awj =
Ow11

= 1>0,k + 6 (4)

where

= V -(1 _ - .g

and 6 is an ordinary delta for the back-propagation.

3 Results and Discussion

3.1 Data and Network Architectures
We applied our information minimization method to the well-known problem of language acquisition [5].
This problem is quite significant from a linguistic point of view and it is easy to compare our results with the
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Figure 2: Information as a function of the number of epochs for
five different values of the parameter a.

previous results on the past tense acquisition. Details on the training and testing patterns are omitted for
the simplicity of the explanation. We attempt only to show how networks were trained to produce targets.

In this problem, networks are trained to produce correct past tense forms. For example, a string /pat/ is
given to the networks. From the grammar of our artificial language, the correct past tense form is /patid/.
Thus, networks must produce this correct past tense form after finishing the learning.

In actual problems, input strings were represented in the phonological representation [5] and the number
of input units was 18 units. The number of hidden units was 20. The number of output units was 20 for the
inference of regular verbs. The number of training patterns was 100 and the number of testing patterns was
500. Networks started to learn with initial random values (-0.25, 0.25). The parameter for the momentum
term was fixed to 0.9 for all the experiments. The learning was performed by using the so-called Batch
learning, meaning that weights were updated after processing all the input patterns. The learning was
considered to be finished, only when the epochs were 200.

3.2 Inference of Regular Verbs
In this section, we attempt to show that by increasing the value of the parameter a, the information, stored
in the internal representation is decreased and the generalization performance is significantly improved.

Figure 2 shows the information as a function of the number of epochs, when the number of hidden units
was 20. The information was normalized by the following equation:

1 M

= 1+ 1 Eog Ej~ [V', log v' + (1 _ Vk) log(, _ ik)]. (5)

Thus, the range of this normalized information is (0,11. If the information is 1, the information is maximized.
On the other hand, if the information is zero, the information is minimized. As you can see from the figure,
the information is increased quickly at the first part of the learning, and then decreased gradually. As
the parameter a is increased, the information is more significantly decreased and close to zero, minimum
information state. This shows that the information minimization method is quite effective to decrease the
information content in the internal representation.

Now, let us see how the generalization errors can be improved by using the method of information
minimization. Figure 3 and Figure 4 show training and generalization errors as a function of the number
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Figure 3: Training errors as a function of the number of epochs
for five different values of the parameter a.

of epochs respectively. Training errors (T"r ) and generalization errors(G nr?) were computed by using
Hamming distance between targets and outputs at output units. For example, the generalization errors

are normalized as follows:

1 S N
Gn' -  S yZE Z[A(o )( - C) + (1- A(o))(],

k i

where oi is an output at ith output unit for kth input pattern for the testing patterns, (i is its target,
N is the number of output units, S is the number of testing patterns, and A(z) is 1 for z > 0.5 and 0
for z < 0.5. Let us see Figure 3 for the training errors. As you can see from the figure, training errors
are decreased gradually and finally zero both for the standard back-propagation (o=0) and information
minimization method. Little difference can be seen in the training errors. However, for the testing data, a
big difference can be seen. Figure 4 shows generalization errors for the testing data. As the parameter o
is increased, the information is decreased significantly. We can clearly see that the generalization is much
improved by using the information minimization.

4 Conclusion

In the present paper, we have proposed the minimum information principle. This principle states that for the
good generalization performance, the information stored in network architecture must be as small as possible,
under the condition that networks have the sufficient capacity to learn the input patterns with appropriate
accuracy. We have formulated the entropy function for the internal representation and the update rule to
minimize the information content. By applying the method to the problem of language acquisition, we have
demonstrated that the generalization is really improved by minimizing the information content, stored in the
internal representation. We think that many techniques concerning the improvement of the generalization
performance can be incorporated into the framework of the minimum information principle.
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ABSTRACr

We propose a method that scales data to a range that is appropriate for presentation to a neural
network, and takes into consideration its actual probability distribution. This method can be
applied to any data set, even when there is no prior knowledge of its underlying distribution. We
have found that such data transformation greatly improves learning in a standard
backpropagation network, and allows the network to learn difficult, linearly non-separable
problems that resist more traditional methods.

INTRODUCTION

When training a feed-forward, multilayer neural network there are several issues that arise, with
data representation being one of major importance. To represent real numbers we must consider
how to scale and, if necessary, transform the data. Scaling is certainly called for in networks
whose outputs are other than binary, and, in general, learning is probably improved by limiting
the range the learning algorithm must traverse. Transformations, on the other hand, should be
considered whenever the variables have a highly asymmetrical distribution, or greatly uneven
variances. Linear scaling under these circumstances could lead to loss of information, as the data
are unevenly compressed or expanded. A common approach consists of performing a
preliminary exploratory analysis of the data, and then applying a suitable transformation.

We propose a method that scales the data to any range appropriate for presentation to a neural
network, while at the same time letting us cluster it in a way that can make it more meaningful.
We have found that such data transformation improves learning in a standard backpropagation
network, allowing the network to learn difficult, non-linearly separable problems that resist more
traditional methods.

TRANSFORMATION ALGORrIM

The purpose of the transformation is to create a one-to-one correspondence between the actual
data and its transformed (scaled and clustered) values, based upon the data's probability
distribution. The proposed algorithm can be used on any bounded, real valued input vectors
with a finite number of elements.

Let . = (x= ,...x.) be a vector of the actual data, distributed in ascending order, with Xmm

and xin, minimum and maximum values, respectively. We now divide this range on N equal
segments, of lengths Xk, where

k, = (x.. - x.,i) / N,* k. 1,2,.... N (Eq. 1)

The normalization function 0 transforms all segments of the actual data, A* to the corresponding

clustered segments of normalized data, ), according to the expression-
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+(A&)= +DA (Eq. 2)

where:

= = C* L* Pk (Eq. 3)

Dk=(I-C)/(N-l),k1.- .... -I, D=0 (Eq. 4)

Where Pk is the probability that an actual data value, which belongs to the input vector X, is
located in a segment Xk, L is the length of the normalized input vector, and C is a compression
factor. Although the data can be normalized between any real numbers, for the purposes of this
work the members of the input vector will be normalized between 0 and 1 and, therefore, L =

The number of clusters is defined by N; and the value of the compression factor, C, defines the

lengths of the normalized segments and spaces Dk between them [eq. (3) and (4)], with

O<C<l

Since ±P = 1, the sum of all transformed segments equals C* L* Pk = C* L
k-I k-I

(eq.s)

All members (4,.. . ) inside the segment Xk of the input vector X are homotheticaly

transformed to the members ('k ,....k ) of the normalized segment ., correspondingly to the

distance between them and the origins of the segments Xk and respectively, with a coefficient

of similitude equal / , Hence, if x. IE k then its transformed value Y. r and:

where:

xYk I and xk_, are the values of the origins of the normalized segment and actual data segment
xk, respectively.

From equation (6), and using equations (1-5), we derive a one-to-one correspondence between
any actual value X. belonging to the segment Xk, and its transformed value Z. belonging to the

segment :

YkI+Pk * C* L* (X. - xk_,)Eq 7X'o = XkI + ( Eq. n)/
(x.. - X.n)I/N

Where:

j-I N-1 (Eq.8)

and:

Xk I --- Xmi. +l ( x m.. -x.)* (k- 1)(E.9N (Eq. 9)
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- the transformed value, corresponding to the real value X, which belongs to the k - th

segment.

Pj, Pk - the probabilities of distribution of the variable X on the j and k segments, respectively.

N - the number of segments that the variable has been divided into.

x mn, x max - minimum and maximum values of the variable, respectively.

XkI - the coordinate of the origin of the k - th segment.

L - the length of the normalized input vector.

C - a compression factor.

As shown by equation (3), the length of the normalized data segments depends linearly on the
probability that data are observed at the corresponding actual data segments; therefore, the
normalization is carried out without loss of "non-significant" data values, which could prove
important in real-life problems. Moreover, this is accomplished without the need for prior
knowledge regarding the underlying distribution.

The number of segments is determined by N, which can take any integer value > 1, and it is
arrived at either empirically or through the use of more formal methods, such as cluster analysis.
The compression factor, C, adds flexibility to the representation because it determines the lengths
of the normalized segments and of the spaces, free of data, between them. Hence, it allows
presentation of data to the neural network as either distinctly quantized data sets, C s 0, or as
individual data members, C z 1. By tailoring the values of N and C to the individual variables,
one can arrive at the best possible representation for any given data set.

Another point that bears emphasis is that this transformation is independent from the internal
network structure, making it possible to present data so transformed to any neural network,
regardless of the architecture.

EXPERIMENTAL METHODS.

To test the effect on network performance of the transformation algorithm we trained a series of
multilayer, backpropagation networks to predict outcome following liver transplantation. The
data set used was gathered from 155 liver transplantations, and has been described in detail
[Doyle, et al., 19941. Initially, ten different training/testing data sets were prepared by random
subsampling of the original data. The training sets consisted of 138 examples, while the testing
sets had 17 examples, with the proportions of both outcomes (i.e., success and failure) being the
same in both. By applying the preceding algorithm to these data, three separate transformed data
groups were generated (using 2,4, and 10 intervals, respectively, and a compression factor of 0.9).
A fourth group consisted of data that were linearly scaled.

The networks used in these experiments had the same architecture, namely 19 input neurons, a
single hidden layer with two neurons, and one output neuron. There were a total of 40 networks
(one for each training/testing set), and each network was trained 10 times, using different initial
random weights. The following parameters were compared:

* The number of networks which were able to completely learn their training sets in the course
of 70,000 epochs

* Minimal training RMS errors

* Mean RMS error, for all networks and those which learned their training sets completely

Results were compared using one-way analysis of variance (Scheffe test), with the level of
significance set at 0.05.

111-688



RESULTS

Table 1 shows the summary results:

TABLE 1

Transformation Complete Min-RMS Mean-RMS Complete-RMS

Linear 39 0.031 0.079 0.045

2-intervals 26 0.024 0.097 0.042

4-intervals 54 0.020 0.074 0.032

10-intervals 75 0.020 0.052 0.028

Where:

" Complete - Number of networks that learned their training set completely in the course of
70,000 epochs (n=100).

* Min-RMS - The minimal training RMS error

" Mean-RMS - The mean of training RMS errors

* Complete-RMS - Mean of training RMS errors among the networks that learned their training
set completely in the course of 70,000 epochs

The performance of those networks working with data transformed using 10 intervals was
superior to that of those using linearly transformed data, in all the categories examined (one-way
analysis of variance).

CONCLUSION

Our results suggest that employment of the proposed transformation improves learning in
backpropagation neural networks. This introduces another degree of freedom when developing
a neural network model, which is independent of network architecture, and offers the possibility
of representing data in a manner that more closely reflects its underlying distribution.

Since the number of possible proposed transformations is theoretically infinite, the obvious
question arises: how to chose the best one for a particular input variable? Although we are not
able to answer this question at present, we see our future work in this exploring the following
issues:

" Using well-established clustering algorithms (K-means, Melting, etc.) to choose the most
appropriate number of intervals

" Study the effects of different compression factors as we vary the number of intervals

" Develop "toy" networks to determine, for different variables belonging to a given domain,
what is the best combination of compression factor and number of intervals.
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ABSTRACT

Contribution analysis is a useful tool for the analysis of cross-connected networks such as those generated by the
cascade-correlation learning algoritun. Networks with cross connections that supersede hidden layers pose particular
difficulties for standard analyses of hidden unit activation patterns. A contribution is defined as the product of an
output weight and the associated activation on the sending unit. Previously such contributions have been multiplied
by the sign of the output target for a particular input pattern. The present work shows that a principal components
analysis (PCA) of unsealed contributions yields more interesting insights than comparable analyses of contributions
scaled by the sign of output targets.

I INTRODUCTION

Solutions learned by neural networks are often quite difficult to understand because of the complex non-linear
properties of neural nets and the common use of distributed representations. Standard techniques of network analysis,
based either on a network's weights or its hidden unit activations have been somewhat limited. The most notable
features of weight diagrams are often the complexity of the pattern of weights and its variability across multiple
networks learning the same problem. Statistical analysis of activation patterns on hidden units is limited to nets
with a single hidden layer without cros-connections.

Chiss connections are direct connections that bypass intervening hidden layers. They are known to increase learning
speed in back-propegation networks (Lang & Witbrock, 1988) and are a standard feature of some generative learning
algorithms, such as cascade-corrlton (Fahiman & Lebiere, 1990). Because such cross connections carry so much of
the work load, any analysis restricted to hidden unit activations provides at best a partial picture of the network
solution.

Contribution analysis appears to be a useful technique for multi-layer, cross connected nets. Sanger (1989) defted a
contribution as the triple product of an output weight, the activation of a sending unit, and the sign of the output
target for that input. Contributions are potentially more informative than either weights alone or hidden unit
activations alone since they take account of both weight and sending activation. Shultz and Elman (1994) used
principal components analysis to reduce the dimensionality of such contributions in several different types of

ade-conelation net.

The present work explores whether it is preferable to employ contributions that are scaled by the sign of their output
targets or to use unscaled contributions in network analysis. Sanger (1989) recommended scaling contributions by
the signs of output targets in order to determine whether the contributions helped or hindered the network's solution.
However, since target signs are not available to networks except as error correction signals, it could be argued that it
is more natural to use unscaled contributions in analyzing knowledge representations.

Understanding the knowledge representations in network solutions may be useful in a variety of contexts. It is surely
useful in the area of cognitive modeling, where the mere ability of nets to simulate psychological phenomena does
not suffime. It is also critically important to determine whether the representations developed by networks bear any
systematic relation to the representations employed by human subjects (McCloskey, 1991).

2 PRINCIPAL COMPONENTS ANALYSIS OF CONTRIBUTIONS

In contrast to Sanger's (1989) three-dimensional array of contributions (output unit x hidden unit x input pattern), we
begin with a two-dimensional output weight x input pattern array of contributions. This is more efficient than the
slicing technique used by Sanger to focus on particular output or hidden units and yet allows identification of the
roles of specific contributions (Shultz & Elman, 1994).

We subject the correlations among contributions across input patterns to PCA, a statistical technique that identifies
dimensions of variation (Flury, 1988). A component is a line of closest fit to a set of points in multi-dimensional
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space. PCA summarizes a multivariate data set in a few components by capitalizing on correlations among thevariable&.

Here we apply PCA to contributions taken from networks learning either continuous XOR or arithmetic
comparisons. The contribution matrix for each net is subjected to PCA with 1.0 as the minimum eigenvalue for
retention. Varimax rotation is applied to improve the interpretability of the solution. Component scores are plotted
to indicate the function of the components and component loadings are examined to determine the roles of particular
contributions.

3 APPLICATION TO THE CONTINUOUS XOR PROBLEM

The classical binary XOR problem has too few training patterns (four) to require contribution analysis. We construct
a continuous version of the XOR problem by dividing the input space into four quadrants. Input values are
incremented in steps of 0.1 starting from 0.1, yielding 100 x, y input pairs. Quadrant a has values of x less than
0.55 combined with values of y above 0.55. Quadrant b has values of x and y greater than 0.55. Quadrant c has
values of x andy less than 0.55. Quadrant d has values of x greater than 0.55 combined with values of y below
0.55. Problems from quadrants a and d produce a positive output target, whereas problems from quadrants b and c
yield a negative output target.
Three cascade-correlation nets are trained on continuous XOR. Each net generates a unique solution, recruiting either
five or six hidden units and taking from 541 to 765 epochs. PCA of unscaled contributions yields three components
rather then the two yielded by PCA of scaled contributions (Shultz & Elman, 1994). Plots of rotated component
scores for the 100 training patterns are less dense but more interesting for unscaled than for scaled contributions.

Two-dimensional plots of component scores for net I are shown in Figure 1 and labeled according to their respective
quadrant. Figure la, plotting scores on components 1 and 3, shows that component 1 reflects the second input
dimension (quadrants a and b vs. quadrants c and d). Figure lb, plotting scores on components 2 and 3, shows that
component 2 reflects the first input dimension (quadrants b and d vs. quadrants a and c). Both Figures la and lb
reveal that component 3 separates the quadrants with a positive output target (a and d) from those with a negative
output target (b and c). Similar results were obtained for the two other nets. In contrast, plots of component scores
for scaled contributions indicated interactive separation of the four quadrants, but with no clear individual roles for the
two components (Shultz & Elman, 1994).

Figure 2 plots the rotated component scores for this net. Such plots can be examined to determine the role of each
contribution in the network. For example, input 2 and hidden units 1, 5, and 6 all participate in the job done by
component 1, namely the representation of the second input dimension.

4 APPLICATION TO COMPARATIVE ARITHMETIC

Arithmetic comparison tasks require nets to compare sums or products to some value and then output whether the
sum or pmduct is greater than, less than, or equal to that comparative value. The fact that several psychological
simulations using neural nets involve problems of linear and non-linear arithmetic operations enhances interest in
this sort of problem (McClelland, 1989; Shultz, Schmidt, Buckingham, & Mareschal, in press).

Addition and multiplication tasks each involve three linear input units. The first two input units each code a
randomly selected integer in the range from 0 to 9, inclusive, and the third input unit codes a randomly selected
comparison integer. For addition problems, comparison values range from 0 to 19, inclusive; for multiplication,
comparison values range from 0 to 82, inclusive. Two output units code the results of the comparison. Target
outputs of +- represent that the results of the arithmetic operation are greater than the comparison value, targets of -+
represent less than, and targets of ++ represent equal to. For problems involving both addition and multiplication, a
fourth input unit codes the type of arithmetic operation to be performed: 0 for addition, I for multiplication.

Nets trained on either addition or multiplication have 100 randomly selected training patterns, with the restriction
that 45 of them have correct answers of greater than, 45 have correct answers of less than, and 10 have correct
answers of equal to. These constraints reduce the skew of comparative values in the high direction on multiplication
problems. Nets trained on both addition and multiplication receive 100 randomly selected addition problems and 100
randomly selected multiplication problems. There are three addition nets, three multiplication nets, and three nets
trained on both addition and multiplication.

4.1 ADDITION RESULTS
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Each of the three nets learning addition problems recruited a single hidden unit. They took between 155 and 169
epochs to learn. PCA of unscaled contributions in each net yields three significant components, unlike the two
components obtained with scaled contributions.

Component score plots, such as that for net 1 in Figure 3, indicate that component 1 distinguishes less than from
greater than answers. Problems with equal to answers were not isolated by the three components. Components 2 and
3 are particularly sensitive to variation in the size of the first and second integers to be added, respectively. This was
revealed by examining extreme component scores on these components, either greater than 1.0 or less than -1.0.
Problems with extremely negative component 2 scores had a mean of 8.41 for the first integer and 5.36 for the
second integer. Problems with extremely positive component 2 scores had a mean of 1.00 for the first integer and
5.52 for the second integer. This indicates that component 2 is primarily sensitive to the size of the first integer
input. In contrast, component 3 was sensitive to the size of the second integer input with means of 1.48 for
extremely negative component scores and 8.36 for extremely positive component scores. The means on the first
integer input did not vary much with extremity of component 3 score: 4.70 vs. 4.05. Similar results obtained for the
other two nets.

PCA of scaled contributions had produced two components that were sensitive only to answer type and not to
variation in integer input. As with the continuous XOR problem, the plots of component scores were denser for
scaled contributions, but not as revealing (Shultz & Elman, 1994).

4.2 MULTIPLICATION RESULTS

Multiplication is a much more difficult problem for nets with additive activation functions, as revealed by the fact
that the nets learning multiplication comparisons required from 832 to over 1000 epochs and recruited between six
and eight hidden units. Runs were terminated when they reached 1000 epochs. PCA applied to the contributions in
these nets yields from 4 to 6 significant components. Plots of rotated component scores for two of the four
components from net 3 are presented in Figure 4. This plot shows that most of the separation of greater than from
less than outputs was accomplished by component 2. Component I served to make this distinction for the remaining
problems. Problems with equal to answers were not isolated by any of the four components.

Component 1 also served to represent variation in the second input. Problems with extremely high scores on
component I have a mean second input of 8.57; those with extremely low scores on component 1 have a mean
second input of 0.56. Component 3 serves a similar role for the first input. Problems with extremely high scores on
component 3 have a mean first input of 8.11; those with extremely low scores on component 3 have a mean first
input of 1.10. The role of component 4 is opaque. Basically similar results were obtained for the other two
multiplication nets. In contrast, PCA of scaled components were less revealing, except for offering a clear separation
of answer types (Shultz & Elman, 1994).

4.3 RESULTS FOR NETS DOING BOTH ADDITION AND MULTIPLICATION
Learning to do both addition and multiplication is even more difficult than multiplication alone. None of the three
nets quite reached victory by 1000 epochs, but each did come close. Either seven or eight hiddens units were
recruited. PCA of contributions yields five components in each of the three nets. Besides the familiar distinctions
between problem types and variation in integer inputs found in nets doing either addition or multiplication, it is of
interest to determine whether nets doing both operations distinguish between adding and multiplying.

Figure 5 shows rotated component scores for three components from net 3. Component 1 separates greater than from
less than answers. Component 5 and, to a lesser extent, component 4 separate adding from multiplying. The role of
component 4 is not very clear from Figure 5, but various two-dimensional plots of component 4 reveal that it
separates adding vs. multiplying for problems with less than answers.

Components 2 and 3 handle variation in the first and second input integers, respectively. Problems with extremely
poitive component 2 scores have a mean first input integer of 8.53; problems with extremely negative component 2
scc'res have a mean first input integer of 0.84. Problems with extremely positive component 3 scores have a mean
second input integer of 8.55; problems with extremely negative component 3 scores have a mean second input
integer of 1.05. Problems with equal to answers are not isolated by any of the components. Results for the other two
nets learning both multiplication and addition comparisons are essentially similar to these. In contrast, PCA of
scaled contributions had produced three components that interactively separated the three answer types and operations,
but did not represent variation in input integers (Shultz & Elman, 1994).

5 DISCUSSION
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As with continuous XOR, there is considerable variation among networks learning comparative arithmetic problems.
Yet with all of this variation, it is apparent that the nets learn to separate arithmetic problems according to features
afforded by the training set. Nets learning either addition or multiplication differentiate the problems according to
answer types and nets learning both arithmetic operations supplement these answer distinctions with the operational
distinction between adding and multiplying. Variation along the integer input dimensions is also well represented.

This research confirms earlier conclusions that PCA of network contributions is a useful technique for understanding
the performance of networks constructed by the cascade-correlation learning algorithm (Shultz & Elman, 1994).
Because cascade-correlation nets typically possess multiple hidden layers and are fully cross connected, they are
difficult to analyze with more standard methods emphasizing activation patterns on the hidden units alone.
Examination of their weight patterns is also problematic, particularly in larger networks, because of the highly
distributed nature of the net's representations.

Analyzing contributions, in contrast to either hidden unit activations or weights, is a naturally appealing solution.
Contributions capture the influence coming into output units both from adjacent hidden units and from distant, cross
connected hidden and input units.

The present work also suggests that analyzing unscaled contributions yields more useful results than does the
analysis of contributions that are scaled by the output targets. This is particularly true in terms of sensitivity to
various input dimensions and to operational distinctions between adding and multiplying. Plots of component scores
based on unscaled contributions are typically not as dense as those based on scaled contributions but seem to be more
revealing of what information the network is representing. Including target outputs in these analyses is not only
unrealistic, but also obscures at least part of what networks represent, such as variation along important input
dimensions. A drawback of using unscaled contributions is that contributions from the bias unit are ignored for lack
of variation. This may explain why the present analyses fail to isolate arithmetic problems with equal to outcomes.

Because PCA of contributions can identify the role of contributions from particular hidden units, it should be useful
in predicting the results of lesioning experiments with neural nets. Once the role of a hidden unit has been identified
by its association with a particular principal component, then it could be predicted that lesioning this unit would
impair whatever function is served by the component. PCA of network contributions obtained from cognitive
modeling could also be a useful source of psychological hypotheses.
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Abstract

A learning algorithm, referred to as concurrent training, based on genetic algorithms for
a neural network with connected modules is described. The algorithm does not require the
knowledge of training sets for each module so that all modules can be trained concurrently.
For an N-module system, N separate pools of chromosomes are maintained and updated.
The concurrent training algorithm is applied to train multilayered feedforward networks by
considering each layer of connections to be a 1-layer network module. The algorithm is tested
using the 4-bit parity problem and a linearly nonseparable classification problem. Experiment
results are presented and the learning behavior and performance is analyzed.

1 Introduction

Supervised learning of feedforward networks is typically in the form of a search in the weight
space for a set of weights which minimizes the difference between the computed and the target
outputs for a given input. The optimization method used most often in this role is the gradient
descent search, such as in the variations of the backpropagation learning algorithm. After
the network has completed the learning phase, faults in the components of the network may
lead to incorrect output being computed. In this paper, the design of fault-tolerant feedforward
networks is considered by incorporating a measure of fault-tolerance in the optimization criterion
during learning. Since the optimization function will not be convex, the use of an alternative
optimization method known as genetic algorithms to train multilayered feedforward networks
in the supervised learning mode is described.

Previous work in designing fault-tolerant neural networks have included: including faults
during training [1], min-max fault-tolerance learning [21, fault-tolerance through weight control,
and fault-tolerance through strict learning and strict operation [3]. The method used in'the
present paper explicitly separates the classification error from the errors due to faults in the
optimization function. Let {(f , r,") : p = 0, 1,..., N - 1} be the training set, where # and r"
denote the pth input and target output, respectively. Let C" denote the output of a network in
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response to the input pattern . The mean-squared classification error

is typically the measure to be minimized in a training algorithm. Suppose the network has M
hidden units; let Q, in = 0,.. ., M - 1, be the network output in response to ' when the mth
hidden unit is faulty. The error due to faults is defined to be:

Ef Zmax((. - r)2.

The overall optimization criterion in our training algorithm is then:

E= E + AE 1 ,

where A is a scalar constant and is set at 0.4 in our experiments. It is noted that in this paper
the attention is restricted to faults occurring in the hidden units; nevertheless, the concepts can
be generalized to failures in the links or units in other layers by extending Ef to cover all faults.

Genetic algorithms (GAs) are stochastic optimization algorithms [4] in which a solution
to the combinatorial problem of interest is represented by a binary string, referred to as a
chromosome. A fitness value is defined for each chromosome based on the cost associated with
the corresponding solution. A population of chromosomes is maintained, and a new generation
is formed by selecting mating pairs with superior fitness values. Genetic operators, such as
crossover or mutation, are applied to the mating pairs to form offsprings, which would be
improved, or better fit, solutions. This process is repeated until an acceptable solution appears
in one of the generations.

Genetic algorithms have been used to train multilayered neural networks. In some ap-
proaches (e.g., [5]), the network architecture is fixed and the network weights are encoded as a
chromosome with which a GA is used to search for the optimal weights. In others (e.g., [6]), a
GA is used to assist some other training techniques such as back-propagation by defining the
network architecture, by finding the initial weights for back-propagation, or parameters used in
other training methods. In this approach, GA is used to augment the main training method by
finding a set of favorable constraint domains. In [7], a GA is used to train a neural network and
to construct the network architecture simultaneously. In [8], a GA is used to train a large scale
neural network system by training each component subnetwork or module separately provided
that the training sets are available for all modules.

The concurrent training algorithm used in this project sets the synaptic weights using a
genetic algorithm search, in which multiple strands of chromosomes are used to encode a phe-
notype [9]. A neural network that consists of N layers could be encoded as N chromosomes.
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2 Experiments and Results

The concurrent training of fault-tolerant neural networks is validated by using the 4-bit parity
problem, so that there are a total of 16 input-target pattern pairs. While all inputs are encoded
using binary digits 1 and -1, the weights, and hence the chromosomes, are encoded with binary
digits 0 and 1.

The experiments for training fault-tolerant neural networks were conducted by setting A =
0.4 in the optimization function. As a control, the experiments were repeated with the same GA
parameters while setting A = 0.0 in the optimization function, thus removing the fault-tolerance
inclusion property of the training algorithm. The network to be trained in each experiment set
are 2-layer fully connected networks, each with four input units and one output unit. Different
numbers of hidden units are considered (viz. 4, 6, 8, and 10), to observe the effect of increasing
hidden units on fault-tolerance. Because the training algorithm is stochastic in nature, seven
runs were made for each parameter setting, with the number of iterations set at a constant 200
generations for each run.

The results of the experiments are summarized in Tables 1 and 2. in which the number of
generations it took for the best network to evolve, the number of classification error and the
number of errors due to faults of the best network, are tabulated against the number of hidden
units in the network. In Tables 1 and 2, the minimum and the average of the number of errors
in the seven runs, respectively, are shown. In both tables, part (a) refers to the case where
fault-tolerance is included (A = 0.4) while part (b) refers to the case when A = 0, so that the
number of errors due to faults of the network is not used in the training.

Two factors are of interest here: the learning behavior and the effectiveness of training
with fault-tolerance inclusion. The learning behavior is first considered. When fault-tolerance
is not used in the training, the number of generations required to obtain an optimal network
decreased rather rapidly from about 60 to 32 as the number of hidden units was increased from
4 to 10, as can be expected. When fault-tolerance is included in training, however, the number
of generations required to obtain an optimal network increased gradually from about 90 to
110 as the number of hidden units was increased. More time is needed because more training
constraints were imposed, although it was observed that some runs converged early and some
very late.

Next, the effectiveness of fault-tolerance inclusion training is studied. Consider a network
with 4 hidden units, without including fault-tolerance in the training, it makes on average 5.43
(out of 16) output errors with a single fault in the network. Increasing the number of hidden
units did not produce more fault-tolerant networks, as shown in Tables 1(b) and 2(b). With
fault-tolerance included in the training, a network with 4 hidden units makes on average 2.86
output errors. The number of errors due to fault decreases to an average of 0.14 when 10 hidden
units are used.

The capacity of the neural networks trained with single fault-tolerance inclusion to handle
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multiple faults is further tested. Networks with 10 hidden units are trained, again with A = 0.4
for testing and with A = 0.0 for control. One to five hidden units were set to fail in these
experiments. There are CIO combinations of having n faults, n = 1,- , 5, out of 10 hidden units;
all combinations were tested and the maximum, average, and minimum errors of all combinations
were recorded. The experiments were repeated for seven times, and the corresponding maximum,
average, and minimum errors were averaged over these runs.

The results are shown in Table 3, where each row contains averaged results from seven runs.
It can be seen that networks trained with fault tolerance inclusion have less maximum errors than
networks trained without fault tolerance inclusion; i.e., such fault tolerance networks perform
better in the worst case scenario in which serveral "important" hidden unit fail. Their overall
average performances are also better than their counterparts. As can be expected, networks
trained with fault tolerance inclusion do not handle multiple faults as effective as single fault.
Multiple faults are handled in both cases by sheer redundancy. This could be attributed to the
nature of the error functions defined for the training.

3 Concluding Remarks

A training algorithm is presented which includes a fault-tolerance component as part of the
optimization criterion. Since the combined error function is not convex, a genetic algorithm is
used to search for the optimal weights. The representation of the network in a genetic algorithm
is considered, and a scheme where different layers of the networks are distributed on different
chromosome strands is proposed and analyzed. Experiment results are used to show the learning
behavior as well as the effectiveness of the new training algorithm to produce networks that can
handle single as well as multiple faults.
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Table 1. Best performance of concurrent training attained in seven runs.

Number of Number of Number of class- Number of
hidden units generations fication errors fault errors
4 135.00 0.00 3.00
6 188.00 0.00 1.00
8 106.00 0.00 0.00
10 68.00 0.00 0.00
(a) With fault-tolerance inclusion in learning (A = 0.4).

Number of Number of Number of class- Number of
hidden units generations fication errors fault errors
4 98.00 0.00 5.00
6 92.00 0.00 3.00
8 22.00 0.00 3.00
10 24.00 0.00 3.00
(b) Without fault-tolerance inclusion in learning (A = 0.0).
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Table 2. Average performance of concurrent training attained in seven runs.

Number of Number of Number of class- Number of
hidden units generations Jication errors fault errors
4 92.29 1.71 2.86
6 102.14 0.14 1.71
8 103.43 0.00 0.57
10 107.29 0.00 0.14
(a) With fault-tolerance inclusion in learning (X = 0.4).

Number of Number of Number of class- Number of
hidden units generations fication errors fault errors
4 61.43 1.14 5.43
6 44.71 0.00 4.43
8 45.14 0.00 4.57
10 32.86 0.00 4.43

(b) Without fault-tolerance inclusion in learning (A = 0.0).

Table 3. Average of the performance of concurrent training in seven runs with multiple faults.

Number of Number of Average of Average of Avera ge of
Faulty Units Combinations Maximum Errors Minimum Erro rs Average Errors

1 10 0.14 0.00 0.11
2 45 4.71 0.00 1.38
3 120 5.57 0.14 2.09
4 210 6.43 0.14 2.82
5 252 7.14 0.14 2.99

(a) With fault-tolerance inclusion in learning (A = 0.4).

Number of Number of Average of Average of Avera ge of
Faulty Units Combinations Maximum Errors Minimum Erro rs Average Errors

1 10 4.43 0.00 1.79
2 45 5.57 0.00 2.64
3 120 7.00 0.00 3.33
4 210 7.57 0.43 3.89
5 252 8.14 0.71 4.45

(b) Without fault-tolerance inclusion in learning (A = 0.0).
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An Analysis on the Learning Rule
in the Complex Back-Propagation Algorithm

Tohru Nitta
Electrotechnical Laboratory,

1-1-4 Umezono, Tsukuba Science City, Ibaraki, 305 Japan.

Abstract:
In this paper, the characteristics of the learning rule in the "Complex-BP", a complex
numbered version of the back-propagation algorithm, are investigated. The results of
this study may be summarized as follows: (a) the error back propagation has a structure
which is concerned with two-dimensional motion, (b) the unit of learning is complex-
valued signals flowing in neural networks, (c) the learning rule is structured to avoid a
"standstill in earning". Ultimately, learning speed is improved. In addition, the number
of parameters needed is only about half that of the standard BP.

1 Introduction
The purpose of this paper is to investigate the characteristics of the learning rule in the
complex-valued version of the back-propagation algorithm "Complex-BP1 " [2, 3]. We have
obtained the following results on the inherent properties of the Complex-BP algorithm.
(a) The error back propagation has a structure which is concerned with two-dimensional
motion. (b) The unit of learning is complex-valued signals flowing in neural networks.
(c) The learning rule is structured to avoid a "standstill in learning". Ultimately, the
average convergence speed is improved. In addition, the required number of weights and
thresholds (called "learning parameters" here) is only about half that of the standard back-
propagation algorithm or "Real-BP [5]. Thus it seems that the Complex-BP algorithm
is well suited for learning complex-valued patterns.

2 The "Complex-BP" Algorithm
This section will briefly describe the Complex-BP algorithm [2, 3]. It can be applied to
multi-layered neural networks in which weights, threshold values, input and output signals
are all complex numbers, and the output function fc of a neuron is defined as

fc(z) = fR(x) + ifR(Y), (1)

where z = x + iy, i denotes V/T and fR(u) = 1/(I + exp(-u)), that is, the real and
imaginary parts of the output of a neuron refer to the sigmoid functions of the real part
z and the imaginary part y of the net input z to a neuron, respectively. The learning rule
was obtained using a steepest descent method.

Note that there is another formulation of a complex-valued version [11 in which the
output function is a complex-valued function fc(z) = 1/(1 + exp(-z)), where z = x + iy.

3 Characteristics of Learning
In this section, the characteristics of learning in the Complex-BP algorithm are discussed.
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3.1 Structure of Learning Rule

First of all, we investigated the structure of the learning rule in the Complex-BP algorithm,
using the three-layered (complex-valued) neural network described below as an example.
We used wtj for the weight between the input neuron I and the hidden neuron m, v","
for the weight between the hidden neuron m and the output neuron n, 0, for the
threshold of the hidden neuron m, and -y. for the threshold of the output neuron n. We
let I,, H,, On denote the output values of the input neuron 1, the hidden neuron m,
and the output neuron n. We also let 6" = Tn - On be the error between the output value
0 n of the output neuron n and the desired output value Tn for the output neuron n.

Let AxR, AXI be the real and imaginary parts of the magnitude of change of a learning
parameter x, respectively; i.e., AxR - Re[Ax], \x' = Im[Az], where Re z], Imiz
denote the real and imaginary parts of a complex number z, respectively. Then, the
learning rule can be expressed as:

[ Av," 1 rReHml] ImIH,"l [AYR/= m [ cos/im" csin' rA;y1'

FAVR1 I IO1 OSAnSA[')] = [-IA[, B] LnH"J (3)J- tl

7M ej Inmif 1 ] cos 1H 1 si n (4)
I-sinfl, cos,J

AeR~ H. R[-1 Ini
r 1 An 0 ReAl,[, , n I [] (3)

= [ " Ivn,"l[ 5 snp n" OSnJL% -j, (5)
where An = (1- nReO,. B. -- (I-mIIOn]) m [On. Cm = (o-Rs[Hmnl)Re[H...O.

, = (1-ImHmm ", /,,, = arctan(IZm[Hil/ Re[I,"]), R'e = arctan(Im(Iir/Re[sl ),
and 'Pa = arctan m V'nl/Re[VnmA).

In expression (2), [ ml refers to a similar transformation (reduction, magnification) of

An]~~~ ~ Xcon sfsil,"v sinfnv],"]

the distance between a point and the origin in the Euclidean plane, and [oo_"' sin P..

a clockwise rotation of a point by Pm degrees about the origin. Thus, the linear trans-
formation called two-dimensional motion is performed in equation (2). Hence, we find
that the magnitude of change in the weight between the hidden and output neurons
(AVmR, Ava) can be obtained via the above linear transformation (two-dimensional mo-
tion) of (Ay,. , A-yn) which is the magnitude of change in the threshold of the output neu-
ron. Similarly, the magnitude of change in the threshold of the hidden neuron (AO', AGM)
can be obtained by applying the two-dimensional motion concerning vn" (the weight be-
tween the hidden and output neurons) to (A-yn, A-y) which is the magnitude of change
in the threshold of the output neuron (equation (5)). Finally, (Awj, Aw' 1 ) can be ob-
tained by applying the two-dimensional motion concerning 'i to (AO', AGm) (equation

). Thus, it seems to be quite reasonable to assume that the error propagation in the
Complex-BP has a structure based on two-dimensional motion.

The two-dimensional structure of the error propagation described above makes its
appearance as the following mechanism: the unit of learning in the Complex-BP algorithm
is complex-valued signals flowing in neural networks. For example, AvR and Au'
comprise both the real part (Re[H.], Re[On]) and the imaginary part (Im[fl"], Im[O])
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of complex-valued signals (Hm, O) flowing in neural networks, respectively (equation
(2)). That is, there is a relation through (Re[H=], Re[O.J) and (Ir[HmJ, Ir[On]) between
Av!, and AvI . Similarly, there are relations between Aw~1 and Awl. (equation (4)),
and between A0R and A01 (equation (5)). Therefore, in the Complex-BP algorithm, the
real and imaginary parts of learning parameters are modified, based on both the real and
imaginary parts of complex-valued signals flowing in neural networks, respectively. From
these facts, we may conclude that "complex-valtied signals" flowing in neural networks
are a unit of learning in the Complex-BP algorithm.

3.2 Improving Learning Speed
As we have seen in the previous subsection, the error propagation of the Comp, x-BP
algorithm has a structure based on two-dimensional motion, which also means that the
unit of learning is complex-valued signals flowing in neural networks. Furthermore, we
will find in this subsection that this structure improves learning speed.

The derivative (1 - fR(u)) fR(u) of the sigmoid function fR(u), which is the output
function of each neuron, appears in the learning rule of the Real-BP. The value of the
derivative asymptotically approaches 0 as the absolute value of the net input u to a
neuron increases. Hence, as lul increases to make the output value of a neuron exactly
approach 0.0 or 1.0, the derivative (I - fR(u)) fR(u) shows a small value, which causes
what is called a standstill in learning. This phenomenon is called "getting stuck in a local
minimum" if it continuously takes place for a considerable length of time, and the error
between the actual and desired output values remains large. As is generally known, this
is the mechanism of standstill in learning in the standard back-propagation algorithm.

On the other hand, two kinds of derivatives of the sigmoid function appear in the
learning rule of the Complex-BP algorithm (equations (2)-(5)): one is the derivative of
the real part of an output function ((1 - Re[O 1)Re[O , (1 - Re[Hml)Re[Hml), the other
is that of the imaginary part ((1 - Im1[O])Im[Os], (1 - Im[Hml)Im[H ]). The learning
rule of the Complex-BP algorithm basically consists of two linear combinations of them:

a, (1-Re[O,])Re[On] + #I (1-I7m[O,] )Im[On], (6)
a2 (1-Re[Hm])ReHm] + / 2(1-Im[Hm])Im[Hn], (7)

where a,, P3k E R (k=1, 2), R denotes the set of real numbers. Note that expression (6)
shows a very small value when both (1 - Re[OD])Re[On] and (1- Im[On]Im[On] are very
small values. Hence, there is a possibility that expression (6) does not show an extremely
small value even if (1 - Re[O ])Re[On1 is very small, because (1 - Im[On])Im[On1 is not
always small in the Complex-BP algorithm (whereas the magnitude of learning parameter
updates inevitably becomes quite small, if (1 - fR(u))fR(u) is quite small in the Real-
BP algorithm). In this sense, the real factor ((1 - Re[Onl)Re[O.], (1 - Re [H) Re[H])
makes up for the imaginary factor ((1 -IM[On])Im[On], (1 - ImIHml)Im [H) showing
an abnormally small value, and vice versa. Thus, compared with the updating rule of
the Real-BP, that of the Complex-BP has a structure that reduces the probability for
standstill in learning to occur. This indicates that the learning speed of the Complex-BP
is faster than that of the Real-BP. This will be confirmed by computational experiments
on complex-valued patterns in the following subsection.

3.3 Learning Speed
In this subsection, the learning speed of the Complex-BP algorithm is studied for some
simulated examples on complex-valued patterns.
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In general, learning speed should be examined from the perspective of computational
complexity (time and space complexities). We assume here that "time complexity" means
the sum of four operations for real numbers, and "space complexity" the sum of learning
parameters (weights and thresholds).

The avexage of learning cycles needed for convergence by the Complex-BP was com-
pared with that of the conventional back-propagation technique, using the neural networks
in which the time complexities per learning cycle of two techniques were almost equal. In
addition, the space complexity was also examined.

In the experiments, the initial real and imaginary components of the weights and
the thresholds were chosen to be random real numbers between - 0.3 and + 0.3. We
determined that learning finished when

N
Z- =(1)12 0.10 (8)

P k=l

held, where T(P) O (p) E C denote the desired output value, the actual output value of
the neuron k or 'the pattern p, i.e. the left side of equation (8) denotes the error between
the desired and actual output patterns, C denotes the set of complex numbers; N denotes
the number of neurons in the output layer. We regarded the presentation of one set of
learning patterns to the neural network as one learning cycle.

Experiment 1
First, a set of simple (complex-valued) learning patterns shown in Table 1 was used
to compare the performance of the Complex-BP algorithm with that of the standard
back-propagation algorithm. We used a 1-3-1 three-layered network for the Complex-BP,
and a 2-7-2 three-layered network for the standard BP. Table 2 shows that their time
complexities per learning cycle were almost equal.

In the experiment for the Real-BP, the real component of a complex number was input
into the first input neuron, and the imaginary component was input into the second input
neuron. The output from the first output neuron was interpreted to be the real component
of a complex number; the output from the second output neuron was interpreted to be
the imaginary component.

The average number of iterations required for convergence of 50 trials for each of 6
learning rates (0.1, 0.2, ... , 0.6) was adopted as a criterion of the evaluation. Although
we stopped learning at the 50,000th iteration, all trials succeeded in converging. The
result of the experiments is shown in Fig. 1.

Experiment 2
Next, we carried out an experiment using the set of (complex-valued) learning patterns
shown in Table 3. The learning patterns were defined according to the following two
rules:- (a) the real part of "Complex number 3" (output) is 1 if "Complex number 1"
(input) is equal to "Complex number 2" (input), otherwise it is 0; (b) the imaginary part
of "Complex number 3" is 1 if "Complex number 2" is equal to either 1 or i, otherwise it
is O.

The experimental task was the same as in Experiment 1 except for the layered network
structure: a 2-4-1 three-layered network was used for the Complex-BP method while a
4-9-2 three-layered network was used for the standard method. Table 4 shows that their
time complexities per learning cycle were equal.

In the experiment for the Real-BP, the real and imaginary components of "Complex
number 1" and the real and imaginary components of "Complex number 2" were input
into the first, second, third and fourth input neurons, respectively. The output from the
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first output neuron was interpreted to be the real component of a complex number; the
output from the second output neuron was interpreted to be the imaginary component.

We stopped learning at the 100,000th iteration. The results of the experiments are
shown in Fig. 2. For reference, we show the rate of convergence in Table 5.

We can conclude from these experiments that the Complex-BP exhibits the following
characteristics in learning complex-valued patterns :- the learning speed is several times
faster than that of the conventional technique (Figs. 1 and 2), while the space complexity
i.e. the number of learning parameters) is only about half that of the standard BP
Tables 2 and 4).

We can assume that the structure of reducing "standstill in learning" by the linear
combinations (equations (6) and (7)) of the real and imaginary components of the deriva-
tive of an output function, described in the previous subsection, causes the characteristics
described above.

4 Conclusions
We investigated the fundamental characteristics of the Complex-BP algorithm and found
that the Complex-BP had some inherent properties. In particular, the average conver-
gence speed was superior to that of the Real-13P. In addition, the number of learning
parameters needed was only about half that of the standard BP. It is interesting that
such characteristics appeared only by extending neural networks to complex numbers.
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Input pattern I Output pattern
0 0
i 1 Table 1 Learning patterns [Experiment 1].
1 I 1+i

1+i i

ime complexity Space complexity
Network x and + and - Sun \ eights Thresholds I Sum

Complex-BP1-3-1I 78 52 1130 1 12 8 20
Real-P? 2-7-2 90 46 136 28 9 37

Table 2 Computational complexity of the Complex-BP and the Real-BP [Experiment 1].
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Input pattern Output pattern
complex number I Complex number 3

0 0

1__ ___1+

0

1 1 1 

I+1 +t_____1+3 ___ __ __

Table 3 Learning patterns [Experiment 2].

Time complexity Space complexity
Network Ex and + and - I Sum Weights I Thresholds Sum

Complex-BP 2-4-1 f 134 92 I226 I 24 10 I34
ReaI-BP 4-9-2 150 76 226 54 11 65

Table 4 Computational complexity of the Complex-BP and the Real-BP [Experiment 21.
U Learning rate

Network r e0.1 0.2 0.3 0.4 0.5
I Complex-BP 2-4-1 100 I 96 ] 88 I 92 I90 E

Real-BP 4-9-2 0 22 64 78 90 1 100

Table 5 Rate of convergence [Experiment 21.
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Fig. 1 Average of learning speed (Experiment 1]. Fig. 2 Average of learning speed [Experiment 2).
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Abstract

In this paper we explore the Elman recurrent network by constructing and ie.entifying finite
state automata (FSA) for the addition task. By constructing a Mealy machine for addition, non-
deterministic elements in the training data were identified. The training performance of different
training strategies were investigated with non-deterministic data versus deterministic data. To iden-
tify a FSA for addition, we analyze the internal representations of the network by using Hierarchical
Cluster Analysis as well as suggesting Sammon Transformation Analysis as a superior clustering tech-
nique as opposed to the more familiar Principal Component Analysis. These techniques together
with the Mealy machine clearly identify the states of the finite state machine for addition.

1 Introduction

Elman [Elman, 1990] introduced a simple recurrent architecture that has the potential to master an
infinite set of sequences by copying the pattern of activation of the hidden units onto a set of context
units which feed into the hidden layer along with the inputs. In this paper we show that the Elman
simple recurrent network (SRN) can learn to mimic closely a finite state machine (FSM), both in its
behaviour and in its state representation. We start by constructing a Mealy machine for the addition
task to aid in identifying the finite state machine of the network dynamics. The Mealy machine also
enabled us to identify non-deterministic elements in the training data. As a spin-off experiment we
investigated the training performance of different training strategies for training with non-deterministic
data versus training with deterministic data.

To analyze the internal representations of the Elman network, we have used not only familiar tech-
niques such as Hierarchical Cluster Anafysis, which describes the static representation of the network
dynamics, and Principal Component Analysis, which gives a more dynamic representation of network,
but also introduce a fairly unfamiliar technique called Sammon Transformation Analysis, which depicts
network dynamics also in a more dynamical fashion. We show further how the results of these techniques
coincide and are congruent with the Mealy Machine drafted in section 3, and also clearly identify the
states of a Moore machine for addition.

2 Addition Experiment

The aim of the addition experiment [Cottrell & Tsung, 1991] is to learn to sequentially add two base
four numbers. Each base four number is given a two-digit binary representation. The Elman SRN is
confined to one column of digits at a time. It has five inputs, one indicating the end of the input and four
representing the one column of digits, 16 hidden and 16 context units, and six output units representing
the sum (two units) of the one column of digits and the four possible actions (four units). Actions are to
write the sum, to remember or output the carry, shift to the next column of digits, and indicate if done.
The network is trained to produce a sequence of outputs, having an action and result field, according to
the following program:

while not done do begin
output (RITE, low_orderresult);
if sum>radix then output(CARRY,'00');
output(NIT, '00');

end
if carryon.previous.input then output(WRITE, '01');
output(DOlE, '00');
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Since the Elman SRN is required to learn a sequence of inputs and for each input a different sequence
of outputs as well as looping, the addition task is quite complex.

3 Mealy Machine for Addition

A Na

uRic M~i

00

No.

Ices

fbrAdila

Figure 1: Mealy Machine for Addition

A Mealy machine was constructed to characterize the addition task more precisely and to help identify
the finite state machine of the network dynamics. A Mealy machine is a 5-tuple (S, A, T, 0, f), where
S is a finite set of states, A is a finite set called an input alphabet, T : S x A -- S is the transition
function, 0 is the output alphabet, and f : S x A -- 0 is the output function. For the simple recurrent
network of the addition problem the input patterns are the input alphabet of the Mealy machine, whilst
the target output patterns are the output alphabet.

The Mealy machine in Figure 1 describes all the input-output combinations in the addition problem.
Each transition represents a specific group of input-output transitions, which is specified in Tables 1
and 2. The top half of the Mealy machine describes the input-output combinations involved in zero or
one carry, whereas the bottom half depicts those input-output transitions involved in more than one
carry (top and bottom halves indicated in the figure).

The result input-output combinations are denoted by Rz, where x is the type of result action indicated
by N, C, D, CN, CC, and CD. RN is the result actions that lead to next actions, whereas RC actions
lead to carry actions. RCN and RCC are result actions, which incorporate the changes in the result
field due to carry actions earlier in the current temporal pattern. They represent result actions that
respectively lead to next ant. carry actions. RD and RCD are the final result actions that lead to done
actions, where the former is part of a temporal pattern that only includes one carry, while the latter's
temporal pattern includes more than one carry.

The carry input-output combinations are denoted by Cc, where x is the type of carry action indicated
by C and CC. Cc is the first carry actions in a temporal pattern, while Ccc indicates the successive
carry actions.

The next input-output combinations are denoted by Nx, where x is the type of next action indicated
by N, C, CN, and CC. NN is next actions contained in a temporal pattern with no carry actions earlier
in the temporal pattern, whereas Nc actions indicate one carry action earlier in the temporal pattern.
NCN and Ncc are next actions which indicate more than one carry action earlier in the temporal pattern.
They differ in that the latter's preceding action is a carry (Ccc), whilst in the former's case it is a result
action (RCN).

The done input-output combinations are denoted by Dx, where X is the type of done action indicated
by N, C, CN, and CC. DN is done actions that are preceded by a next action (NN), whereas DC actions
are preceded by a result action (RD) which is due to a carry action. Dcc is done actions which are
performed after more than one carry and preceded by a result action (RCD). DCN is done actions which
are performed after at least one carry and preceded by a next action (NcN).

Table 1 specifies the Mealy machine transitions for temporal patterns that include zero or one carry
action, whereas the temporal patterns of Table 2 include more than one carry. In both tables only the
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S Rr N Ce N . Rn D-

0001 100010 001000 000100
0010 100010 001000 000100
0011 100000 010000 001000 100001 000100
0100G 1000 001000 000100
0101 100011 001000 000100
0110 100011 001000 000100
0111 100000 010000 001000 100001. 000100
1000 100001 001000 000100
1001 100011 01000 000100
I010 100100 00000
1Oll 1O 01 0 0.0000 001000 100001. 000100
1100 100010 001000 000100
1101 100000 10000 001000 100001 000100
1110 100000 010000 001000 100001 000100
1111 10000 0000 001000 100001 000100

Table 1: Mealy machine transitions for zero or one carry. The * indicates a non-deterministic transition.

Isput Outplt

0000 I R.r. Ne Ce Nc D RNc D.e,

0001 100011 001000 000100
0010 100011 001000 000100
0011 100"01 010000 001000 100001* 000100
0100 100010 001000 000100 0
0101 100000 01000 001000 100001 000100

0111 100010 010000 001000 100001 000100
1 000 100010 001000 000100
1001 100004 010000 001000 100001 000100

110 100000 010000 001000 100001 000100
Oil 100010 010000 001000 100001 000100
1100 100011 001000 000100
1O01 100001 010000 001000 100001 000100
1110 100001 010000 001000 100001 000100
1111 100011 010000 001000 100001 000100

Table 2: Mealy machine transitions for more than one carry. The * indicates a non-deterministic
transition.

one column of digits (the top and bottom digits) are shown as input. The end-of-input bit of the input is
not shown, because it is zero for all actions except for the done actions (DN, DC, DcNj and Dcc) when
its value is one.

4 rraining: Non-determinism versus Determinism

All the Mealy machine transitions in Tables 1 and 2 are deterministic, except those marked with a star.
In Table 1 there is a non-deterministic choice between the result actions RC and RD when the input is
0111 and 1011, i.e. similar output patterns corresponding to different result actions exist for a specific
input. In Table 2 the non-deterministic choice is between the result actions Rcc and RCD when the
input is 0011, 1101, and 1110. One way to make these choices deterministic is to change the end-of-
input bit into a one for RD and RCD in order to distinguish them uniquely from respectively RC and
Rcc. Thus every output pattern corresponding to an action is uniquely mapped onto a specific input
pattern. This is also logically plausible, since RD and RCD are the only result actions leading to done
actions. The next interesting step was to determine the difference in training performance when training
with non-deterministic data (not an unique input-output mapping) versus deterministic data (an unique
input-output mapping). The training performance of different training strategies were investigated for
these two cases.

The first training strategy, Combined Subset Training (CST) [Cottrell & Tsung, 1991], consists of di-
viding the training set into random subsets, where training occurs on combined larger subsets. The next
training strategy, Increased Complezity Training (ICT) [Ludik & Cloete, 1993], differs from the first by
dividing the training set not into random subsets, but into subsets of increasing complexity, each one hav-
ing a termination criterion. We have also proposed two incremental training strategies called Incremental
S sbet Training (IST) and Incremental Increased Complezity Training (IICT) [Cloete & Ludik, 1994].
These strategies incrementally increase eubset size and consist of two nested loops: (a) an inner loop
which decrements the RMS termination values in a linear fashion for the incremental subsets until the
desired RMS criterion is reached; (b) an outer loop which repeats until successful generalization on an
independent test set. For IST training occurs on incremental subsets of random complexity, whereas
IICT's incremental subsets increase in complexity. These four training strategies were compared to
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Training Non-deterministic Deterministic Improvement of
Strategies Updates Improvement Updates Improvement Determinism vs

_ compared to FST compared to FST Non-determinism
IST 22582 53.3% 10995 47% 51.3%
IICT 23340 51.6% 17841 14% 23.6%
ICT 26180 46% 18450 11.1% 29.5%
CST 28495 41% 18760 9.6 % 34.2%
FST 48405 - 20745 - 57.1%

Table 3: A comparison of addition simulation results for the non-deterministic and deterministic cases

Fired Set Training (FST), where a network is trained with a fixed set of training patterns. The addition
simulation results for the non-deterministic and deterministic cases are summarized in Table 3.

In the non-deterministic case, all four training strategies improved the number of updates by more
than 40% compared to FST, IST being the pick of the strategies by achieving 53.3%. In the deterministic
case, IST again performed very well by improving performance by 47% compared to FST. There is a
substantial difference in training performance when training with non-deterministic data versus training
with deterministic data. This is confirmed by the results in the last column of Table 3, where all the
training strategies performed much better with the deterministic data. Noteworthy results are those
of IST and FST, which obtained improvements of respectively 51.3% and 57.1%. We suspected that
training would be easier with the deterministic data, but were quite surprised at the vast improvements.
Especially, when one considers that only one bit in 149 input patterns was changed out of a possible
2305 input patterns with a length of 11 bits (that is only about 0.6% change in the total fixed training
set). These results emphasize the importance of identifying the finite state machine of the training data
in order to eliminate the non-deterministic elements, if possible.

5 Analysis of Internal Representations

In this section we analyze the hidden unit activations by using Sammon Transformation Analysis, Prin-
cipal Component Analysis, and Hierarchical Cluster Analysis. We show further how the results of these
techniques identify the states of a Moore machine for addition.

For analyzing purposes we have used the weight matrices of the best training strategy, IST, in the
classification process of 8-10 column addition. We have extracted the 16 hidden unit activations over
time, as the Ehnan network processed the classification data, which consisted of ten temporal patterns
constituting 233 single input patterns.

5. Sammon Transformation Analysis

Sammon Transformation Analysis (STA) [Sammon, 1969] is a data transformation technique that maps
multidimensional vectors onto two or three dimensional vectors, whose intervector distances tend to
approximate those of the multidimensional vectors.

In Figure 2(a) we show the projection of the hidden units vectors onto two dimensions as the network
is doing the 233-step addition. The clusters formed by the projected hidden unit activations correspond
vividly to the different types of actions that the network are required to learn. Six clusters can be identi-
fied that correspond to the main transitions of the four different actions, namely Next-Result(NR), Result-
Next (RN), Carry-Next (CN), Result-Carry (RC), Result-Done (RD), and Next-Done (ND). Along the
x-axis the network is distinguishing between a Next that follows a Carry (CN) versus one that follows a
Result action (RN). Along the y-axis the network is distinguishing between a Done that follows a Result
(RD) versus one that follows a Next action (ND).

Figure 2(b) illustrates the correspondence between the STA data and the Mealy Machine transitions
in the previous section. The following mapping exists between the transition clusters in Figure 2(a)
and the Mealy Machine transitions: NR = {RN, RC, RD, RCN, RCC, RCD}; RN = {NN, NCN}; CN =
{Nc,Ncc}; RC = {Cc,Ccc); RD = {Dc,Dcc}; and ND = (DN,DCN). Another interesting
result is the clear-cut separation between clusters that represent actions involved in a carry and clusters
representing actions not involved. Figure 2(b) also shows the existence of two groups of actions in the
NR cluster, namely a no-carry group {RN, RCN} ane V-group {Rc, RD, cC, RCD). The fact
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Figure 2: Sammon Transformation Analysis of 233-step 8-10 column addition - (a) transition graph (b)
Mealy machine correspondence

that this was not evident in Figure 2(a) shows the importance of using finite state automata, such as a
Mealy machine, in the analysis process.

5.2 Principal Component Analysis
Principal Component Analysis (PCA) is a technique whereby multidimensional vectors are mapped onto
a new set of orthogonal linear vectors, where the first principal component is such that the projections
of the given points onto it have maximum variance among all possible linear coordinates; the second
principal component has maximum variance subject to being orthogonal to the first; and so on. In
Figure 3(a) we show the projection of the hidden units vectors onto the plane of the first two principal
components as the network is doing the 233-step addition. The figure illustrates the correspondence
between the PCA data and the Mealy Machine transitions, which is similar to the STA correspondence.
The Result actions are generally in the left half of the space, wheras the Nexts and Carrys are in the right
half. Along the second principal component the network is distinguihing between a Next that follows a
Carry (CN) versus one that follows a Result action. Clusters that represent actions involved in a Carry
can be linearly separated from clusters representing actions not involved.

Graphs similar to Figure 2(a) were also generated; again six clusters were identified that correspond
to the main transitions of the four actions. We have also obtained similar results by plotting the first
principal component at time t versus t I which basically gives a mapping from the context vector to
the next hidden vector.

By comparing Figures 2(a) and 3(a, uite evident that STA produces superior clustering results
as oppo, -d to PCA for this experiment. v'c conjecture that this will be the case for other experiments
as well, since STA preserves in a certain sense the intervector distances, whereas PCA discards them.

5.3 Hierarchical Cluster Analysis

Hierarciical Cluster Analysis (HCA) is a method of finding the optimal partition of training vectors
according to some similarity measure, such as Euclidian distance. The matrix of Euclidean distances
between each pair of hidden activation vectors of the 233-step addition served as input to a cluster
analysis program. In the graphical results of this analysis, each leaf in the tree corresponds to a particular
transition from one action to another. From this graphs, the activation patterns are grouped according
to the six main transitions between the different actions, as was the case with STA and PCA. We
have also plotted graphs illustrating the correspondence between the HCA data and the Mealy machine
transitions, which is similar to the STA and PCA correspondences.

5.4 Identification of Moore Machine
The STA, PCA, and HCA clustering analysis techniques show clearly how the hidden activations classify
the main transitions of the four different actions. The clusters obtained with these techniques correspond
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Figure 3: (a)Principal Component Analysis of 233-step column addition (b) Moore machine for addition

to the states of a Moore machine, which is an appropriate FSM, since it is easier to construct the
complete machine from these clusters. The remaining task was to determine the Moore machine's input
and output alphabet, as well as its transition and output functions. Figure 3(b) presents the graphical
representation of the Moore machine, which describes the hidden layer dynamics for addition. The six
transitions between actions are the states S = {NR, RC, CN, RN, ND, RD}, where NR is the start
state and RD and ND the final states. The input symbols of the input alphabet A = {0c, On, lc, ln} are
represented in such a manner that 0 or 1 indicates respectively not-end-of-input and end-of-input, and
c and n respectively carry and no-carry. The output alphabet is defined by 0 - {R, C, N, D}, where
the output symbols respectively are Result, Carry, Next, and Done. Each state of the Moore machine
correspond to Mealy machine transitions, as described in section 5.1.

6 Conclusions

We have investigated the Elman recurrent network by constructing a Mealy machine for addition and
identifying a Moore machine that corresponds with the internal representations of the network. The
construction of the Mealy machine also enabled us to identify non-deterministic elements in the training
data. We have demonstrated with five tranin rategies that training is much easier (in two cases more
than 50%) with deterministic data as opposed to non-deterministic data, even though the differeni
in the two training sets was only 0.6%. ST, the best training strategy, improved performance in the
non-deterministic case by 53% compared to fixed set training and in the deterministic case by 47%.

We have analyzed the internal representations of the network by using Hierarchical Cluster Analysis

and suggesting Sammon Transformation Analysis as a superior clustering technique when compared with
Principal Component Analysis. We have also showed how the clusters formed by these techniques clearly
identify the states of a Moore machine for addition.
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Estimating Lipschitz Constants of Feedforward Neural Networks

Zaiyong Tang and Gary J. Koehler t
Division of Bus & Eco, Concord College, Athens, WV 24712

tDept. of Decision & Info Sci, Univ of Florida, Gainesville, FL. 32611

Abstract

We show that the standard criterion function of a feedforward neural network is Lipschitzian.
Procedures are developed to compute efficiently local Lipschitz constants over subsets of the
weight space. Local Lipschitz constants can be used to compute lower bounds on the optimal
solution. They can also be used to identify weight subregions that do not contain promising
solutions, hence reduce the search space.

1 Introduction

The backpropagation (BP) algorithm and its many variations are the most popular training algo-
rithms for feedforward neural networks (FNNs). However, those gradient based training algorithms
have some limitations. One of them is obtaining only local minimum solutions. A local minimum
may or may not represent an acceptable solution.

Empirical results have shown that with ample hidden units embedded in the network, BP
can usually escape a local minimum (Rumelhart et al., 1986) probably due to large degrees of
freedom. However, increasing hidden units in the network may not be an appealing idea, since
an unnecessarily large number of hidden units is likely to decrease the generalization capability of
the network (Kruschke and Movellan, 1991; Baum and Haussler, 1989) and may cause overfitting
problems (Weigend et al., 1990). In this paper, we show that an FNN is Lipschitzian. Thus various
Lipschitz optimization methods (e.g., Piyavskii, 1972; Horst and Tay, 1990) can be applied to neural
network training. This approach would overcome the problem of converging to a local minimum
and yield a globally optimal solution (Tang and koehler, 1993a).

2 An FNN is Lipschitzian

Lipschitz optimization deals with the global optimization of a wide class of functions-the Lipschitz
functions. In the following, we first give the definition of Lipschitz functions. Then we show that
the standard sum-of-square error (SSE) of an FNN is Lipschitzian.

Definition 2.1 (Lipschitz function) A continuous function F : M --+ R, M C RS is a Lipschitz
function if there exists a constant L = L(F, M) > 0 such that

IF(x)-F(y)j<_LIjx-y , Vx,yEM

where S is a positive integer and L is called a Lipschitz constant.

Knowing the Lipschitz constant of a function F provides a way of computing lower bounds on the
global minimum ofF. Suppose we want to minimize F over M, let b(M) =_ max {Ix-y t Ix, y E M}
be the diameter of M. From the definition of Lipschitz function, we have

F(y) F(x) - Ljjx - Yll - F(x) - Lb(M), Vx, y E M.
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If F(z) is known for some x E M, then F(x) - Lb(M) gives a lower bound to the global minimum
of F over M. The following lemmas are needed before we develop the procedures that give easily
computable lower bounds on the Lipschitz constant for an FNN.

Lemma 2.1 Let fi : R ' -+ R, i = 1,2,..., k, be Lipschitzian with Lipschitz constants Li, respec-

tively. Then F : R n --+ R, given by F = Ej fi is also Lipschitzian, and a Lipschitz constant of F is
given by LF = 'X Li.

Lemma 2.2 Let x E R n, and F(x) = f(g(x)), where f : R -* R, g : R -+ R are Lipschitzian
with Lipschitz constant Lf and L., respectively. Then F(x) has a Lipschitz constant LF given by
LF = LfL g .

Lemma 2.3 Let x E R , the lp norm on Rn, for 1 < p < oo, satisfies

n

IIXIIP: 1I liii= x Ix,
i=1

Lemma 2.4 Let x E Rn, and F(x) = f(g(x)), where f : R' -+ R is Lipschitzian with Lipschitz
constant Lf, g : R" --+ R' with components gi,i = 1,2,...,m being Lipschitzian with Lipschitz

constant Lg11 . Then F(x) has a Lipschitz constant LF given by LF = Lf E'nj Lg,.

In the following discussion, we assume the standard sigmoid activation function f (with range
(0, 1.0)) is used. The transfer function is a linear function of the inputs from the previous layer with
a constant term (the bias). L is used to denote a Lipschitz constant with subscripts identifying the
corresponding functions.

For a single-output FNN with one hidden layer, the output of the network is

h n
o = f(w,X) = f(E wjfj(Ew , +ij tooj) + WOO)

j= i-=1

where h is the number of hidden units, and fjs are activation functions in the hidden layer. Note
that the output o can be written as a composite function o = f(g(w, x)), where

h n
g = wjfj(Z wijxj + too) + to

j=l /=1

Applying Lemma 2.2, we have
L, = LfL 9 .

Lf is given by

L! = max IlVgf(w,x)ll

= max -If(1 - f), Vw w. (1)

The function g can be rewritten as g,(fH), where g. : Rh -+ R transfers the hidden layer output
to the output layer input. g, can be written as

g. = WHfH + Wo
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where WH is the set of weights between the hidden layer and the output layer, and w0 is the output
unit bias. fH : R' -_ Rh maps the output from the input layer to the input of the hidden layer.
The components of fH are given by

f 7 = fi(E iJxij + w0j), j =1,2,...,h.
i=1

Applying Lemma 2.4, we have

Lg = Lgo E LfH
j=1

where Lo is given by

L90 = max IIVfgo11
h

= max(1+Ef) (2)
j=1

Note that ff/in the hidden layer is equivalent to the output function of an FNN without a hidden
layer. We have n

L = max _f(1 - fj)(1 + x?) .
i----1

Putting the above together, we have, for a single hidden layer FNN,

h h n

L =ax yf(1- f) max (I + Ef max Tf(1- fj)(1 + E x?) (3)
j=1 3 i=1

and, with F = F F E(tp - op)' ,

LF, = max Itp - opILoP, Vw E W, (4)

where Lop is given by Equation 3 with the input Xp. We observe that f and fis are functions of
the weights and the maximization is taken over the whole weight space, although, with the layered
structure, fjs depend only on hidden layer weights. Recall that LF= EP LFP, thus

P

LF E LF
p= 1

P h h n

- Z -oplmax(1+E f]) max yfj(1-fj)(1+ -z) 1 . (5)
p=l j=1 j= =1

Hence, we have developed a procedure for estimating the Lipschitz constant for FNNs with a single
output unit and a single hidden layer.

Equation 3 can be used in estimating the Lipschitz constant for a general three layer FNN
(Which is the most widely used NN structure). Let k be the index for the output processing units,
then for each output unit ok, we have

h h n

Lok =max 7fk(l- fk) max (1 + Ef) max yfj(1- fj)(1 + x?). (6)
j=1 j=1 i=1
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Consider the criterion function

F =E ,Fp = 2 E E_(tpk - pk) 2 ,

p=l p=1 k=1

for each training pattern p, Fp = f.(fo), where f, : RK --+ R maps the network output to a
performance measure, and f, : Rh - RK maps the hidden layer output to the input to the output
layer. Observe that each component of f0 is equivalent to the output function of a three layer FNN
with a single output, the case discussed in the above subsection. Let ok, k = 1,2, ..., K denote the
component function of f,, ok is Lipschitzian with Lipschitz constant Lok given by 6. By Lemma 2.4,
the Lipschitz constant for Fp is

K

LF, = Lf, E Lok
k=1

where Lfo is given by

Lf. = max HVOFIO
K

= max ( -(tpk-Ppk)2. (7)
k=1

Thus for the criterion function F, we have a Lipschitz constant (using Lemma 2.1 again)

P K K

LF = E max (1(tpk - Ppk) 2)E Z LOk (8)
p= k=I k=1

This leads to the following proposition.

Proposition 2.1 The criterion function representing a three layered feedforward neural network
is Lipschitzian with a Lipschitz constant given by Equation 8.

Extension of the procedure to estimating Lipschitz constant for an FNN with more than one
hidden layers can be carried out by applying the basic lemmas recursively, as illustrated above.

3 Compute Local Lipschitz Constants

The procedures outlined above allows us to compute Lipschitz constant over subsets of the weight
space. Furthermore, the estimation of Lipschitz constant is computationally efficient. For clarity
of exposition, we will consider computing the Lipschitz constant of a three layer FNN with a single
output unit. Using Equation 3, we can compute the Lipschitz constant of the criterion function
with a given training pattern p by

h h nL,, = max "yf(1 - f) max (1 + E f')2 E max -tfj(1 - fj)(l" +z)

j=l j li1

LF, = max Itp - opILo, Vw E W.

Four maximization problems need to be solved over a given weight subset. Solving those prob-
lems may seem to be difficult as the functions are nonlinear and nonconvex. However, by exploiting
the properties of the sigmoid activation function and the special structure of the FNN, we can ef-
fectively solve those problems over a weight subset, when the weight subset is a hyper-rectangle in
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Table 1: Lipschitz Constant over Weight Subsets

Weight Subset Hyper-rectangle vertices J Lipschitz Constant

We LV=(-10 -10 -10 -10 -10 -10 -10 -10 -10)
UV=( 10 10 10 10 10 10 10 10 10) 1.20388

W,' LV-=( 0 0 0 0 0 0 -10 -10 -10)
UV=( 10 10 10 10 10 10 10 10 10) 0.89769

W2 LV=( 5000 0 0 0 0 0)
UV=( 10 10 10 10 10 10 10 10 10) 0.01584

W3 LV=( 5 00 5 0 000 0)
UV=( 10 5 5 10 10 10 10 10 10) 0.00793

W4 LV=( 0 5 5 5 50 5 5 0)
UV=( 5 10 10 10 10 5 10 10 5) 0.00792

W5 LV=( 0 5 0 0 0 0 0 0 0)
UV=( 5 10 5 10 10 10 10 10 10) 0.17889

W6 LV=( 0 5 05000 0 0)
UV=( 5 10 5 10 5 10 10 10 10) 0.01167

W? LV=( 0 0 0 0 0 0 -5 -5 -5)
UV--( 5 5 5 S 5 5 5 5 5) 0.89769

we 7fLV=( 2.5 2.5 0 0 0 0 00 0)
UV=( 5 5 5 5 5 5 5 5 5) 0.05438

W9 LV=( 2.5 2.5 2.5 2.5 000 0 0)
UV=(555_Uv=( 555555555) 0.00880

W 10  LV=( -5 -5 -5 -5 -5 -5 -5 -5 -5)

UV=( 0 0 0 0 0 0 0 0 0) 0.74146

the weight space. Details of solving those maximization problems are given in (Tang and Koehler
1993b).

Let us apply the above procedure to estimating the Lipschitz constant of the 2 x 2 x 1 XOR
network. Assuming 7 = 1, applying Equation 5, a theoretic global Lipschitz constant can be
computed by

4 h h n

LF = Eltp - opI max (1 + E-fh)i E max -Yfj(1- fj)(1 + X?)2
p=1 j=1 j=1

= h vfl +h (l1+V_+r- +V3)
-16

= -(1 +2V2 + V3)

= 1.20388. (9)

This is obtained by overestimating-assuming the weight set is essentially unbounded, we take

ltp - opI = 1, f(1 - f) = 1/4, and 1 + =1 f? = V/iT+h. By actually maximizing those terms
over a given weight subset, we get much smaller local Lipschitz constants than the global one for
each partition element.

Table 1 shows that the local Lipschitz constants vary significantly over different weight subre-
gions. These subregions are hyper-rectangles identified by the lower vertex (LV) and upper vertex
(UV). With Wo {W E R9 I - 10 < w, _ 10,i = 1,2,...,9}, the local Lipschitz constant is ap-
proximately equal to the global Lipschitz constant. However, for some still relatively large weight
subsets (e.g., W 3 and W 4 ) the Lipschitz constants are quite small. Those local Lipschitz constants
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may be used to estimate lower bounds on the global criterion function. They may also be used in
identifying subregions in the weight space that do not contain promising global optimal solutions.
Hence search space can be reduced

4 Conclusions

We studied the Lipschitz properties of the feedforward neural networks. We have shown that the
sum-of-squared error criterion function of a feedforward neural network is Lipschitzian. The special
structure of feedforward neural networks makes it possible to estimate the Lipschitz constant in
a recursive procedure. Furthermore, by exploiting the structure of the network and the property
of the sigmoid activation function the computation of local Lipschitz constant can be efficiently
carried out.

Local Lipschitz constant can be used either to compute lower bounds on the optimal solution,
or to describe approximately the topology of weight subsets. It is well known that the error surface
of a feedforward neural network is composed mainly by flat plateaus and some deep valleys that
contain local or global minimum solutions. Our procedure provides a way to identify those flat
areas and may be used to reduce the search space in neural network training.
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Some Remarks about Boundary Creation by
Multi-Layer Perceptrons

Konrad Weigl and Marc Berthod*

INRIA - B.P. 93 - 06902 Sophia Antipolis Cedex France

Abstract. In the present pater, we challenge the classical concept that
hidden-layer neurons form necessarily individual segments of boundaries
between classes when used for classification: in order to fulfull such a
purpose, the majority of the output values of the neurons must be close
to 0 or I for the input samples given. We introduced in [7] [8] [9] a
new learning algorithm, Projection Learning- Given enough neurons, the
weights from input to hidden layer computed by that algorithm are so
small that nowhere does any output from the hidden layer get into the
proximity of the upper or lower bound. The function approximation and
classification is thus not formed by individual neurons forming boundary
segments, but by the linear or non-linear superposition of the outputs
of the neurons of the hidden layer. We introduce briefly the new algo-
rithm, compare it to cassical algorithms such as backpropagation, show
the relevant statistics oi the output values of the hidden-layer neurons in
a real-world examptc, and conclude upon the relevancy of the findings.
Keywords: Tensor Theory, Projection Operators, Metric Tensors, Ra-
dial Basis Functions, Multi-layer perceptrons

1 The general approach

In the present paper we shall concentrate on the mathematical aspects. Refer
to the papers above and [10] for the paradigm. The aim of approximation is
modelized by the aim to minimize a function E = EL.=(F(zk) - A(zk)) 2 ,

F(z.) being the function to be approximated, A(zk) the approximating function,
zk the set of input values, k E {1, .. , n, gi, i E {1, .., N} the set of arbitrary
differentiable functions computed by the N hidden-layer neurons, and gi(zk), k E
{1, .. , M}, i E {1, .. , N} the output values computed by the hidden-layer neurons
for given inputs zk. We shall assume a linear output neuron 2 . The problem
belongs to the class of separable non-linear least squares [3] [4] [5]. The difference
to backpropagation is that we are computing the weights from hidden-layer to
output layer directly at each step for given input- to hidden-layer weights, have
proven that this approach is exact (cf. [10] for details), and shown that it is
fast, see below.
* email: weigl~sophia.inria.fr berthod(}sophia.inria.fr

Correspondence to: Konrad Weigi
2 We have shown in [10] the extension to a non-linear output neuron with invertible

activation function; extension to multiple output neurons 'rivial
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2 The algorithm step by step

After initialization, the steps in the learning loop, thus per iteration, are then
the following:

1) Compute the output values gi(zk) of all the filters/nodes/hidden-layer-
neurons i for all the input samples zx, k E 1, .., M;

2) Multiply pairwise gi(z) with gj(xk), and sum over all these products
gi(zk)gj(xk), k E 1, .. , M; this gives us the scalar gi,. Do this for all filters i,
j; These scalars g,, are the components of the covariant metric tensor, which is
a symmetric and real matrix. Invert the matrix by any method, e.g. neural, of
your choice (10]. This gives us the contravariant metric tensor.

3) Multiply all the output samples given F(zk), k E 1, .. , M with the corre-
sponding filter outputs gi(Xk), k E 1,.., M computed above. Sum over all these
products F(k)gi(zk), k E 1, .. , M ; this gives us the covariant component At.
Repeat for all the filters.

4) Multiply the contravariant metric tensor obtained above, which is a matrix,
with the vector formed by all the covariant components A,; this gives us the
vector of contravariant components Ai 3. Multiplying now all the filters gi(zk)
with the corresponding A', and summing up over all the indices i, gives us the
function approximation for the network and input sample zk, called A(zk):

A(--) )-- A'gi (xt)(1

Thus we can now compute the distance E:

M
E = Z(F(Xk) - A(Xk)) 2  (2)

k=1

5) We have to differentiate E with regards to the parameters/weights of the
nodes/basisfunctions; thus we need, by the chain rule, for example, to differen-
tiate w.r.t. the parameters of the filter j, called params,:

dE _= Z(F(Xk) - A(Xk ))2 d(F(Zk) - A(z&k)) 2  (3)
dparamsj dparamsj

implies 4:

dE = Z2(F(k) - 'A'X,))(Adg )(k)
dparamsj - dparamsj

dparamaj depends on the type of basis function used, obviously; for a sigmoid,
it is for example: [6] -- 9j(zk)(1 - gj(Zk))Zk for the computation of a

3 The superscripts are not power exponents!
We have shown in (10] that the terms depending upon d cancel out
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non-bias input, and d = gi(zk)(1 - gj to cmpute the bias weight.

6)Once we have computed for all parameters, we can compute:

dpararns - dE
dt dparamsj (5)

and compute one step via gradient descent or other; then we reiterate the
loop with steps 1) - 6), until the minimal distance has been found. Figure 1
shows the evolution of the training of the network on the XOR-function, while
figure 2 shows comparisons of computation time of our algorithm with standard
gradient descent compared to backpropagation with standard gradient descent.

3 Measurements on taught network

For an individual neuron with sigmoidal activation function to operate as a seg-
ment of a boundary between classes, its output must be close to 0 or one for a
major part of the input samples.
We have applied thus the algorithm described to a real-world classification task
with two classes, namely the detection of inhabited areas on satellite images
[12], using from three to thirty hidden-layer neurons and a linear output neuron.
Computation time to convergence was between 46 and 149 seconds on a Sparc
10.
The networks were then tasked to classify the testset, which consisted of an
384x384-pixels image, i.e. roughly 147,000 samples. We made then individual
histograms of the outputs of all the individual hidden-layer neurons for the
147,000 samples given, one histogram per network with a given number of neu-
rons. Figure 3 shows the results: From top left to bottom right, the number of
neurons, and the number of learning iterations is increasing. In hindsight, this is
obvious: The more neurons, the more chance that the manifold which they span
in function space is close to the function to be approximated, and the greater
thus the chance that the error/distance is small. We can see that therefore, with
a small number of neurons, the neurons have to adapt, and effectively form
boundaries, as we can see from the distribution peak at zero for small number
of neurons; when the number of neurons increases, however, their output values
tend to gather around the original random initialization value: Thus in no way
do individual neurons form boundaries, and only the linear superposition of the
outputs allows for the approximation of the function. This means that the neu-
rons with randomly chosen parameters are a'le to span such a manifold, and
thus represent such a function, if there are enough of them. This is a result akin
to the coarse-coding paradigm of Rumelhart t6], the population coding concept
of Gaal [2], or the frame concept of Daubechies [1] etc., though we are in no
way projecting here to a higher dimensional space, as these authors are doing.
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4 Conclusion

The present study would have been impossible with backpropagation, which
would have modified the parameters of the hidden-layer neurons before any
sensible statistical analysis could have taken place; only by using an approach
akin to ours, which computes the optimal hidden- to output-layer weights for
given input- to hidden layer weights, are we able to determine how many neurons
are indeed necessary to form a boundary:
If the output values tend to stay close to the initial values, the number of hidden-
layer neurons is higher than necessary; only if the distribution of output values
converges towards the upper and/or lower limit do these neurons function as
class limiters. In all other cases, a presumably highly redundant superposition
of the outputs of still randomly-distributed hidden-layer neurons fullfills the
approximation task.

References

1. Daubechies, I., Ten Lectures on Wavelets, SIAM, Philadelphia, Pennsylvania,
1992

2. Gail, G., Population Coding by Simultaneous Activities of Neurons in Intrin-
sic Coordinate Systems Defined by their Receptive Field Weighting Functions,
in: Neural Networks, Vol. 6, pp. 499-515, 1993

3. Golub, G.H., and Pereyra, V., The Diferentiation of Pseudo-inverses and Non-
linear Least-Squares Problems Whose Variables Separate, SIAM, J. Numer.
Analysis, Vol. 10, No. 2, April 1973, pg. 413-431

4. Kaufman, L., A Variable Projection Method for Solving Separable Nonlinear
Least Squares Problems, BIT 15 (1975), pg. 49-57

5. Krogh, F.T., Efficient Implementation of a Variable Projection Algorithm for
Nonlinear Least-Square Problems, Numerical Mathematics, Communications
of the ACM, March 1974, Vol. 17, Number 3.

6. Rumelhart, D.E., McClelland, J.L., et al., Parallel Distributed Processing,
Vol. 1, MIT-press, 1986

7. Weigl, K., and Berthod, M., Metric Tensors and Dynamical Non-Orthogoual
Bases: An Application to Function Approximation, invited talk, in Proc.
WOPPLOT 1992, Workshop on Parallel Processing: Logic, Organization and
Technology, Springer Lecture Notes in Computer Sciences, to be published.

8. Weigl, K., and Berthod, M., Non-orthogonal Bases and Metric Tensors: An
Application to Artificial Neural Networks, in New Trends in Neural Computa-
tion, Proc. IWANN'93, International Workshop on Artificial Neural Networks,
Springer Lecture Notes in Computer Sciences, vol. 686.

9. Weigl, K., and Berthod, M., Non-orthogonal Bases and Metric Tensors, invited
talk, in: Workshop on Neural Networks, Huening H. et al. eds, Aachen 1993,
Verlag der Augustinus Buchhandlung, ISBN 3-86073-140-8

10. Weigl, K., and Berthod, M., Neural Networks as Dynamical Bases in Function
Space, research report INRIA no. 2124.

11. Weigl, K., and Berthod, M., Projection Learning: Alternative Approaches
to the Computation of the Projection, submitted to ESANN'94, Brussels,
Belgium

111-723



12. Weigl, K., Giraudon, G., and Berthod, M., A Fast New Neural Network Learn-
ing Algorithm and an Application to the Detection of Inhabited Areas on
Satellite Images, submitted to the conference on Computer Vision and Pat-
tern Recognition, Seattle, Washington, 1994

Fig. 1: Evolution of the system; two sigmoidal filters, four samples; top left
image shows the original XOR-function; the remaining images, top left
linewise to bottom right, show the evolution of the system. Data: 188
iterations, 760 msecs on Sparc 10

0.

Fig. 2: Time to convergence, averaged over 20 runs each: Projection
learning on left, backpropagation on right: Both same initial
random weights, convergence time in secs
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Fig. 3. From top left to bottom right, increasing number of neurons of the hidden
layer; computation time varies between 46 and 149 seconds for a final convergence to
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PERI ORMANCE OF NEURAL NETWORK LOOP
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ABSTRACT

This paper analyzeL. the performance of the neural network loop and
gives relationship between stored patterne M and probability of input
element p. The ane ysis as'hows that If neural nodes N is sufficiently
large than the sto,,od pattern M, with high probability the neural
network loop coua-ogos to stored pattern vectors.

1. Introduction

The classificatio, of stationary random signals and associated
signatures may bo performed using neural network techniques. The bidi-
rectional associat~ve memory (BAN) k87], and Hopfield networklL87l can do
these works. The pLPers[Z911 give an architecture of neural network loop
which perform asso(.;ative memory.

The basic system tll- t we shall discuss Is shown In Fig. 1. we assume one
layer of simple mocal neurons projects to another layer. Suppose we have
three sets of N netrons, called I, Y and Z, where every neuron in set X
projects to every couron in set Y. A neuron j in set X is connected to

Input LMY~

outputLaeX

LyrXput Input
Layeri w.Op ut

Input

Fig. I Three Layer F.atwork Fig. 2 Layer I Architecture

every neuron I in oet Y by way of a modifiable synapses with strength
W.,,(i,j), forming cai NX N connectivity matrix I.,. Similarly, we can ob-
tain the connectivity matrices 1,, and I... fig. 2 shows the archite-
ture of layer 1. It receives the input signals from layer Z or external
Input and projects the outputs to layer Y. The nodes sum the weighted
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iuputc frc layer X or external input, and then passes the result through
a hard fiiting function. Using follow learning rule, we can obnlin the
weight mLr ices W.,, VY and W...

W3.=-,2_ 1 Y (M) X (m)T (1)
W,.=X .- ,Z (M) Y (M) T (2)W.,,=Z".,LX W-. Z (M) (3)

where X (m) 1xj (m), x. (m),... KN(m) )T

Y (tI)Ly km), y, (m), ... yN (M)I
Z ) {zI (m), z2 (m),... zN (m) }

2. Perforiunce

From a inrit vector, such as X(m), we can associate other two correspond-
ing sample [R1] Y(m) and Z(m) stored patterns in NNL. It is especially
useful whex input a partial vector. We can recall other two vector
samples cc.rectly. This proved that NNL has the ability of fault to-lerance an] ability against noise.

It can be )roved easily that NNL performs task finished by Hopfield and
BAN neural networks[Z911. So NNL has the similar properties which Hop-
field and 3,AM have[Z91]. The paper[Z9iI has proved that when qo=po - 1/2,
NNL can coiverge with high probability, where

qo=P{x)=l =}zP{yL(' -}- Pfz' -1} (4)
po=P11' =---=P~y=-I) = Pfsiz =-I) (5)

are the probability distribution of x,(m)} y1 (m) and za(m).

Now we analyzes convergence of NNL when qo3- pozl/2. If NNL is addressed
by multiplying the matrix W-,(or , with one of state vectors, say
X(mo) (or Y(moD),Z(o)), it yields the estimate

ul- ~-wt V., (, JP xj.

O, C.) ( )
whero s . ,,o - xi ° yi.

t, consist. of the sum of two terms, the first is corresponding output
vector alr)!ified by N, the second is a linear combination of the
remaining otored vectors and it represents an unwanted cross-talk term.
The value of s is the sum that M-I term add randomly, In order to recall
corresponding stored vectors correctly, We hope the absolute of the
first term is larger than that of the second one. First, let's discuss
every tern of the second term in Eq. (6). Let

C-) "y (7)

Suppose probability distribution of aj are

p{ JCm) ul}-P
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I/horo p+q--l. For a!i f i=l, 2, ... ,N, m=l, 2, . , m Om the

probability that th.: e Qre n s-) are equal to I is

s=2n-N Cal - - E Ql pqN - -
: q "- ' [N (M-!)J i/ (al [N - - ])-n f

Suppose s it rand:-n /ariable with moan value m. and variance CV..We can
obtain

r,,,=N U-I) (p-q) 8a)
.4]tI )pq (8b)

The magnitudo of 8 _:.n be represented as

V/--( if}-- -DH .1 p q + [H 1 - (p -q)

Nov wo shall discus, E(s'} versus p and rewrite E{s as

G (p) =E I s} IN tP 1) p (-p) +N (M- 1) 2 (2p- 1) (9)

Use the following durivative.

G' (p) -4N (M- 1) 0 - 2p) + 4N (Md- 1)" (Op -) =0

We can obtain p=1/2. Substituting p=1/2 into Eq. (9). We have G(1/2)=
N(M-).So when p=q-ii2,G(p) reaches its minimum value N(-I) and in this
condition the netwo,-k has the highest capacity.

Now discuss Ris} vyrsus po and from Eq. (5-7) we have

p=2p o q'+po (q, po) (10)q=qo (q+po) P+.;Pqo (11)

NO a ) versus Po det ,rmincd by Eqs. (9-11).

Figs. 3-4 give curv.a -VG(p) versus p and Po respectively. From the
figures we can know that although ina small domain of p /W( p) is
larger than N/2, in . broad domain VG(p) of po is larger than N/2. It is

____ _-- JG(P J<,/i"(1' I / .

Fig. 3 VO(p -ersus p Fig. 4 V/-G--(- versus Po
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ther we exp ct. In this domain the network can converge to correct
p~attorn Avc)r. Because equations (10-11) convert the narrow domL.in of
p into the 'road domain of Po. We can Bee this point from figure 5.
equation 9 determine relationship between stored pattern number M
and p. W/he v'6G-(p)- becomes large with p, the second term of equation (9)
it, rauch ladr ,r than the first one. Equation becomes

G (p) ,- -1) " (2p - 1)

The corditi a that V/6-p) is larger than N/2 becomes

q J.: I / f 1 2 (M-1) 1 (1211

Figure 0 ha-, also given this relationship.

Fig. 5 p versus po

3. Conclusiou

This paper v'alyzes the performance of neural network loop and obtain
the concluGija that although in a narrow domain of p the network can
converges tc correct patterns, in a broad doamin of po the network can
converges to correct one. This result quarantees the convergence of the
network.

References

[k87I1art !osko. Adaptive bidirectional associative memories, Applied
Optics Vol. 20, No.23, December 1987.

fL87]Richard P.Lippmann, An Introduction to Computing with Neural
Nets, L]EE ASSP Magazine, April 1987.

IZlI]Zhang, Yongjun and Chen, Zongzhi, 'A New architecture of Neural
Networ±, IJCNN, Vol. 1, 1991.

111-729



A Binary-input Supervised Neural Unit that Forms Input Dependent
Higher-order Synaptic Correlations

Marifl Gfiler and Erol 5ahin
Department of Computer Engineering

Middle East Technical University
06531 Ankara, Turkey

E-mails: mguler~trmetu.bitnet, eroldceng.metu.edu.tr

Abstract: This paper introduces a neural unit, similar to a sigma-pi unit, that can learn and
generalize linearly inseparable binary input vectors. Learning effectively decides a higher-order
polynomial suitable to the problem being trained. The unit generalizes in accordance with the rela-
tion specified by that polynomial, and hard problems like the parity problem are generalized easily.
In training the neural unit, a gradient-descent based supervised learning algorithm is adopted.

1. INTRODUCTION
The threshold mechanism in a McCulloch and Pitts neuron is not the only nonlinearity that plays
an important role in information processing in the brain. Over the years, a substantial body of ev-
idence has grown to support the presence of nonlinear synaptic connections and multiplicative-like
operations. We refer the reader to the review article by Koch and Poggio [1]. The introduction of
polynomial or sigma-pi units [2][31 have motivated the research to investigate the computational
abilities of neural units with nonlinear synaptic connections. The output of a polynomial unit is a
function of the linear sum of some monomials, where each monomial is the product of some number
of inputs x, and a weight parameter e.g. wxx 3 z34. It has been argued that networks based on
sigma-pi units may be more powerful and have other advantages with respect to the more traditional
threshold-based networks 14][5]. The backpropagation algorithm is commonly adopted to train the
polynomial networks [2][6] and usually the terms upto second-order are used and higher-order terms
are ignored. However, for many problems like the parity problem, higher-order terms play the most
decisive role and cannot be ignored. Even though invariance properties may be used for certain
problems, in general, learning algorithms do not specify which of the higher-order monomials are
the most relevant ones and, therefore, to be taken into consideration for the problem in hand.

In attempt to obtain a neural unit that can do nonlinear separation, another approach known
as the Gaussian potential function network (GPFN) has been proposed [7]. GPFN is capable of
performing forward mappings as a pattern classifier and approximates an arbitrary many-to-one
continuous function by a potential field synthesized over the domain of the input space by a number
of Gaussian computational units called Gaussian Potential Function Units (GPFU's). The synthesis
of a potential field is accomplished by learning the location and shape of individual GPFU's, as well
as determining the minimum necessary number of GPFU's via a gradient-descent based supervised
learning algorithm.

The reason for much of the excitement about neural networks is their ability to generalize to new
situations, and a neural network that is efficient in learning is not necessarily good at generalizing.
After being trained on a number of examples of a relationship that interpolates and extrapolates
from the examples in a sensible way. But what is meant by sensible generalization is often not
clear. How does a neural network -or a human for that matter- choose the 'right' one among al-
most infinitely many possible generalizations? As an example, one could train a neural network
with six or seven of the eight parity relations in three dimensions, and it would be very unlikely
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that any of the known type of networks would actually generalize to full parity. A child with a
reasonable IQ will, however, discover the relation as multiplication, or as evenness or oddness, and
generalize correctly. Perhaps, discovering a relation through learning, and generalizing accordingly
is the sensible generalization, and that is what the neural unit we introduce does for binary inputs.

2. THE MODEL NEURAL UNIT
The infinite polynomial sum representing the postsynaptic polarization potential of a sigma-pi unit
[2] can be written as a finite sum in case of the binary inputs as follows:

N N-k+1 N-k+2 N
UJ() O +y E E ... E UJ.1.2 ... Ajl -'32..j (1)

k=1 ji=1 32=31+1 3k~jk-1+l

Here, N is the dimension of the input vectors fc = (XI,X 2 ,. . .,XN), and w's are the weight
parameters. The value of zi (i = 1,2,...,N) is either +1 or -1. A term like x2X4X7 in the
infinite polynomial has been absorbed into the term X 2 X7 since each xi is binary and that is
what made it possible to obtain a finite polynomial. For example, for N = 2, Eq. (1) yields
0(g) = W0 + WIXI + W2X2 + W1 2 XZX2.

The output of the neural unit, S(A'), is binary (+1 or -1) and given as:

S(X) = sgn(O(X)) (2)

S(fC) will not be affected if we ignore some of the weights, and the corresponding terms, with
relatively smaller absolute values in 0(fC), which is important since p(fC) contains 2 N weight
parameters and naturally, we do not want to compute all. But how do we detect the most relevant
terms, that is the terms with relatively larger absolute values?

O(fC) can be written as a linear sum of some "product terms" as follows:

L

= E(Hj + Mj'xl)(Hj + MJ2x 2 ) ... (H + MNXN) (3)
j=1

Here, Hk and Mk' are some coefficients to be determined and L is some finit ;nteger. Note that
a product term contains all the terms in Eq. (1) when it is expanded, but s( f the weights in
that expansion are dependent on the others. However, the sign of 0i(9) is impoi ant, not its exact
value, and this provides some degrees of freedom. If more degrees of freedom is required, then we
add new product terms, that is we increase L, which releases some of the dependent weights.

In order to compute the coefficients H and Mi we define a cost function as:

E = -(dp - 0(-fp))2  (4)
p

where the sum is over the training patterns. kp and dp denote the training pattern p and
its desired output respectively. The cost function is minimized using the gradient-descent method
which, for pattern p implies:

N

AHj- = 1--y(d - O(Yp)) fi (Hi + MjxP)
i=1,i~k

N
AM~k = 1-[(dp - (Xp))xp f1 (Hj + Mx) (5)

i=1,iik
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where k = 1,2,..., N. Initially, random values are assigned to Hj and Mj. -Y is a parameter
set in the simulations as - = 0.1 if sgn(O(Xp)) = d, y = I otherwise. It has the effect of focusing
on getting the sign of .0(X) right before paying attention to the magnitude. The learning rate t7 is
not taken as a constant but, instead, is adjusted automatically during the learning process as:

+a if AE < 0 consistently
-b77 if AE > 0 (6)
0 otherwise

where a and b are appropriate constants. The meaning of consistently is based on last K
steps. In the simulations, a, b and K are set as a = 0.05, b = 0.3 and K = 10. Such an automatic
adjustment of 17 has been proposed by various authors, e.g. [8][9], for tLf. backpropagation algorithm,
which we have adopted here.

The value of qO(Y) is unbounded which may lead "blow-ups" during the learning process. We
have, however, avoided this, imposing a constraint as IHI < 1 and IMjI < 1, during the simulations.

It is important that we add new product terms gradually. That is, we start with one product
term and if after certain number of cycles the error E does not fall below a required limit then
add few more (one or two not twenty) product terms and apply the algorithm again. As far as
the learning is concerned, there is no need to the gradual addition of the product terms; in any
case the neural unit will learn. However, if new terms are not added gradually we may get a dif-
ferent generalization. A trivial example is the XOR problem. If we train three of the four patterns
using two product terms, then, depending on the random initial values of the coefficients in the
algorithm, it may generalize the fourth pattern to +1 or -1. But if one product term is used then
the fourth pattern will be generalized to the full XOR. This is because, with two product terms,
even if E = 0, the degree of freedom is sufficient that there exists two different set of coefficients
(one corresponding to the full XOR and the other corresponding to the linearly separable solution)
which can accomodate the three patterns that are trained. Hence, gradual addition of the product
terms effectively detects the most relevant terms mentioned earlier, and forces the neural unit to
find a relation as simple as possible.

3. SIMULATIONS
In the simulations, after the addition of a new product term, all the coefficients are set to random
values and 1000 cycles of training is applied. If after 1000 cycles the error does not fall below the
required limit another product term is added and the same steps are repeated. Therefore, a pat-
tern set that employed L product terms is trained for 1000L cycles maximum. There is a trade-off
between the number of product terms and the error limit. We have taken the error limit as 0.05Np,
where Np is the number of training patterns, good enough for sensible generalization.
Learning
2 N distinct vectors in N dimensions with various random desired outputs are taken and the neural
unit is tested upto N = 7. It has learned all of the 2 N input vectors completely. The number of the
product terms it has employed varied a lot, as expected, depending on the desired outputs. The
maximum number of product terms employed in 2,3,4,5,6 and 7 dimensions are 4,4,5,6,9 and 17
iespectively. These numbers are, in fact, higher than they should be. For example, for N = 2 the
maximum number should be 2. We interpret this as an artifact of the gradient-descent method's
local minima problem. However, note that the storage requirement can be eased up ignoring some
coefficients, without affecting S(X), that are close to 0.
Generalization
Example 1: Parity problem deserves a special attention as it is usually considered as the most
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XI X2 X3 dp

-I 1 -I-* 1
-I1-1 1-* 1
-1 1 I1--1-
1 1 -1l- -I
1 -l-I -- 1

Table 1: Training pattern set used for the parity generalization in 3D

X 1  X2 X3 X 4  dp

-1-1 -1 1 -* -1
-1-1 -1 1-* 1
-1-1 1 -1-* 1

Table 2: Training pattern set for the parity generalization in 4D

difficult problem for most of the existing models and usually cannot be generalized. The neural
unit is trained with the 3D pattern set shown in Table 1.

The neural unit discovered the parity relation with one product term as

O(f)= (-0.01 + 0.99xi)(0.03 - 0.97x 2 )(0.06 - 0.99x 3 )

- 0.95X1X2 X3

hence generalized all the untrained input vectors accordingly. Note that, although the problem
is a linearly separable one, the parity relation is discovered by the neural unit because it requires
just one monomial whereas the linearly separable solution requires three monomials. Similarly, the
neural unit learned to generalize to the 4D parity relation after training it with the 4D pattern set
shown in Table 2.

Example 2: The problem considered here is the discovery of the Boolean function f(A) =

(X 1 V X2 ) A (X3 V X 5 ) where V and A represent conjunction (binary or) and disjunction (binary and)
respectively, x4 being redundant input. The neural unit is trained with 25 of the 32 patterns and
formed the polynomial

O(X)= (0.79 - 0.Olxl)(-0.90 - 0.33x 2)(-0.89 - 0.31x 3)(0.92 + 0.01X4 )(0.83 + 0.28x 5) +

(0.32 - 0.49xi)(0.35 - 0.48x 2 )(-0.51 - 0.84X3)(-0.63 + 0.18x 4 )(-0.31 + 1.00x5) +

(-0.78 -- 0.10xl)(0.95 + 0.14x 2)(0.49 - 0.84X3 )(0.88 - 0.04x 4 )(0.49 - 0.86x 5) +

(-0.51 + 0.94x,)(-0.58 + 0.57x 2 )(-1.00 - 0.23X3)(-0.86 - 0.09x 4 )(-0.89 - 0.43x 5)

0.08 + 0.41xi + 0.39x 2 + 0.37x3 + 0.36x5

-0.44xlx2 + 0.16xIx 3 + 0.18x 2X3 + 0.18x1x 5 + 0.16x 2x 5 - 0.38x3 x5

-0.13xIX 2 X 3 - 0.12xlX2 X5 - 0.10XlX3 X 5 - 0.11X2x 3 X 5 + O.07xlX2X 3 x 5
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Z X2 X3 24 dp
-I1-I11 1 -- 1 -
1 -1 1 -1 --- 1
1 -1 1 1 --* -1

1 1 1 1 -1
-1 1 1 -I --* 1
1 1 -I1-i --- -
1 1 1-1 -1-
1 1-1 1 -I

-1 1-1 1 1

Table 3: Training pattern set in 4D

where in the approximation monomials with weights less than 0.05 in absolute value are omitted,
which does not affect S(X(). Hence, S(?) is independent of 24, as it should be. The neural unit
generalized the remaining 7 patterns in consistency with the Boolean function f(k).
Example 3: The neural unit is trained with the 10 patterns, shown in Table 3, that are generated
using the Boolean function f(XC) = (X1 @ 2) A (X3 ED X4) where ED represents the XOR operation.

The neural unit comes up with the relation

O(X)= (-0.95 + 0.06xl)(-0.94 + 0.82X2)(0.07 + 0.75X3)(0.04 - 0.77X4) +

(-0.05 - 0.93x,)(-0.64 - 0.62X2)(-0.93 + 0.0023)(0.89 - 0.01X4)
- -0.49xl - 0.48212 - 0.52X3X4 + 0.45X2X234

0.5(-l - 2122 - 2324 + X2234)

- -0.52I(1 + X2) - 0.5X324(1 - X2)

which can be interpreted as:
-X324 if X2 = -1

-Xj if X2 = +1

and is represented by the Boolean function:

0(9) = (fl A X2) V ((T3 E 5f4) A f2)

which is a simpler relation than the one used in generating the pattern set.

4. CONCLUSION
In this paper we have introduced a binary-input supervised neural unit that, through learning,
forms higher-order synaptic correlations expressed by a polynomial. Consequently, it can learn and
generalize linearly inseparable input vectors. The gradient-descent based learning algorithm is such
that the terms in the polynomial that reflect an existing relation in the input vectors are highlighted
(i.e. assigned higher absolute weight values), and then generalization is done in accordance with
that existing relation discovered. We do not, however, think that the learning algorithm used is
the most efficient algorithm one can find, and we axe currently working on this point.

111-734



References

[1] Koch,C. and Poggio, T., Multiplying with synapses and neurons, In: "Single Neuron Compu-
tation" McKenna T., Davis J. and Zornetzers (eds.) 1992, Chap 12, pp 315-345

[2] Rumelhart, D.E. and McClelland, J., Parallel Distributed Processing: Explorations in the
Microstructure of Cognition. Vol. 1., 1986, MIT Press, Cambridge, Massachussets

[31 Volper, D.J. and Hampson, S.E., Learning using specific instances, Biological Cybernetics, 57,
1987, pp 57-71

[4] Durbin, R. and Rumelhaxt, D.E., Product Units: A Computationally Powerful and Biologically
Plausible Extension to Backpropagation Networks, Neural Computation, 1, 1989, pp 133-142

[5] Mel, B.W., The Sigma-Pi Model Neuron: Roles of the Dendritic Tree in Associative Learning,
Soc. NeuroScience Abstr., 16, 1990, pp 205.4

[6] Shin, Y.C. and Sridnar, R., Network Configurations and Training Speeds of Second-Order
Neural Networks, Proc. WCNN'93, Vol. I, 1993, pp 585-588

[7] Lee, S., Supervised Learning with Gaussian Potentials, In: "Neural Networks for Signal Pro-
cessing", Kosko, B. (ed), 1992, Chap. 7, pp 189-227

[8] Jacobs, R.A., Increased Rates of Convergence Through Learning Rate Adaptation, Neural
Networks, 1, 1988, pp 295-307

[9] Vogl, T.P., Mangis, J.K., Rigler, A.K., Zink, W.T. and Alkon, D.L., Convergence of the Back-
propagation Method, Biological Cybernetics, 59, 1988, pp 257-263

M-735



Adaptive Tessellation CMAC
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Abstract

An adaptive tessellation variant of the CMAC architecture is introduced. Adaptive tessellation is
an error-based scheme for distributing input representations. Simulations show that the new network
outperforms the original CMAC at a variety of learning tasks, including learning the inverse kinematics of
a two-link arm.

1 Introduction

The cerebellar model articulation controller (CMAC) is a supervised learning algorithm inspired by the
architecture of the cerebellum [1, 2]. It has been successfully applied to a number of tasks which require a
quick, computationally efficient algorithm. For example, Miller and others have used CMAC for various
robotic control tasks (9, 10, 11].

CMAC is essentially a continuous valued perceptron: a general model of neural learning and performance
[12]. A perceptron consists of three layers of neurons: sensory (S), association (A) and response (R). Nodes in
each layer compute a weighted sum of their inputs. Sensory nodes (S-nodes) transduce input signals, which
activate Association nodes (A-nodes) through a fixed mapping. A-nodes activate response nodes through
modifiable weights to generate output. Error signals drive weight modification between the A and E layers
using the least-mean squares law or delta rule [16].

Since the perceptron calculates a linear transform of input to output, there are many mappings that
cannot be represented by a given perceptron, in particular, those that are not linearly separable. However,
it is possible to increase the utility of a perceptron by using specific S-A mappings given a-priori knowledge
of the mapping.

CMAC is an instance of a perceptron that implements a specific S-A mapping called expansion-recoding.
In expansion-recoding each input, represented as a pattern of activity over the S-nodes, activates a fixed
subset of the A-nodes. These subsets are chosen so that an equal number of A-nodes are activated for every
input (expansion) and so that nearby inputs activate overlapping subsets (generalisation). The number of
A-nodes activated by any particular input determines the granularity, or resolution of the mapping and
the overlap between adjacent inputs determines how smoothly this mapping changes and, therefore, the
amount of generalisation. The choice of the S-A mapping instantiates a hypothesis: that the complexity or
non-linearity of the target mapping is such that it can be adequately represented by the chosen expansion-
recoding.

This paper will refer to the choice of particular S-A mapping as the choice of a tessellation scheme for the
input space. Figure 1 shows schematically possible tessellation schemes for a two-dimensional input space.

2 Adaptive Tessellation

The choice of an S-A mapping is critical for the performance of a perceptron. One might therefore ask
whether such a mapping must be fixed or whether it can be altered during the course of learning. If the
mapping can be selected automatically during training, the designer need not choose the input quantisation
and generalisation.

tSupported in part by ARPA ONR N00014-92-J-4015, NSF IRI-90-0050, ONR N00014-91-J-4100, & Boston University Presidential
Graduate Fellowship.

11I-736



00)
__000

I0

Figure 1: Possible input space tessellations. Each circle represents a portion of the input space which activates
an association node. The scheme on the left is appropriate for a mapping which changes rapidly and in which
generalisation is not required, the middle scheme is appropriate for a more uniform mapping in which outputs can
be generalised between adjacent areas of the input space and the adaptive scheme on the right demonstrates a
non-uniform distribution appropriate for a non-uniform mapping.

To approximate such a function to a required level of accuracy, CMAC must allocate enough nodes to
quantise the entire input space at the degree of granularity required by the most complex region. An adaptive
tessellation algorithm is one in which the number of nodes and their position in input space varies during
training. Such an algorithm can approximate a function more accurately with less nodes by allocating those
nodes in accordance with the structure of the function.

There are many ways to perform an adaptive tessellation and the scheme described here was chosen not
for optimality but to show that a simple heuristic can be of use. In this scheme A-nodes are allocated during
training to regions in which the error is high. The network is initialised with a single node which represents
the entire input space. After some period of training this node is split into a number of sub-nodes. The
sub-nodes are further broken down at regular intervals during the training. Thus, the network operates on
two time scales: a short time scale corresponding to the regular CMAC training schedule and delta rule,
and a long time scale corresponding to the allocation of new input representations.
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Figure 2. Functional approximations produced by two networks, CMAC (left) and and adaptive tessellation variant
(right). The function to be approximated is a sinusoid in part of its domain and constant in other parts. Both networks
utilise same number of A-nodes (100). The location of the A-nodes (in the input space or functional domain) are marked;
note that in the adaptive network they are sparse in the uniform regions and more concentrated in the sinusoidal regions.
Also, within each sinusoidal region, the distribution is biased by the gradient of the curve.

The node to be split is chosen by considering the accumulated error statistics over all nodes and locating
the source of the highest error. The result of this process is a node distribution that is concentrated in regions
where the error was highest during training. Figure 2 shows an example of such a distribution for a function
which is uniform over part, but not all, of its domain.
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3 Simulation: Inverse Kinematics

Learning the inverse kinematics of a two-link arm is a simple problem that illustrates some of the advantages
and disadvantages of the new architecture in comparison to the original CMAC. Assume that an arm is
moved randomly by assigning its two joint angles; the resultant position of its end-effector is used as input
and the joint angles as target values for learning. Such a scheme has been postulated to form a part of motor
learning [5,81. The problem itself is simple; of interest is the accuracy that can be achieved with a limited
representation and without extensive domain knowledge.

In order to compare performance parameters were selected that produced reasonable performance from
both networks, although these parameters were not optimal for either. All parameters were kept constant
and the same learning rates, number of nodes, number of trials and data were used for both networks. Three
levels of generalisation were used for CMAC; no generalisation was performed in the adaptive tessellation
network. Figure 3 shows the time course of network errors during training of both networks. It can be seen
that the adaptive network reaches a lower average error than the conventional CMAC network at any level
of generalisation.

The learning task in this simulation was kept as simple as possible by restricting the movement of the
arm in such a way that only a portion of the input space was spanned. This subspace was chosen so as
to avoid singularities associated with a complete revolution of the arm and within it only a single arm
configuration was associated with each end-effector position.

cu~CMA: no VrhwW%@~
CUAM lmwn*@~ul 1 ..... ]C iA1 : swum ~loll .I ...

I - 'ose ---. ..

10000 a~ w tB i•~ w . 100000 n wk Tfdn~e

Figure 3: Average (left) and maximum (right) mean squared error from networks trained on the two-link arm inverse
kinematics problem. Each graph compares performance of the adaptive tessellation network with CMAC networks
utilising three different levels of generalisation. Each generalisation level specifies how many A-nodes are activated by
each input.

However, the mapping to be learned still involves some complexities. One is a singularity at the origin
of the arm, where multiple positions of the first joint correspond to a single location. Another is the increase
in the effect of a joint angle change at extreme distances from the origin. Both of these factors influence
the distribution of input representations in the adaptive network, as can be seen in Figure 4. Note that this
distribution does not simply reflect the input distribution - it also takes into account the distribution of
errors.

4 Discussion

Adaptive tessellation has been identified as an error based mechanism for varying the mapping between
sensory and association units in a perceptron. Other models also perform such variations, for example,
back-propagation [13]. If adaptive tessellation lies on a spectrum of flexibility in input mappings, at one
end of which are simple perceptrons using fixed linear mappings and at the other end of which are models
such as back-propagation, which allow continuous modification of all hidden unit (A-node) weights, then
it should be located somewhere in the middle of this range.
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Figure 4: Distribution of input vectors (left) and A-nodes (right) from the adaptive tessellation network trained on the
inverse kinematics problemn. Each input vector represents a point in the two dimensional space around the arm centre,
assumed to be located at the origin. Since the arm links are each one unit long, the arm can reach any point lying
within a two unit radius circle of the origin, but its motion is restricted by generating joint angles in the range zero to jr.
The input distribution shows the result of a uniform random selection of joint angles from this range. The distribution of
A-nodes is influenced by the input distribution but is more heavily concentrated around the origin and the edges of the
workspace, as these are the regions that generate high errors. The same number of points are shown in each plot.

Like back-propagation, adaptive tessellation CMAC distributes its A-nodes (hidden layer units) in
accordance with the error statistics. However, in order to do so, it utilises, a heuristic rather than the
generalised delta rule. Similar heuristics have been found useful in conjunction with back-propagation, for
example, the cascade correlation algorithm [4] is a back-propagation variant which allocates new (hidden)
units while the error remains above a given threshold.

The use of a heuristic implies applicability to particular classes of problems. Adaptive tessellation is
particularly suited to the learning and representation of functions which contain regions of uniformity and
regions of high variation. It is less well suited to functions which vary continuously.

Self -organising feature maps (SOFM) [6,7, 15] employ a heuristic which performs an adaptive tessellation
using cooperative interactions between nodes. However, this tessellation is based on the relative densities
of inputs, rather than an error measure, resulting in greater concentration of nodes solely around areas
in which inputs are frequently sampled. A variant of the SOFM algorithm uses error-based distribution
of nodes and, like adaptive-tessellation CMAC, breaks down existing nodes when errors are high within
the regions represented by those nodes (14]. This model uses a mixture of techniques: it follows the
conventional SOFM algorithm to distribute nodes according to the input space densities, then replaces each
node which performs at level worse than a fixed threshold by a new set of nodes. The system is used for
classification and performance is measured by analysing the number of incorrect classifications made by a
given node.

Another system which utilises a heuristic similar to that employed by adaptive tessellation is ARtMAP
[3. ARMAP allocates new categories specifically when no satisfactory category exists, i.e., when the
existing classification scheme would incorrectly classify an input. The new category is placed at the location
of the input vector which caused the error.

So adaptive tessellation can be viewed as a particular heuristic technique for choosing an input repre-
sentation. It is more powerful and more complex than the fixed representation used in conventional CMAC
but simpler and faster than techniques such as back-propagation. Although it sacrifices the easy array
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implementation that CMAC employs, it can be implemented in a computationally efficient manner (see
Appendix).

Performance of the adaptive tessellation network could be improved by implementing some form of
generalisation. Linear generalisation, implemented by averaging in CMAC, would allow the network the
approximate functions with linear regions. More complex curve fitting could be performed by using the
nodes to represent points on a spline or other curve types. As always, the optimal generalisation strategy
will depend on the shape of the function; the best performance will always be achieved by selecting a
generalisation strategy that is based on a priori knowledge of the function. The variation in size of regions
represented by A-nodes in the adaptive tessellation architecture would automatically restrict generalisation
to small regions where errors are high and widen it where errors are low.

Appendix: The Adaptive Tessellation Algorithm

Input and Output: Input is a series of M-dimensional real valued vectors, i. Output is an N-dimensional
vector, 5. Input and output vectors used for training are assumed to be drawn from a function to be
approximated, f : M - N.

Data Structure: Although the network architecture could be implemented in many different ways, all
simulations described in this paper were implemented using a tree data structure. The tree is composed
of two types of nodes: output nodes and split nodes. Each output node stores an output vector i and an
accumulated error measure e. Each split node stores an input space weight vector 1b.

Every split node has 2M branches. Each branch represents a rectangular region of the input space one
side of which is defined by the weight vector of the parent and the other sides of which are implicitly defined
by neighbouring regions. Thus, a split node divides the input space into 2 M hypercubes around the point
represented by its weight vector. The split nodes define the distribution of input representations.

Output nodes are always found at the leaves of the tree, i.e., have no children. They correspond to the
A-nodes of the network; their output vectors are the weight vectors connecting the A layer to the R layer.

Initialisation: The tree is initialised by constructing a single output node at the root which is initially
responsible for the entire input space. Its output vector is initialised randomly.

Output: Each input is classified by traversing the tree, comparing the input vector to the weight vectors
of the split nodes. The appropriate branch of the tree is followed and further comparisons made if another
split node is encountered. This process is continued until an output node (leaf) is reached, whereupon the
associated output vector i becomes the network output.

Training: The network is trained by presenting it with a series of input/output pairs, i and 6. Each of these
pairs is assumed to represent an instance of the mapping, i.e., f(i) = 5. The network output in response to
i is calculated as described above, call this i. The error measure, 6 - i, is used to update the output vector
of the unit which responded to the input using the delta rule:

=±+ 11 (6 -

where q is a learning rate. The summed square error, i(- i) 2, is added to the accumulated error
associated with the output node, e.

After a certain time period, the tree is reorganised and new split and output nodes added. Each such
reorganisation allocates one new split node and 2M new output nodes at the place in the input space where
error was maximal, i.e., the output node with the greatest e. The new split node replaces this output node
and has 2M new output node children, each one of which inherits the output vector of the replaced output
node. All error statistics are zeroed after this splitting process.
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A Bias Architecture With Rank-Expanding Algorithm For Neural

Networks Supervised Learning Problem

JiYang Luo
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Wright State University, Dayton, OH 45435

Abstract:
A fast learning algorithm which can adaptively decide the architecture and synaptic weights

of a neural network for any training set is presented here. It aims to use least hidden nodes

in only one hidden layer and map the input-output patterns within any required precision.

For any N-pattern training set, a maximum of N-r bias nodes are enough to learn all the

patterns within required precision (r is the rank, usually the number of dimensions, of the input

patterns). In this algorithm, the inverse of activation function is applied to the output data,

thus the nonlinear part of the output layer is traversed and can be ignored in the succeeding

learning process. Then we try to map the input data linearly to the traversed output data. If

the mapping has greater error than required, then we add a hidden bias node, append each

input pattern with the corresponding output of the added node, thus to increase the rank of the

updated input. PseudoInverse is applied to achieve least square error linear mapping. The

process of adding a hidden bias node is repeated until required mapping precision is achieved.

1. Introduction:

Supervised Learning Neural Network is a feed forward network. It picks up an input

pattern, feeding forward (usually via some hidden layers), and achieves corresponding output

pattern on the output layer.

We call it supervisedlearning because we desire to get specific output patterns from it

for some input patterns. These input-ouput patterns constitute the training set.

We can see there are only two types of operators in a neural network: matrix operators

W's and a nonlinear activation operator. In this paper, we use the following nonlinear

activation operator:

ex - e-X

ex + e-x

We expect the architecture and learning algorithm of this type of networks to:

111-742



1. Learn all the patterns in the training set quickly with small error;

2. Adaptively decide the architecure and do not use many hidden layers and nodes;

3. Predict the outputs of other patterns;

4. Can be easily implemented into electronic circuits, etc.

This neural networks model has great potential for applications in various areas. But

up to now, we still don't have an architecture or learning algorithm that can satisfy these

expectations. Especially, slowness of learning and difficulty to decide a proper architecure

are major drawbacks to those who wish to apply Neural Networks.

In the method presented here, at least we can satisfy expectations 1 and 2 very well. We

can decide a Neural Network with small quantity of hidden nodes, get their weights quickly,

and with the network, each input pattern in the training set can be mapped to the desired

output almost exactly, the error within any required precision. The architecture is also good

for implementation, because only one type of neuron is used in the architecture.

2. Algorithms Description:

With this learning algorithm, the desired outputs are traced back through the nonlinear

part with the inverse of the activation function,

a - 1 :- In' l+
21-X

and then we try to solve the problem linearly.

Denote the input patterns to be AN,n, N is the number of patterns, n is the number of
input dimensions. And denote the output patterns to be TN,m, m is the number of output

dimensions. We apply or- 1 to each element of T and get BN,,n. The range of a(z) is (-1,1),

to apply a - 1, we should chop those output values of 1, -1 a little (within error tolerance).

We hope to map A to B with a weight matrix W,i.e. find W such that A.W = B. To have
exact solution of the linear equations, we require that each column of B:#j, j = 1..m should

be linear combination of columns of A:a&, i = 1..n with scalers wij. That is, we require A

should have the same rank with [AIB].

For any A,B with N patterns, we have rank(A) <= rank([AIB]) <= N. When

rank(A) = rank([AIBI), we can find exact solution W for A . W = B. If rank(A) <

rank([AIB]), we would first add a constant bias node "1", append it to each input pat-

tern. This would most probably increase the rank of updated input patterns by one. If still

rank(A) < rank([AIB]), then we can expand rank(A) by appending Linear-Independent
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columns to A. These columns must be derived from input patterns in A. We would add

hidden nodes and obtain these columns as their output vectors. To achieve least nodes, we

add them one by one, each one choosing its weights such that its output vector would be

linear independent to the columns of A, and the space spanned by this column and columns

of A will cover the space spanned by columns of B most. To get weights for such a hidden

neuron, an approach is to apply the method used by Fahlman and Lebiere [3], attempting

to maximize the the covariance between the new unit's output and the residual error we are

trying to eliminate.

In this first algorithm, gradient descent method is applied to approach maximum co-

variance, it still consumes some time. For those applications where learning speed is more

emphasized, a simplified method can be applied. Instead of training the hidden neuron's

weights, just have the weights randomly. When rank(A) < rank([AIB]) <= N, the space

spanned by columns ofA is only a very small part of the N - dimension space. The weights

are random, and the nonlinear activation function distorts the sum of the weighted inputs

, so we're almost certain to have each new column of the hidden neuron's outputs to be

Linear-Independent with the columns of A.
From the constraint of rank(A) <= rank([AIB]) <= N, we can see at most N - r linear-

independent vectors are needed for exact learning of the training set. It is the upper bound

of the number of hidden nodes needed.

In either way above, the bias nodes are hidden nodes with fixed weights, and they are

arranged in the same hidden layer. The output vector of each hidden node is attached to the

corresponding input patterns, thus to increase the rank of updated inputs. PseudoInverse

is then applied to train the weights for the output layer. PseudoInverse is a direct method

that achieves least square error solution in a few matrix operations, it is much faster than

gradient descent method which tries step by step to optimize the weights for least suqare

error solution. This is the major reason that we speed up training rapidly.

3. Algorithms:

Algorithm 1. (Bias Nodes with Maximum Covariance)

1. Arrange data of the input patterns in matrix form: A. Arrange data of the output

patterns in matix form: T. Each pattern in a row.

2. Add a constant bias node "1". Update A by appending a column of all "1" as its last

column.
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3. Decide precision of learning:e. Chop those elements of T to be within [-1 + e, 1 - e]: if

any element is larger than 1 - e, let it be 1 - e; if any element less than e - 1, let it be e - 1.

4. Set Wbias to be empty.

5. B = a-'(T);

6. A+ = (AT . A)-';

7. W =A + B;

8. E = lB - A . W *21(N * m);

9. If (El=e) stop.Else go to step 10.

10. Add a hidden node with random weights connecting every input dimension and the

constant bias node.

11. Update the weights of the hidden node with gradient descent method to approach

maximum covariance (Refer to [3]).

12. Append the weights of this hidden node to Wbias as its last column.

13. Form a vector of outputs of the hidden node corresponding to each input pattern.

Update A by appending this vector as its last column.

14. Goto step 6.

Algorithm 2: (Bias Nodes with Random Weights)

Void step 11 in algorithm 1.

4. Related works:

The idea of this Bias Architecture and Rank-Expanding Algorithm was inspired after

studying the work of Friedrich Biegler-Konig and Frank Birmann [2], and the work of Scott

E. Fahlman and Christian Lebiere [3].

A Bias Architecture is a Cascade-Architecture in the sense that the weights for the bias

nodes are fixed and then we combine the input patterns with bias outputs to train the ouput

layer.

But the Cascade-Correlation Algorithm adds hidden nodes one by one, each in a different

layer,i.e. each new node is a deeper layer, while we put bias nodes in the same hidden layer,

thus to reduce the responding time. And we apply Pseudolnverse to train the output layer

directly, instead of applying gradient descent as carried out in [3], therefore the training can

be much more rapidly.

In the second method of adding bias nodes with random weights, another difference is

that the Cascade-Correlation Algorithm adds hidden nodes by maximizing the covariance,
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here we don't train the weights for the hidden nodes, just have the weights randomly, only to

expand the rank of the input and to have more weights involved for output, so as to achieve

an exact solution in the linear part. This helps to reduce training time while still mapping

the input-output exactly, but it might require some more bias nodes.

The method of separating linear and nonlinear parts on each layer of nodes in the net-

work was presented in [2]. But they didn't discuss the network architecture, they adopted

conventional multi-layer network. When the nonlinear part on one layer is separated, there

are still nonlinear parts on the other layers involved. In their Least Squares Backpropaga-

tion Algorithm, linear least squares computation (PseudoInverse) is applied back and forth

through the multilayers repeatedly, trying to diminish the error. But usually, after one or

two iterations the error will remain and not go on decreasing, and they suggested to use

Backprop or other learning algorithm to further reduce the error, which again would be time

consuming.

The authors claimed a special case under which they could achieve exact solution using

LSB: Especially if the network includes a hidden layer with more nodes than the number of

exmples to be learned and if the number of nodes in succeeding layers decreases monotonically,

the presented algorithm in general finds an exact solution. But they didn't explain the reason.

In fact, when adopting conventional multilayered neural network, if the last hidden layer has

no less hidden nodes than N, the number of examples to be learned, then we can achieve exact

solution in general. Similarly, the weights for the hidden layers were randomly given, so the

output columns of the nodes (more than N) in the last hidden layer are evenly distributed

in the N dimension space, and the rank of these columns together would most probably be

N, thus we can achieve exact solution in the output layer.

5. Conclusions:

With this Bias-Architecture, we separate the hidden layer and the output layer in training.

so we can traverse the nonlinear part of the output layer with the inverse of activation

function, then no other nonlinear problem remains, and we transfer the problem of neural

networks that cor"-ines both linear and nonlinear parts to the problem of solving linear

equations, which .- a more familiar topic to us, and has a good method of PseudoInverse for

us to apply.

The first algorithm of training the hidden neurons to have maximum covariance is an

approach to obtain an architecture with minimum hidden nodes. The second algorithm aims
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to further speed up training by adopting hidden nodes with random weights, which can also

serve to expand the rank of combined inputs. But it might require some more nodes than

the first algorithm do.

We still expect more numerical analysis. There may be some faster, better ways to find

the best weights for the bias nodes to achieve least number of nodes, each time appending

vectors that helps best to expand the space to include the output vectors.
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ABSTRACT
One of the widely used neural network models is the back propagation (BP) artificial neural system (ANS).
It is a multilayer, heterogenous, supervised, feed-forward ANS paradigm. Slow convergence of the BP
learning algorithm hampers its use for problems with a complex and/or large feature space. We have devel-
oped a simple and scalable acceleration technique which preserves the convergence characteristics of the
BP ANS paradigm. The convergence or divergence of the system is detected by the dominant eigenvalue
for each layer. We have discovered a relationship between the speed of convergence and the dominant
eigenvalues. As the eigenvalue deviates from 1, the temperature of the network is adjusted to over come
the local minima. Numerical experiments indicate a reduction in the learning time for large complex prob-
lems.

Introduction
The back propagation (BP) artificial neural network (ANN) algorithm is widely used because of its sim-
plicity and applicability to various problems. Pattern Recognition, combinatorics and controls are some of
the major areas of its application. However, slow off-line learning hinders its application to many problems
with a large and complex feature space. The training of the BP paradigm involves a fixed learning sched-
ule. During training the system searches for a minimum error surface in the weight space. The error surface
Is usually degenerate with numerous flat spots, valley and other unevenness. To aid the convergence of the
system various parameters of the learning schedule should be varied in a controlled fashion for the faster
convergence. The purpose of this research is to develop an acceleration technique for the BP paradigm.
One of our main goals was to achieve acceleration without altering the BP algorithm.

Theory of Back Propagation Paradigm
The BPANN algorithm traces back to 1956, when Rosenblatt(1962) introduced the first connection model
called the perceptron, which uses the delta learning rule. The delta learning rule calculates error at the out-
put processing units using simple Euclidean distance in 1-dimensional space. The actual output is calcu-
lated using the forward propagation rule given by:

=p f[ Y(1V1 (1 - ))

where,
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f(x) -{ I ifx>o
- othewise

The delta rule is not restricted to binary values. The BP paradigm can also be extended for continuous sig-
nals In discrete time.

Generalized Delta Rule
The generalized delta nile was proposed to solve the problems of learning in a feed-forward network with
a nonlinear activation function. It Is a powerful learning algorithm. It carries out an approximation of a

bounded mappingf;(A c R"-R"J using the training pairs (xl,y,), (x 2,Y2), ... , (xn,y,n) with the

mapping of yk = f (xt), where, f s an unknown implicit function which the system evolves through the

adaptation of Its internal representation. The error is iteratively propagated back through the hidden net-
work layers towards the Input layer. The weights are adjusted using

where,

fj (netpj) X68pwkj forhidden laye- -ode,

1 pi - OPP f j (netp)) for output units.

The delta rule is applied iteratively until the network converges.

Minsky and Papert (1969) have pointed out that, for any recurrent architecture, an equivalent feed-forward
ANS exists. The generalized delta rule is therefore, applicable to feed-forward as well as equivalent recur-
rent network systems.

Acceleration technique using the Dominant Eigenvalue of the Iteration Matrix
Back Propagation [Rumelhart(1986) Is a powerful supervised learning algorithm for multilayer feed-for-
ward ANNs. It is an estimating system that stores generalized solution of arbitrary pattern pairs, using the
gradient descent error correction procedure. It is extremely popular and has been used for a variety of
Input/output mapping tasks in the pattern recognition and classification problems. The BP learning proce-
dure Is off-line. It has a very slow convergence characteristic. The expanding problem complexity have
forced researchers to discover new algorithms to accelerate convergence.

The theory of linear Iterative methods provide a treasure of acceleration algorithms. However, the artificial
neural systems are inherently nonlinear in operation. Therefore, any direct use of linear system accelera-
tion techniques, to accelerate the ANS, is neither feasible nor practical. Here, we have developed a new
technique to monitor and predict the evolution of the connection strength. We adjust the temperature of the
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activation fimction of the processing elements for faster convergence.

Consider a feed-forward mulilayer ANS architecture. The mapping, done by the network, up to the first
hidden layer is linear. For a piecewise linear model, the mapping from the input layer to the output layer,
can be assumed linear. Therefore the set of weights, in the first hidden laver, evolves linearly. Any non-lin-
earity or abrupt change in the error surface is detected by rapid variation of the dominant eigenvalue calcu-
lated for the Iteration matrix of the first hidden layer. The iteration matrix is calculated as follows:

The weight update Is given by;

P+1) = w p)
I. + J6/p.

Without loss of generality, we can assume q = 1. The iterative learning rule can be written as

W= (e- -wip)T

For the first hidden layer, the iteration matrix G is lp times an identity matrix for the first hidden layer. The
iteration matrix G is a square and a symmetric and positive definite matrix. For the network to converge,
all eigenvalues (X) of the Iteration matrix must be less then 1.

We may use the residuals (change In weights) to estimate the dominant eigenvalue of the iteration matrix,
obtained by successive approximations, is given by the following equation

i
( rn)]2

The above Fquation is similar to Rayleigh's quotient formula.

Consider the feed-forward ANN architecture, the weights between the first hidden layer units and the input
buffer do not contain any nonlinearity. Therefore, they map the input patterns presented at the Input buffer
linearly to the first hidden layer during the forward pass. Hence we may apply the theory, discussed earlier
to accelerate the convergence of the BP algorithm. The piece-wise linear assumption rules out the use of
any linear system for acceleration of the linear systems. However, the dominant eigenvalue of the iteration
matrix can be used as a parameter to monitor the evolution of the network. The contention is also sup-
ported by the fact that, any generate mapping Is fairly continues and therefore linear within small intervals.

We have also observed that the dominant eigenvalue of the other layers follow the dominant eigenvalue of
the first hidden layer. Thus, the selected elgenvalue reflects the convergence state of the overall network.

The dominant elgenvalue of the first hidden layer may be used to monitor the evolution of the network.
The cooling of the system Is proportional to the dominant eigenvalue of the iteration matrix. Whenever the
system elgenvalues move away from the desired value, the deviation is used to raise the energy of the sys-
tem. The dominant eigenvalue greater than one indicates that the system is ascending in the weight space.
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At this juncture, the energy of the system is raised, in a step, to some higher level. The system starts
descendin In the weight space again using the gradient descent algorithm.

The acceleration Algorithm
The specific steps of the new algorithm are as follows

I. The back propagation network topology and the learning parameter values are selected.
2. Random values In the range of [-0. 5, 0. 5] are assigned to the connected weights.
3 For each input pattern new activation value for the each processing unit in the forward pass is calcu-

lated.
4 The output error, using the least mean squared error criterion for the output buffer processing units, is

calculated and the error Is propagated backwards.
5. The connection strength is adjusted using the correlation technique.
6. After one complete presentation of the input set (an epoch), the eigenvalue of the first hidden layer

matrix Is calculated.
7. The temperature of the network Is adjusted as follows:

a. If the eigenvalue of iteration matrix Is greater than one then the temperature of the network Is
increased inversely proportional to the eigenvalue.

b. If the elgenvalue continues to remain below one then the temperature Is reduced gradually.
9. Steps 3 through 7 are Iterated until convergence criterion Is satisfied.

Results and Discussion
The eigenvalue technique Is evaluated for the problems widely used for benchmarking. Currently there are
no accepted standards for benchmarking neural networks. However, the XOR problem is mostly used
because of its historical Importance. Parity 3 through parity 5 are good cases for checking scalability and
response of any acceleration technique to Increasingly complex problems. The results obtained during the
test runs and the analysis of the results with the description of the problem is presented below. For all the
tests we took the average of the eigenvalues for different intervals in order to reduce the effect of noise.

XOR Problem

The Exclusive problem is a linearly inseparable problem. The two input, one output training pairs are
shown in Tabble 1.

Table 1: XOR problem Input/output groups

Input 1 Input 2 Output

0 0 0

0 1 1

1 0 1

1 1 0

Parity n problems are the extension of the parity 2 problem with increasing number of the input attributes.
The feature space grows complex with the number of Inputs. The number of patterns grows exponentially
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with the number of input attributes. Table 2 shows the input/output patterns pairs for the parity 3 problem.

Table 2:

Problem BP EVAT

XOR 459 159

Parity 3 2048 269

Parity 4 4056 1565

From the table we see that there is a significant reduction in the convergence rate by the new technique that
we have developed

Conclusions
A new technique for the acceleration of the back propagation paradigm was developed and evaluated. The
motivation of the work was to develop an acceleration technique without altering the convergence proper-
ties of the standard BP paradigm. Another goal was to simplify the training procedure by reducing the
degrees of freedom. Generally, the choice of learning parameters is critical to convergence time. The com-
plex interactions of the parameters necessitates thorough knowledge of the problem features. Thus eigen-
value acceleration technique reduces the complexity of training the BP paradigm. The goal was to devise a
general technique to monitor the energy state of the neural system. It can help in deciding the optimal
energy state for the system. We have successful y shown that using the dominant eigenvalue of the itera-
tion matrix of the first hidden layer, optimal energy of the system can be decided. This information is used
to accelerate the convergence of the system towards lower energy level.

The technique developed here for acceleration of the BP paradigm does not alter the algorithm. Also, it
does not use any special feature of the algorithm. Thus, the method may be applicable to any feed-forward
ANS architecture. Further research Is being done In this area for increasing the acceleration of the BP par-
adigm. Also we have observed a relation between the speed of convergence of the network and egenval-
ues. This relation has shown that there is a reduction in the time of convergence rate of the networ. Based
on numerical experiments our future work will focus on a more rigorous derivation of the mathematical
relationships and numerical experimentation with more complex problems.
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Abstract

This paper proposes a new forward propagation algorithm (FP - 1) in multilayer feedforward
network. The new approach is a constructive algorithm transferring errors forward while not chang-
ing the established structure, neurons, and the trained weights in the network. The concept of
FP - 1 mapping space is defined in which the program of approximation is just to get inversion of
vectors and determine the FP - 1 areas. Several new definitions are introduced, such as FP - 1
areas, nonlinear distribution chart, global and local approximation, etc. Using FP - I algorithm,
for the arbitrary mapping Ri - RT, we can know accuracy of every neuron in network is able
to arrive, and understand every step of approximation. FP - 1 algorithm includes an important
principle how to decompose the given mapping into global and local components and then to solve
the problem by using global and local approximation. The purpose of this paper is to provide basic
idea of Forward Propagation, specifically FP - I mapping space is emphasized.

1 Introduction
Although BP algorithm is used broadly in many applications, intrinsic mechanism of neurons in the network,
training methods and convergence behavior are imperfectly understood, and huge amount of computer time
are consumed, especially during training. With impressive successes across a wide variety of applications, this
approach prompts many questions that have to be answered.

1. How many hidden units should be used for the given mapping. In this sense, is that possible for us to define
or classify the given mappings to different mapping spaces which can be established in neural network with
different complexity or difficulty?

2. Why can the nonlinear neurons used in network approximate the given mapping with arbitrary precision?
What is real behavior or important but still unknown principles in the network?

3. What concrete types of nonlinear neurons are best to be used in the network according actual applications
or data set, and how to choose them?

4. Can we know the errors of every step of approximation or construct the hidden layer neurons definitely to
eliminate the errors to arbitrary desired accuracy?

5. Is the BP algorithm the only approach to implement feedforward multilayer network? whether or not
there are other algorithms to implement the mapping more efficiently and easily?

This paper will address these issues, and more importantly, it will explore and present a new ideas of
ForwardPropagation (FP) approach, in which the errors are propagated forward and then we can know where
the "bottleneck" of approximation happens. The algorithm proposed in this paper is the first algorithm in
series of FP approach. For this reason, it is denoted as FP - I algorithm. In fact, the FP approach provides
detail information at every step of forward approximation and unveils many interesting features in mapping f:
R - R". Another important theory proposed in this paper is to decompose global problems into local ones,
and then to fit together local components solved to satisfy the global properties needed.
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2 Algorithm of Feedforward Propagation
The idea of FP - 1 algorithm is based on:

I. First to construct two layer neural net. The linear and nonlinear optimal algorithms are used to approxi-
mate the given mapping input and target data set.

2. If two layer neural net can not reach the given precision, the third layer is established and the remained
errors are erased in neurons in third layer.

3. If the desired accuracy is not satisfied in third layer, the hidden neurons are needed to continue to reduce
the errors until the given precision arrives.

An important feature in FP is that the previously trained weights and nonlinear function gj are not changed
while the third or hidden neurons are added, just the coefficients of the new neurons are implemented.
2.1 First two layer linear approximation

As mentioned above, for a given mapping Ri --+ R"i i = 1, ... , r, n < r, the task is decomposed as R! -. Ri
problem at first. The two layer network is constructed shown in Fig.1.

In order to induce the idea of FP - 1, the linear optimal approximation will be used, and the algorithm of
least mean square (LMS) developed by Widrow and Hoff is briefly described here.

Assuming there are r input vectors Xj with n dimensions corresponding to r output Yi i = 1, ..., r, n < r
with rn dimensions, there is linear estimation,

n

j jEi= 1..., j= ,,m (1)
k=1

and desired output is yji, linear output in second layer is YI!, the mean squared error function is
r r n

E(Wj) = (1/2)Z(y, _ yi.y)2 = (1/2) (y,, - >Z, k)2 j m...,n (2)

i=1 B=I k=1
The gradient at any point on the surface is obtained by differentiating OE(Wj)/wjk with respect to the

parameter vector W,, where Wj is the weight vector from input to jth neuron in second layer:

=Wi -X !--)i, j t ..,m k =1,...n (3)
ii=1

The LMS can, therefore, be written as

rwjL.() = wj'(t - 1) + 14(- OEWj)" Wjk(f +- ~ j - y zi = m k= 4
i=1

Eq.(4) determines wjk under criterion of LMS. From this point of view, the weights of two layers are decided
in linear optimal approximation. Let us take mapping 1 shown below as an example.

Mappingl

-. 55 -. 7 -. 95 -. 78 -. 65 -. 15
-. 4 -. 44 -. 38 -. 2 -. 51 -. 38
-. 32 -. 4 -. 38 -. 43 -. 19 -. 75
-. 21 -. 03 .05 -. 18 .03 -. 21
.38 .18 .21 -. 12 -. 13 .09
.31 .19 .21 -. 07 .15 .18
.39 .23 .31 .41 .25 .45
.5 .68 .13 .5 .41 .53
.71 .44 .68 .6 .78 .8
.48 .5 .82 .73 .19 -. 52

After iterative calculation, the mean square error is 0.6645. The target, actual output and error values are
shown in Tab. 1

target -. 15 -.38 -. 75 -. 21 .09 .18 .45 .53 .8 -.52
app. result -.238 -. 419 -.095 -. 18 .286 .087 .28 .674 .708 -. 173 Tab.1

error .088 .039 -.655 -.029 -. 196 .094 .17 -. 144 .091 -.347
2.2 Nonlinear cistribu chart and nonlinear function gj

After the linear approximation in first step, we come to the important issue, how to choose nonlinear function
gj.
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Definition 2.1 Let M -- N(Xi E M, M E N) be arbitrary given mapping V: R -* R i = 1 ... , r, n < r, after
linear optimal estimation (LMS), there are actual linear output y14 and set V, V4' E V. there still exists mapping
gj : V -* N, then gj is called nonlinear function for the given mapping (p, and the curve of relationship between
yi4 and y is denoted nonlinear distributive chart (NDC).

This definition describes that an arbitrary mapping, V : R? -. R , in jth neuron of second layer, which can be
decomposed into two steps: linear mapping and nonlinear mapping. The relationship between y4" and y' unveils
information of what kind nonlinear function should be used as shown in Fig.2. Although NDC varys in different
domains, we can concentrate on a class of sigmoid functions in FP - 1 by choosing coefficients aj, bj, cj, di in
formula (6) in ith neuron. Since the domain discussed in FP- 1 is z, and Yi E [- 1, 11, we define sigmoid function
in

g i = 1ez -(l aj -dj i = I,-, r j = 1, ..., m. (6)

Where the y is jth neuron output of linear approximation in second layer, and y! is jth output of nonlinear
function gj in second layer, the sum of squared errors are

E=(1/2) -Y'" J = I,..., M (7)
i=1

The partial derivatives of E with respect to variables aj, bj, ci, dj are

O r ej exp(-(yj, + aj)/bj)
-j= 1bj(I+ ep(( + ) -...... (8)

O = ill Cjezp(-(+aj)/b)) J = l... ,r. (9)
ei 11ft 9

-__E = J =1,...,r,. (10)
Ncj, be(1 +exp(-(yj! +aj)/bi)

OE _ r,.,n (10)

OE r

i=1

whereeji yji -y~j', yji is desired output in jth node, then the algorithm of adapting aj(t), bj(t), cj(t),di(t)
is given by

BE
aj(t) = aj(t - 1)+i,(- - ) (12)

bj(t) = bQ(t- 1)+p( b (13)

c,(t) = cj(t - 1)+ O(- E (14)
,9c(t -

dj(t) = dj(t- 1) +is( aE (15)

adj(t - 1

Fig.3 shows nonlinear distributive chart(NDC) and Tab.2 illustrates the values after nonlinear approximation
in mapping 1. The squared error is reduced from 0.6645 of linear mapping to 0.5505 of nonlinear mapping, with
a = -0.11,b 1 = 0.42, cl = 2.1,di = 1.02.

target -.15 -.38 -.75 -.21 .09 .18 .45 .53 .8 -.52
app. result -.383 -.557 -.223 -.321 1 .244 1 -.001 .237 .642 1 .669 -.313 Tab.2
error .233 .177 -.527 .111 -.154 .181 .213 -.112 .131 -.207

2.3 Construction er and determination threshold nonlinear function
If two layer net can not reach the given precision, the third layer should be established.

Definition 2.2: Let w,' be the weights between second and third layer , wi "- = I if i = j, the connections
with wI- S- I from second to third layer are denoted main information channels.
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One of important features in FP is the concept of the main information channels which is much different
from general network. The main information channels keep the previous achievements transferred. The remained
errors are considered as the target set approximated in the third layer. Since the error set should be divided
several subsets which are easily eliminated, based on the idea of FP, the subthird layer notion is introduced
here,
Definition 2.3: Assuming there are m output nodes in third layer for the given mapping R? -- * R!'. If there
are neurons between second and third layer, each of them has m - 1 weights w! 7' (j = 1 .... m i = 1.i - 1)
and nonlinear threshold function gj, these neurons are denoted subthird neurons.

The purpose of subthird layer is to focus and erase the specified error subset, which is local area processing.
The subthird layer is constructed in Fig.4, the dark circles represent subthird neuron. The approximated results
of subthird and hidden neurons are summarized in third layer to reach global approximation, each of them focuses
on specified error subset. The basic idea of FP is to separate error set into several subsets, and according to the
given accuracy of approximation, the error subsets will be erased one by one, by the subthird and the hidden
neurons until the desired precision is gotten. Assuming there are m output neurons and r mapping pairs,
Definition 2.4: Let o'j = [ej1, ej 2, ... , ejr be error set in jth neuron of second layer and oj is transferred to
third layer through main information channel, if there exists relationship lejil > je j 21 _ ... -> leirl, the set oj is
called absolute partial order error set.

After the approximation of second layer, the error set is transferred to third neurons totally and rearranged
to absolute partial order error set. Since there is one connection being main information channel, in which
weight equals to one, there are rn - 1 weights needed to be determined in every neuron of subthird layer.
The error subset ai ub = [ej 1, ... ,ej(m-. 1 )]T is selected to be reduced first in jth node of third layer, which are
maximum absolute values in error set oj. Meanwhile there must be a subset ysub = [yjn1 ,... y )]T and

Sy: i" .. Y (r-l )J =  1,.., in i = 11. - ) in second layer corresponding to -ub = [ej I_., J

in subthird layer, and then we can get W -'1  = [yiaub]-1,,
u

b, where is the weight vector from second

layer to jth neuron of subthird layer, so that there are only rn - 1 variables. On the other hand, the threshold
function should be decided by subset ujub There are three kinds of possible distributions in subset ojub. Let
al be negative minimum, b, be negative maximum, a2 be positive minimum, b2 be positive maximum in subset

SU6. Fig.5-7 demonstrate the three kinds of distributions.
Definition 2.5: Let error set be oj = [ej1 , ..., ej,] in ith neuron of third layer, which is absolute partial order set.
Choosing the first m - I elements to form subset 01,8b = [ejI, ..., ej(m- I], there must exist one of distributions
shown in Figs.5-7, the dark areas in these figures are called FP - 1 areas, and is denoted Aj in jth neuron.

The FP- 1 areas Aj, in fact, define the active intervals for the nonlinear threshold function. This definition
actually gives the way of how to decide the threshold function.

For example, the mapping I absolute partial order error set is shown in Tab.3.

e11 j 12  e13  14 1 e15  I e16  I e17 Ie18 I e19L eI 'Tab.3
-.5274 1 .23281 .2131 -. 2074 1 .1813 1 .17671 -. 1542 1 .1311 1-.1115 .1108

The subset oub is [-.5274, .2328, .213, -. 2074], which is case I shown in Fig.5. Now there exist FP- 1 areas
a1 -. 5274 - c, b, = -. 2074 + c, a 2 = .213 - c, b2 = .2328 + c, (0 < c << 1). The threshold function of jth
neuron in subthird layer is,

y7'=M-1I Yfns- <j- < biE S j k ial.. , , , - - - ( 1 6 )
k=1 a2 < y ' < b2

7t = 0 otherwise

where y -t is the jth neuron output in subthird layer (j = 1 ..., ni i - 1, ... , r), which is sifted by threshold
function gi. It is obvious that this nonlinear threshold function is defined by FP - I areas, which are decided
by o"ub. For the convenience of discussion we use Aj to represent the threshold function in jth neuron of
subthird layer. This threshold function is able to erase error subset o u b under condition of the mapping of
other elements e i V Aj not falling into the FP - 1 areas, because Wj' - t is derived by ysub and , in output
set y-= [yj- ,.., yj-] there must be m - 1 elements Yi4- ' (i = 1, ... , in - 1) E 01 ub . If the other elements
y -t (k = 1,..., r - m + 1) V rj" do not get into Aj decided by a,ub, this threshold function can erase subset
01eub , otherwise, is appears more complicated mapping space, which will be discussed in FP - 2.
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Definition 2.6: Let mapping Rm - 
-, R. (i = I...,r, m - I < r) be 40 Y A-... ,j] *uo' =

[ej, ... , ej(im-), jm ..., ejr]T from second to subthird layer, and there is absolute partial order error set uj -
[eij, ....,eiJ in neuron of the third layer. If there exist subset -" [e,:,..... e,,...z]T (Mr-i < r, eii E uj),
which is the first rn- I elements of ai, and corresponding subset is j = [ 5," j(-l I (Yj7."' E Y ), then
there must exist FP - I areas Aj and WS-' = [Y"1-'u (JY,"J # 0). The linear mapping (-' = I
is gotten, there is relationship fu"b1 E du-', also there is a subset &j = uf-' - o'"'= jr. ..., ijr]. If the subset
&j settles outside FP - 1 areas Aj, the linear mapping ($, Y, W-', Aj) is called FP - I local mapping space,
and is denoted *1, or - ' is called the checking set, &i is called the generated subset.

An important type of mapping space is described in Definition 2.6, in which the error subset 0,ub can be
totally eliminated by (16), while other elements eji V ru '" are not influenced, checking set (7 is used to find
out whether the given mapping is FP - 1 local mapping space. More important are, for loci V"P - I mapping
space 4, the complexity of algorithm relates only to the inversion of m - I vectors and decisiun of Aj instead of
searching in state space, this is a non-recursive and analytic approach.

Let us look at example of mapping I again. Assuming m = 5, m - I = 4,j = 1, [Yub]-I corresponding to
a'," in the first neuron of subthird layer is given in (17). and n = 5, r = 10. From absolute partial order error
set in Tab.3, the error subset aful = [-.5274, .2328, .213, -. 2074]T .

-. 4 - .25.19.58 1.2856 - 1.8366 - 42.8905 42.1995
[y-ub]-i .14 - .25 .28 .18 .0538 - .6255 10.488 - 9.3149 (17)

.49 .81 .22 - .01 = -2.8985 6.231 59.1355 - 57.6946

.54 .82 .23 - .02 3.5834 - 3.5774 - 44.5292 43.988

Wi5-t = [Y1 'ub]-o = [-18.9949, 3.9922, 27.6068, -21.332]. If c = .001, the FP - 1 areas A, are
al = -. 5284, b, = -. 2064, a2 = .212, b2 = .2338.

By calculating the checking set r$- ' = Y1 Ws--'= [-.5274, .2328, .213,-.2074, 1.2024, .4832,-18.0361, 6.4508, -
.6905], where the generated subset &I = [1.2024, .4832, -18.0361, 6.4508, -. 6905] and no generated elements
ii E &i fall into FP - I areas. The result of adding threshold function into global entity in the third layer is in

Tab.4.
target -. 75 -. 15 .45 -.52 .18 -. 38 .09 .8 .53 -. 21

app.result -. 75 -. 15 .45 J -.52 -. 0013 -.5567 1-.2442 .6689 .6415 -.3208 Tab.4
error .0 .0 .0 .0 .1813 .1767 -. 1542 .1311 -. 1115 .1108

The total squared error is .1298. The NDC is shown in Fig.8. From this figure the degree of nonlinearity has
been changed and become closer to the straight line and more smooth. Hence, the nonlinear threshold function
of subthird neuron contributes much to reduce nonlinearity and errors of global approximation. In the instance
of mapping 1, the W - t with respect to yjiub and af"1b results in no generated elements i E &i getting into
FP - I areas, which is FP - I local mapping space. If the primary local mapping is not FP - 1 local mapping
space, some generated elements i E 4,i getting into FP - 1 areas are able to effect the previously established
approximation. In the other words, the unexpected i L E & settled into FP - I areas make the corresponding
error elk in the third layer increase. The strategy used in FP - 1 algorithm is to compare the deleted absolute
values of errors with the increased errors. If (1/2) I >e Ek lij the algorithm of FP - 1 local mapping
space is available continuously. The notion of half FP - 1 local mapping space, therefore, is introduced.
Definition 2.7: Let mapping Rm- ' -* Ri (i = 1...r,m - I < r) be non FP - 1 local mapping
space. After implementing linear mapping (4b, Yj, WI -", Aj) in definition 2.6, there must exist subset ljub =
[ ... ,ej(m-l)] (m - 1 < r, eii E oj), and generated subset &ju = [ij1, "-', jk] (ejk E &j), and ijk gets intoFP -1 areas Aj. If (1/2) Eoedell M I ^,

- (' E . --, j this given mapping R' - R, is called half FP - I local
mapping space, and is denoted 1P.

The concept of the half FP - 1 local mapping space, in fact, provides the looser condition in implementing
FP - I algorithm. The only difference between *i and 4 is that 4 reduces the errors less than * does. From
mathematics point of view, 4 reveals more intricate topological mapping relationship. Up to now the two types
of primary local mapping spaces *1 and 4 are defined and the corresponding algorithms are also provided. The
FP - I is based on these two primary local mapping space. Other more sophisticated local mapping space will
be introduced in the future discussion of FP - 2.
2.4 Determination of hidden neurons

If the process above can not reach the desired accuracy, the hidden neurons should be added.
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Definition 2.8: If a hidden neuron is only connected to one output neuron and the corresponding weight equals
to 1, this hidden neuron is denoted the direct hidden neuron (DHN).

From FP- 1 basic idea, the hidden neuron, in fact, only contributes to the local area for the specified output
node in the process of approximation. The direct hidden neuron actually transfers information to the connected
output node. Let us use ..,apping I to demonstrate the algorithm in hidden layer.

1. The remained errors in Tab.4 should be rebuilt in the absolute partial order error subset y, then the
first n maximum absolute values in al are selected as error subset 0 ,;ubl& to be reduced through hidden
neuron, here, a u&hl means this error subset eliminated by the first hidden neuron linked to jth output
node. WJ vector with n variables needs to be decided. Tab.5 shows the rebuilt absolute partial order
error set orI and n = 5 in mapping 1.

target .18 -.38 .09 .8 .53 -.21 -. 75 -. 15 .45 -.52
app. result -.0013 -.5567 .2442 1.6689 .6415 1 -.3208 -. 75 -. 15j.45 -. 52 Tab.5

error .1813 .1767 -.1542 .1311 -.1115 .1108 .0 .0 .0 .0

In Tab.5, error subset ,',ubh' = [.181 3 ,.17 6 7 ,-.1 5 4 2 ,.1311,-.1115]T. The FP - 1 areas A1' are a1 =

-. 1543, bi = -. 1114, a 2 = .131,62 =b .1814.
2. Using Wh 1 

= Xhlo ul
h l to set Wi, which is weight vector between input and first hidden neuron, Xh, is

input subset XAi E X, which corresponds to Ojubhl . With same algorithm in subthird layer, the inversion
XW-I and WhI can be gotten. WIl ' = [.5788, .1725, 1.9783, .6433,-2.6756].

3. Using O -  - XWr 1 to check out whether or not other vectors are able to get into the FP - I areas
At'. If not, it is local FP - I mapping space, here, the o1(h-')' is the checking set of first hidden neuron
in first output node.

- [.1813, .1767, -. 1542, .1311, -. 1115, -. 2239. - .7742, -1.0811, .4735, 1.9475] T . No generated
elements ih E 0 h-)1 - subh i = &(h-t)l get into At". Therefore, this is local FP - 1 mapping space and the
nonlinear threshold function is established from the hidden neuron to jth output node,

at <n < b(
YI i. Jk { = 1.. r, a2 <1 A < b2

Y -:= 0 otherwise
Because it is FP - 1 mapping space, this nonlinear threshold function only allows subset o-, passing

through the hidden neuron to eliminate error subset in the third layer, then in the jth output node the result of
final approximation is in Tab.6.

target .18 -. 38 .09 .8 .53 -.21 -.75 -. 15 .45 -.52
app. result .18 -. 38 .09 .8 .53 -.32081 -.75 -. 15 .45 -.52 Tab.6

error .0 .0 .0 .0 .0 .1108 .0 .0 .0 .0
The total squared error is .0123. The NDG is shown in Fig.9. In general, this method of adding hidden

neuron can be repeated again and again, until the given precision arrives. Fig.10 shows the architecture of
mapping I neural network, the grey circle is the threshold function.
Definition 2.9: With the given approximation precision, if all of the local mappings from second to third layer
and all of direct hidden neurons are FP - 1 local mapping space, or half FP - 1 local mapping space, the given
mapping R? -- R" i = 1,..., r, n < r is called global FP - 1 mapping space, and is denoted In.

If the given mapping R' - RT is global FP- I mapping space 11, we can know and even control the accuracy
of approximation in every step, and therefore we are able to control the entire program of approximation.

3 Remarks and Conclusion
Due to the page limit, we can not provide more simulations, the mapping 1 is only a simple exam .-. What is the
meaning of FP - 1 algorithm in mathematics? Although BP is used broadly, one important problem is not given
much attention by researchers, that is if the configuration of general multilayer perceptron is reasonable. In the
other words, connecting every neuron with every neuron in next layer is unreasonable. This is a key problem. In
fact, an arbitrary nonlinear mapping can be viewed as a global mapping and its local constituents, that means
some neurons play the roles in global region, while others focus on some special local areas, depending on the
given mapping data set or applications. The main idea of FP serial algorithm is how to decompose the given
mapping into global and local mappings and to decide which neurons focus on which areas. It is undoubtable
that many questions will arise with the emergence of FP - 1. Some of them need to be proved in mathematics.
The FP serial algorithms put emphasis on the way of how to realize them.
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ABSTRACT
All artificial neural nets (ANN) learning schemes assume the existence of an untrained

pool of neurons whose weights are modified, so that after training, the net of which they are a
part may solve some problem - pattern recognition for example. But biologically, this untrained
pool of neurons seems a contradiction. In a living organism, these untrained neurons serve no
survival purpose prior to their training. It is difficult therefore to explain their presence. It seems
highly unlikely that a single mutation simultaneously produced this untrained pool and their
training rule. How did both untrained pool and the training rule evolve? I discuss the
applicability of a two-layered net which employs probability data about the environment as
weights. This net (or a similar one) might be an appropriate tool to help answer the question
posed above. I have seen no publications in the ANN literature that address the problem of how
learning could have evolved.

I. Introduction

A. History. Reggia [141 explored connectionist models which employed "virtual" lateral inhibition,
and included the activation of the receiving node in the equations for the flow of activation. Ahuja [2] extended
these concepts to include summing the total excitatory and inhibitory flow into a node. He thus introduced the
concept that the change of activation of a node depended on the integral of the flow into that node and not just the
present activation levels of the nodes to which it is connected. Both Reggia's and Ahuja's models used probability
data for the weights. Ahuja's model was further extended by Alexander [4], [5] in the RX model to allow both the
weights and the activations of Ahuja's model to be negative, and further, Alexander's model included the prior
probabilities of all nodes. Although these equations have been discussed elsewhere, [41 [5] [6] they are discussed
here in light of the new use for which they are proposed in this article.

B. Overview. Section II of this paper contains a complete listing of the RX equations and describes
their development. The convergence of the system is discussed in Section III. Section IV briefly describes the
experiments testing the RX system. Section V offers a conjecture on a biologically plausible answer to the question
raised above by employing the RX equations, and summarizes and concludes this article.

H. The RX Equations

A. Details of the net and its usage The net is two-layered, with the J lower level being the input
nodes to the N upper level nodes. The processing units depict a "local" or one-unit-one-concept representation.
Thus far, the net has been used in pattern recognition applications, lower level nodes serving as features and the
upper level nodes representing the possible pattern classes. The values of the upper level nodes are on [0,1] and
called ai(t). The prior probability of the ith node's existence is called a1 . Values of a1(t) greater than i indicate
a higher than average chance of occurrence of the concept presented by node i, and those lower, indicate a less than
average chance. The lower level nodes (called m) are on [-1,1]. Let the range of possible input values to a node
be between some Mini and Maxi. Call the average Ave . Let Observj be the observed value. Then define:

1 0. [ u y -A e) If o 0 h rvs e jA W ,
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[Obar,-Av) 1Ohervise (2)
'n(Ave,-Mbs 1

When m assumes the value 1, then the feature represented by ni is present, with probability one. When mi is -
the feature is absent with probability one. A value of zero indicates that no information exists concerning the
absence or presence of the feature (n.)

Two sets of weights exist. The first is called wU, and in absolute value indicates the probability of
occunence, if positive, and non-occurrence, if negative, of the upper level node (the ith node), given the existence
of the lower level node (the jth node). The second weight is called v,, and in absolute value indicates the
probability of occurrence, if positive, and non-occurrence, if negative, of the lower level node (the jth node), given
the existence of the upper level node (the ith node).

Two auxiliary functions are to be associated with each a(t). The function which conveys the excitatory
activation is called Exci(t), and the one which conveys the inhibitory activation is called Ini(t). They are the sums
of all the excitatory and inhibitory flow of activation into node a(t). The strategy used in defining these functions
is to build them as bounded monotone-increasing functions, defined by their dervatives. The monotone-increasing
characteristic of the Exc,(t) term will be achieved by defining it as a product of strictly positive terms in the equation
for its derivative. One of these terms is a function of all the a(t) and is the variable forcing term. It will for the
present be called ForcingFunction and the equations presented shortly. There will be one such function for each
lower level (j) node, hence a sum need be taken over all the j nodes connected to any given i node. The bounded
characteristic is achieved by including in the equation a factor of the form [N - Excl(t)J. The choice of N as the
bound to which Exc(t) approaches is somewhat arbitrary. The differential equation defining Exc1(t) is then:

Eic(t)=K1 4,*[N-Ec(t)J * ForcingFunction, (3)

Where K, is a constant of proportionality. ForcingFunction is a function of all the a(t). The i, term as a factor
reflects the prior probability of the concept represented by a,(t) in a meaningful way. Inh,(t) is defined in a similar
fashion.

Since n may be above or below average (positive or negative) and the weights wy may each be either
positive or negative, four separate cases may occur. Only four cases can occur, since the signs of the vu are the
same as the w,. These cases are: (1) weight positive with activation positive; (2) weight negative with activation
positive; (3) weight positive with activation negative; and (4) both weight and activation negative. As will be
shown, all activation transfers (both excitatory and inhibitory) will be calculated as positive, with the inhibitory
being subtracted from the excitatory to calculate the total for each case used by the equations in calculating the a(t).
Each of the four cases will have a term calculated using the w, weights (called OUTU), and each of these will have
a term of opposite sign (offsetting) calculated with the v weights (called out).

We require two equations per upper level node to describe the change of activation, one when a,(t) is
greater than 7,, and one when less. Thus for a(t) > i,:

d~t) =K3 *c . *[I - a ~t )] * [FEt c ,( t) -Inh,(t)]  (4)

When al(t) < = a

dtl)=1C3*c,*[ aff)] * [Evc5 ) -Inh/j)] (5)

Above K3 is a constant of proportionality, and the c. and cl are needed to keep the derivative continuous
at I~. The values ofc and c. are:
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Mwu conplee Wis of equations to be used with the above is now given.

+kn soaip~n1 Q 4 13 *ouaMPOt) 14 *UMM 1

+k2 *OUWM~t) .ki3*OU73fPVQ) o74* nM 01)

Henek 1  k are included for generality.

WhnWj a , 1

4W* IaA(t)-a ti.)

When W?.O,mjcO

W. * at) 4, 1 . a()~I(

WhenWV~,nh~m40

W11*1-762 -,



VI ak_. -Z.)

WhenV,<O.mO

o.=m "-" V,* la(t) -5l 1 l,(s

As written, with absolute value signs included, only positive addends appear in the summation term, which
is itself a multiplicand in the equations for Exc1(t) and I*(t), hence they are both monotone on-decreasing
functions as required.

We first offer some comments on the RX system of equations described in Section II. above. The RX net
is more biologically plausible than a perceptron. Consider the following:

a - Unexcited cortical neurons spontaneously fire at some resting average rate [1] [10]. Information is only
transmitted when these neurons vary from their average values. This attribute is simulated in the RX
equations by having each node possess an average value, at which it assumed to be operating. Activation
will flow only when the activation of the lower level nodes is above or below their averages.

b - A highly excited cortical neuron is more likely to fire upon the arrival of an excitatory action pulse than is one
at its resting activation level [1]. This property is simulated in the RX equations by making the new
activation level of the receiving node functionally depend on the urodut of the activations of the sending
(n) and the receiving nodes (a(t)).

c - The RX system calculates the activation of a receiving node by using the integral of excitatory and inhibitory
inputs rather than by the instantaneous values of the nodes from which it receives input. It is for this
reason, of course, that the system consists of 3*N rather than N equations.

The RX equations handle the lateral inhibitory effects (on-center, off-surround) of neurons in the same layer
by "virtul* lateral inhibition [14] in the RX system: that is, intra-layer inhibitory effects are implemented without
actual connections between these nodes. This has overcomes two problems - (1) the number of connections grows
rapidly with N (the number of nodes on the upper level) and (2) it is difficult to measure (or estimate) these weights.

I. Convergence of the RX Equations. The demonstration of the convergence of the RX equations is given
in [4]. While it is shown that these equations are convergent almost everywhere, it could not be shown that they
converge in an e volume around the critical points. To complicate matters even more, the critical points form a
continuous set. As is to be expected in such cases, the demonstration of convergence is long and somewhat
difficult. Note that the RX set contains 3*N equations, i.e. N terms in a(t), N terms in Exc1(t) and, N terms in
Inhi(t). The root of the difficulty is that the first N terms of the diagonal of the Jacobian matrix for the RX system
are zero, (i.e. N, or one third of the eigenvalues are zero). As yet, the RX equations do not include decay terms.
But their inclusion would greatly simplify the proof of convergence since, were they included, all terms of the
diagonal of the Jacobian matrix would be negative.

IV. Testing of the RX Equations. Also in [4] the RX equations were coded and this system extensively tested.
Testin included (1) general behavior testing in which their predictions were compared with expected behavior, (2)
accuracy by comparisons to special cases that allowed the equations to be integrated in closed form, (3) comparison
with similar runs of the IA (Interactive Activation) system of Rumelhart and McClelland [III, and (4) comparison
of the results of a radar identification problem with the backpropagation net [161. They have continued to undergo
other tests of their utility [7]. In all cases the RX equations showed themselves on a par with the nets to which they
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were being compard.

V. On the evolution of intelligece. Consider again the question raised in the Abstract. - How is the
existence of a pool of untrained neurons to be explained in a biologically plausible way? The pool of neurons serves
no survival purpos, prior to its training.

Kuffier, Nichols and Martin [10] imply that the brain is primarily a controller. In the Outline of a Theory
9.fk IjgM, Albus [3J states that "...first and foremost, the brain is a controller." But consider the history of
the study of artificial neural networks. From Rosenblatt [15] in Neurodynamics "At the time the first perceptron
was proposed, the writer was primarily concerned with the problem of memory storage in biological systems...'
Clearly Minsky and Papert [13] were concerned with memory, since their surface concern was Rosenblatt's book.
The recent revival of the connectionist or artificial neural network field started afresh in 1982 with Hopfield's [9]
paper 'Neural Networks and Physical Systems with Emergent Collective Computational Abilities.' This paper
discussed how information could be stored in a certain type of net - again a concern about memory. Although the
trend is shifting to the study of control mechanisms [17], the initial studies were mainly on mmorries.

Fossil records suggest that the use of neurons to transmit control signals existed before their use in
memories. It could be argued that the use of memories differentiates lower life forms from higher ones. In the
lower forms, the input or signals sensed by the receptor neurons are sent directly to the motor neurons. Little or
no computation is performed on the incoming signal prior to its transmittal to the motor neuron which causes some
action to be performed. On the other hand, in higher forms of life, from sensors, incoming signals are sent through
sequences of cell assemblies where specific processing is performed before the response is sent to the motor neurons
to control actions. Albus [3] has suggested that it is in the specific processing that memories might be needed.
Stated alternately, lower forms of life respond to given input signals in a predetermined way - the response is
hardwired. In higher forms, the possible effects of various behaviors are examined in view of the existent
environment, and the most appropriate behavior selected and executed.

In [5] the author suggested that the RX system of equations might be used in a control scenario as follows.
Consider the net displayed in Fig 1. The lower level nodes are labeled n and represent presence (or absence) of
an external event or stimulus to an organism. The upper level nodes represent possible responses by that organism.
Note that m, is excitatory to a, and inhibitory to a2, while n2 is excitatory to a2 and inhibitory to a. Let the
responses be mutually exclusive - for example, the decision to run to escape from a predator or freeze and hope
not to be observed. The weights w,,, w, 2, w2,, and w22, and the
activations of m, and m2 will determine what action the organism
will take. We may ignore the vo weights for the present, since they /

will not change in what follows. As an alternative to the exercise aI a2  / a3of a rule to modify the weights (learning), the weights may be .

determined as follows. We assume the existence of some statistical /

distribution of these weights for all new offspring. Assuming that /

the organism's biological neural net processes in a similar fashion \ / -

to the RX net, then an organism possessing the weights that match V

most closely the actual survival probabilities will have a higher
chance of survival (and hence chance to reproduce) than will all //

others. Further, a&vming the weight's values passed on in the
enes will be distibute with a mean near the value of the parents, --

as generations go by the mean of the population weights will tend to I m2  3

approach that which leads to the highest survival probability. ,
Clearly, the above is highly speculative; however, if such
phenomena actually exists, perhaps it should be called "Darwinian
learning.*

Now assume that a mutation affords the connection from sensor m 3 to one of the action nodes, say a2.
Further, assume that mj indicates the presence of an event that, in combination with the presence of the event
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signified by ni, makes a2 a better choice than a, i.e. continuing the above example, the ability of the prey to smell
the predator might indicate than the wind is from predator to prey. Hence the predator probably can't smell the
prey. Then, as long as w,2 is positive, this mutant connection will tend to make the organism behave in a way that
enhances its chance of survival.

In [7] the author studied a fuzzy logic controller designed to determine the appropriate control valve setting
required to maintain water at a constant height in a tank with variable inflow and outflow. In this study, the
defuzrzfled centroid, which gave the value for the appropriate control valve setting, was subjected to increasing
random noise. The ultimate test in this series was to replace the calculated setting with a positive random number
on the range of control valve settings if the defuzzified setting was positive, otherwise a negative random number
on this range. Even under these extreme conditions the controller still worked.

Summary. From the above, we can build a plausible explanation of how neurons are added to elementary
organisms with small populations of neurons. Although I started with a pool of two in the example above, there
is no reason why the I could not have begun with just one neuron. If mutations randomly add connections, some
of these connections will be those which could aid in survival. Assuming that the genes will pass these added
connections down to the next generation with random variations in the weights, and that the RX net is a close model
of actual biological processing, then those organisms lucky enough to inherit weights which contribute to their fitness
to survive will have a better chance of passing, through their genes, these weights on to their offspring. From the
example of control of the height of water in the tank, we see that just a little guidance can help a great deal in
control problems. I suspect that this is true in case of evolution. I offer the following answer to the question posed
in the abstract. Organisms possessing neurons serving control functions might, by mutation, beneficially combine
the afferent signals of sensory neurons or interneurons in the control paths and thereby improve the survival
probability of the organism. The effect of this mutation is to produce a more highly coupled or connected set of
neurons. This increased connectivity might allow the emergence of memory in addition to the enhanced control
function.

Discussion. The above is highly speculative. "Much of what has been presented is hypothesis and
argument by analogy' [3]. No biological evidence exists for any of the hypotheses presented in Section V. The
reason for examples being demonstrated with the virtually unknown RX net of the author's familiarity with this net
(his dissertation work). Certainly, more biologically plausible models are readily available [121. Perhaps further
review will reveal that major biological implausibilities exist in the above.

Yet, the author feels there is merit in work such as the above. Daniel Gardner [8], and the editors of the
series of which this book is a member, posit the theme that "Third Generation Neural Networks Should be
Neuromorphic'. A step towards biological plausibility seems a step in the right direction.
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ABSTRUCT This paper discusses properties of activation functions in multilayer neural network
applied to multi-frequency classification. A rule of thumb for selecting activation functions or their
combination is proposed. The sigmoid, Gaussian and sinusoidal functions are employed due to
their unique space division properties. Properties of each function and their combinations are
discussed based on the internal representation, that is the distributions of the hidden unit inputs
and outputs and classification rates with and without noise. The sigmoid function is not effective
for a single hidden unit. On the contrary, the other functions can provide good performance. When
several hidden units are employed, the sigmoid function becomes useful. However, the convergence
speed is still slower than the others. The Gaussian function is sensitive to the additive noise, while
the others are rather insensitive. When noise is not included, the Gaussian function is most useful
for the convergence rate and the classification accuracy. On the other hand, the additive noise is
included, the sigmoid and sinusoidal functions become more effective. These properties are not
straight in the combinations. However, their property still remain, and it is possible to select the
optimum activation function. This selection also depends on the patterns to be classified.

function, a radial basis function[2] and a periodic
I INTRODUCTION function. They will be compared with each other in

Advantage of multilayer neural networks (NNs) classifying multi-frequency signals. Effects of noisy
trained by the back-propagation (BP) algorithm is to signals will be also discussed in the training and clas-
extract common properties, features or rules, which sification processes.
can be used to classify data included in several As a result, a rule of thumb for selecting the suit-
groups [1]. Especially, when it is difficult to ana- able functions and the combination of several kinds
lyze the common features using conventional meth- of functions will be provided.
ods, the supervised learning, using combinations of
the known input and output data, becomes very use- II MULTI-FREQUENCY SIGNALS
ful.

We studied the multi-frequency signal classifica- Multi-frequency signals are defined by

tion using multilayer neural network[5]-[7. Since R

the frequencies are assigned alternately to several E(n) = A,,sin(w,,nT+4,,,,) (1)
groups, it is very difficult to distinguish the wave- r-1

forms within a short period, and the limited number n = 1 . N, Wpr = 2Tfp,

of samples by conventional methods. The follow- T is a sampling period. M samples of zpn(n),m =

ing advantages of the NN over conventional methods 1 ,, M , are included in the group Xp as follows.
were confirmed. The neural network can classify the X, = ix,.(n),m = 1 ,- M),p = I , P (2)
signals using a small number of samples and a short
observation period with which Fourier transform can In one group, the same frequencies are used.
not classify. The number of calculation is sufficiently
smaller than the convolution calculation, required in F, = [hi, f,2 .. , fRJHz, p = 1 -, P (3)
digital filters. Amplitude Amr and phase 0mr are generated as

In the previous work, a sigmoid function was used. random numbers, uniformly distributed in following
However, it is not always optimum. Therefore, prop- ranges.
erties of activation functions are investigated in this a<nA.,<1, 0 5#,,< 2w (4)
paper. For this purpose, some typical functions are
taken into account. They include a sigmoid
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III MULTILAYER NEURAL NETWORK Sinusoidal function:

3.1 Network Structure and Equations y, = fo,(net,) = sin(wnet,) (10)

A single-layer neural network is taken into account.
N samples of the signal x,,,,(n) are applied to the Gaussian function:
input layer in parallel. The nth input unit receives y = ft..(net,) = e-"' (11)
zpm(n). Connection weight from the nth input to
the jth hidden unit is denoted wj. The input and The input vectors are distributed in a N-
output of the jth hidden unit are given by dimensional space. Three functions divide the space

N-e ! U'.m(n) + 19 (5) as follows:netj = E ,,,()+# 5 { > Goe+, net, > T',gf-0e f-j(net,) > 0+, net, > T ait (12)

Y, = f/(etj) (6)

Letting the connection weight from the jth hidden
unit to the kth output unit be wjk, the input and f.,.(neti) > Q+, Inet, - (2nw + )1 < T.,.
output of the kth output unit are given by < a-, Inet, - (2ni + w) <T..., (13)

J-1

net& = EUkY, + Ok (7)
=0 r > o+, InetI < T,.. (

jffio.fg((net,) < o_, Inet.I > T.., (14)
=k =o(.et&) (8)

The activation function of the output layer is the Here, n is integer.
sigmoid function. These space division fundamental, and indepen-

The number of output units is equal to that of dent to each other. This is an idea behind selecting
the signal groups P. The neural network is trained the above three functions.
so that a single output unit responds to one of the Next step of selecting activation functions is how

signal groups. to combine them. It is also highly dependent on the

3.2 Training and Classification distribution of the input signals, and is very hard
to determine before hand. For this reason, both the

Signals are categorized into training and untrain- homogeneous function and the composite functions
ing sets, denoted Xrp and Xup, respectively. Their are investigated.
elements are expressed by XTpm(n) and xtrpm(n), re-
spectively.

The neural network is trained by using XTpm(n), V SIMULATION OF TRAINING AND

m = 1 - MT, for the pth group. Here, MT is the CLASSIFICATION WITHOUT NOISE

number of the training data. After the training is
completed, the untrained signals xUpn(n) are applied 5.1 Multi-frequency Signals

to the NN, and the output is calculated. For the The number of frequency components is R = 3,

input signal xupm(n), if the pth output yp has the and the signal groups is P = 2, respectively. The fre-
maximum value, then the signal is exactly classified. quency components are located alternately between

Otherwise, the network fails in classification, the groups as follows: F, = [1, 2, 3] Hz for Group 1

(#1) and F2 = [1.5, 2.5, 3.5] Hz for Group 2 (#2).
IV SELECTION OF ACTIVATION The sampling frequency is 10 Hz, that is T = 0.1

FUNCTIONS sec. The number of samples N is 10. Therefore, the

What kinds of activation functions should be se- observation interval is 1 sec.

lected is very important. At the same time, it is a
very difficult problem. In this paper, the following 5.2 Training and Classification

typical functions are selected for the hidden layer. XTp..(n), m = 1 - 200 and xupm(n), m = 1

When binary target can be considered, then the 1800 are used. Simulation results are shown in Table

sigmoid function can be used in the output layer. 1. The training converged using three hidden units
for all activation functions. In the case of the Gaus-

Sigmoid function: sian and the sinusoidal function, the training almost

=j f,(net) = 1 + - (9) converged with one hidden unit. Detailed discussion
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will be provided in Sec. 7.
.26

Table l:Classification rates by three functions[%] '24
Activation Hidden Training Untraining
Function Unit #1 1 2 #1 #2 0 2 ---- ...

- 1 44.5 100 47.9 100 0.2

Si§nusoia I 86.0 99.0 9 8 9 0jo., ,
3 I0 0 2. 0 o.e  '

Gaussian 1 99.5 100 98.1 100 ,

0.12--

00100 am 0 00 5,, , 00 000 700 Sam ow0
VI SIMULATION USING THREE Nme o Cycles

ACTIVATION FUNCTIONS
Figure 1: Learning curves

6.1 Additive Noise VII Convergence Property Using Single

White noise, denoted noise(n), is generated as ran- Hidden Unit

dom number, and is added to the signal Xpm(n). 7.1 Pure Multi-frequency Signals
Noisy signal x'~(n) is given by The NNs trained without noise are further inves-

tigated by hidden unit input and output distribu-
x'pm(n) = xpr,,(n) + noise(n) (15) tion. Figure 2 illustrates this distribution, using the

sigmoid (al), the sinusoidal (bl) and the Gaussian
6.2 Training and Classification functions (cl).

The noisy multi-frequency signals are used for In the case of the sigmoid function, the data #1

training. N is 10 and M is 200 for each group. After and the data #2 have to be located the right or left

training, untraining signals with white noise are ap- side. This is a fundamental space division property

plied, and classification rates are evaluated. White of the sigmoid function. Thus, the network have to

noise is uniformly distributed in the range ±0.5. The adjust the weights, with which the hidden unit in-

results are shown in Table 2. Columns with (A) and put data are completely separated into the right or

(B) list the recognition rates using the training sig- the left side. The data #2 is concentrated at the

nals without and with white noise, respectively. The edge of the a+ as shown in Eq.(12), but the data #1

NN trained without noise is also used for comparison. is distributed widely. From this result, the distri-

From these results, it can be confirmed that training bution of the hidden unit inputs generated by the

using noisy signals is useful to achieve robustness. multi-frequency signals cannot satisfy the require-
ments given by Eq.(12).

Table 2: Classification rates using training signals In the case of the sinusoidal function, the hidden
(A) without and (B) with white noise [%] unit inputs of the data #2 locate near one of the
Activation Hidden ((B) peaks and the data #1 distributed widely. The sinu-
Sicton i 4. 2 92. 28.2 5 soidal function have large differential coefficient ex-

53 97. 8.4 8. 8 cept for the peak. Then the data #2 can be shifted
Si al 1 80.2 20.9 61.7 87.7 around one of the peaks fast. On the other hand, the

3_ 6. * 36. * 79.9 82.7 data #1 can locate in the region of fsi(netj) < a.
Gaussian 1 98.2 4.8 71.7 65.9 Therefore, the requirement of the fundamental di-

W 853 6. 798 70.2
vision property given by Eq.(13) is satisfied by the

6.3 Convergence Rates multi-frequency signals.
In the case of the Gaussian function, the data

Figure 1 shows learning curves obtained using the #2 locate around the peak. Differential coefficients
three hidden units. The NN with the Gaussian func- around the peak are large, then, the data #2 can be
tion can converge faster than the other. However, the shifted toward this area very fast. Most of the data
error does not well decreased. The NN with the sinu- #1 are distributed both sides.
soidal function can also converge faster. At the same From these xesults, the hidden unit inputs of the
time, the error can be well decreased. A convergence multi-frequency signals can be concentrated on a nar-
rate using the sigmoid function is slow. However, row range for one group, and the other is distributed
the error can reach to the same level as in using the widely for the other group.
sinusoidal function. Thus, the space division property of the Gaussian
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Figure 2: Hidden unit input and output distributions

function is best match with the distribution of the response for the data #1, and (a2), (b2) and (c2) are
multi-frequency signals. This function can provide for the data #2.
the best accuracy as shown in Table 1. From these figures, there are two type of distri-
7.2 Noisy Multi-frequency Signals butions, that is concentrated and dispersed distribu-

In Figure 2 , (a2), (b2) and (c2) correspond to tions. One of two groups locates at near the peak
the hidden unit inputs and output distributions, in of the functions and the other is widely spread. The
which random noise is added. The network is trained overlap of the distributions between the two groups

by using the pure multi-frequency signals. After the cause miss classification.
training, the untrained noisy signals are applied to In Fig.3, it is very interesting that the data #2
the NN. The distribution of the hidden unit inputs locate at the middle of the slope. Since this region is
are easily spread by adding the noise. not a stable region, it can be expected that accuracy

In the case of the sigmoid, the data #2 distributed is easily degraded by adding the noise. As shown in

widely. However, the most of the data #2 still re- Table 2, it is true. The classification rates are 97.3%
main in its own region. Because it has wide stable for the data #1 and 8.4% for the data #2. Accuracy
regions. This is a reason why it can provide better for the data #2 is greatly reduced.

accuracy than the others. Figures 4, 6 and 8 show distribution of the inputs
In the case of the Gaussian, the data #2 dis- of the two output units. In these figures, (a) and

tributed over the other region. Because a single peak (b) correspond to the data #1 and the data #2, re-
is very narrow. Then these data easily move over the spectively. The region of overlap of the solid and
other group's region. Thus, the accuracy is decreased the doted lines will cause miss classification. We can
by adding the noise. investigate from these figures, how the hidden units

The sinusoidal case, the data #2 also widely dis- separate the signals into two groups. In the case of

tributed. However, the sinusoidal function is a peri- the data #2 is applied, there are no overlap. So,
odic function, having several narrow stable regions. the hidden unit input space is well separated. In the

Thus, it can provide higher accuracy than that of the case of the data #1 is applied, there are some over-

Gaussian function. lap. These overlaps cause miss classification. These
results are consistent with the accuracies shown in

VIII Convergence Property Using Several Table 1.
Hidden Units From the figures, the input space of the output

8.1 Homogeneous Activation Funtions units are well separated by the sigmoid and sinu-
soidal function. So, it can be concluded that three

Figures 3, 5 and 7 show distributions of the hidden hidden units cooperate to make the distribution of
unit inputs and outputs. The NNs are trained by the inputs to the output unit to be linearly separa-
using the signals without noise. The sigmoid, the ble.
sinusoidal and the Gaussian functions are separately
used. For each figure, (a), (b) and (c) correspond to 8.2 Composite Activation Functions
one of the hidden unit. (al), (bl) and (cl) are the Three functions can be combined in the same hid-
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den layer. This combination is called 'Composite Ac- than E and F. Then adding both the sinusoidal and
tivation Function' in this paper. the Gaussian to the sigmoid does not work well.

Table 3 shows classification rates using the multi- The sinusoidal and sigmoid functions achieve good
frequency signals without noise. In this table, the accuracy in the most of the combinations. However,
symbols D through J correspond to the combination the sinusoidal combination does not always achieve
of the functions. better accuracy. Thus, property of each function is

The combination C, having three Gaussian func- not straight in the combination, as previously dis-
tions, achieves the best accuracy. The conver- cussed in the no additive noise case.
gence rate is also the fastest among three functions. Table 4: Classification rates using signals with noise
The combination D, having all activation functions, Combination "Uaining Untrainin

achieves better accuracy than the others except for A Sin I 0W 8. #o sz 72 A.
0~ 0 T 835 860 2. 78.9 80.8

C. However, I and J, which include two Gaussian 0 3 10 84.5 89.0 79.9 82.7 81.3
functions, are worse than D. _F0 0 13 7 815 79.8 70.2 75,0

1 1 77. 92.5 9.1 84.3 77.8
K through M are compared with E through J. E 7 2 1 0 TM 77.0 80.9 8T 74

and F are better than K. Then adding both the sinu- F 2 0 1 78.5 T.5- -IT 8917 7.
soidal and the Gaussian to the sigmoid can improve 2 92.5 72. 8.7301 7.
the performance. H is better than L, but G is worse 1 -0 2 84.0 87T 7.5T 7n5. 7T7T 0 1 2 ~4.5 82. 8i.0 78.5 79.8
than L. Then adding the Gaussian to the sinusoidal K 2 1 .0 70 81.0 78.5 7.T
can improve, while the sigmoid can not do. L 0- 2 0-y 8 8 . 73.6 T 7i4

In the most of the combinations, the Gaussian M 0 0 T 75. 8. T.0 71T 74
achieves better accuracy. Then, property of each
function does not appear straightly in the combina- Properties of c nu ionsPrprisof the activation functions for multi-
tions frequency signal classification has been discussed us-

Table 4 shows classification rates of the network ing multilayer neural network supervised by BP algo-
trained using the noisy signals. Training itself did rithm. The Gaussian function can provide the high-
not converge in all cases. This means that the accu- est performance for the signals without noise. How-
racy is not 100% for all combinations of the functions. ever, it is sensitive to the additive noise. The sig-
The network using the homogeneous activation func- moid function is not useful for a single hidden unit.
tion A and B has higher accuracy than the others. If several hidden units are used, then the sigmoid
However, C does not achieve better accuracy than function becomes useful, and is insensitive to the ad-
the others. Then the homogeneous activation func- ditive noise. The sinusoidal function is useful for
tion can not always achieve better accuracy than the noisy signal.
composite activation functions. References
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